统计学-平均数、中位数和众数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设我们观察一组数据a 1,a 2,…a n−1,a n 的平均水平,需要借助这组数据的平均
数、中位数和众数三个统计量。
一、平均数a)算数平均数,一般我们讲的平均数即算数平均数,计算起来很简单,就是
将一组数据中所有数据求和后再除以这组数据的个数就能得到。计算公式为:
A n =1n i=1n a i b)几何平均数,是将一组数据中所有数据求乘积后再求n 次方根。计算公式
为:G n =
n i=1n
a i c)调和平均数,又称为倒数平均数。H n =n i=1n 1a i d)加权平均数,是具有不同比重的数据(或平均数)的算术平均数。比重也称为
权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。加权和与所有权重之和的比等于加权算术平均数。加权算术平均数主要用于原始资料已经分组,并得出次数分布的条件。加权算术平均数的计算,根据分组整理的数据计算的算术平均数。其计算公式为:
A =i=1n a i ∗f i i=1n f i 式中f 为对应数据在总体中出现的次数。
e)平方平均数,又名均方根,是指一组数据的平方的平均数的算术平方根。
应用在一些具有一定体积的物体的边长、直径、半径等资料上。其计算公式为:
M n=
二、中位数
中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。中位数用Me表示。
从中位数的定义可知,所研究的数据中有一半小于中位数,一半大于中位数。中位数的作用与算术平均数相近,也是作为所研究数据的代表值。在一个等差数列或一个正态分布数列中,中位数就等于算术平均数。
在数列中出现了极端变量值的情况下,用中位数作为代表值要比用算术平均数更好,因为中位数不受极端变量值的影响;如果研究目的就是为了反映中间水平,当然也应该用中位数。在统计数据的处理和分析时,可结合使用中位数。
中位数就可以按下面的方式确定:
M e=
n为奇数n为偶数
三、众数
众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数。众数是由英国统计学家皮尔生首先提出来的。所谓众数是指社会经济现象中最普遍出现的标志值。从分布角度看,众数是具有明显集中趋势的数值。
统计上把这种在一组数据中出现次数最多的变量值叫做众数。用M o表示。它主要用于定类(品质标志)数据的集中趋势,当然也适用于作为定序(品质标志)数据以及定距和定比(数量标志)数据集中趋势的测度值。