机械分离与固体流态化《化工原理》课件要点
【管理资料】机械分离与固体流态化化工原理课件要点汇编
9
标准筛 筛分
三、筛分
筛网用金属丝 制成,孔类似 正方形。
泰勒(Tyler)标准筛------其 筛孔大小以每英寸长度筛网
上的孔数表示,称为“目”。 例如100目的筛即指每英寸 筛网上有100个筛孔。 目数越大,筛孔越小。
将几个筛子按筛孔从大到小的次序从上到 下叠置起来,最底下置一无孔的盘-----底 盘。样品加于顶端的筛上,摇动或振动一定 的时间。通过筛孔的物料称为筛过物,未能 通过的称为筛留物。筛留物的直径等于相邻 两号筛孔宽度的算术平均值,将筛留物取出 称重,可得样品质量分率分布曲线。
频率分布曲线
8
二、颗粒群的特性
平均直径
长度平均直径
d L m n 1 d 1 n 1 n 2 d n 2 2 n n 3 3 d 3 n k n k d k i k 1n id i
k
n i
i 1
表面积平均直径----每个颗粒平均表面积等于全部颗粒的表面积之
和除以颗粒的总数
k
k
dAm nidi2
4
❖ 非均相物系的分离方法
1、气-固体系
旋风分离器 :含尘气体从入口导入除尘器的外壳和排气 管之间,形成旋转向下的外旋气流。悬浮于外旋流的粉 尘在离心力的作用下移向器壁,并随外旋流旋转到除尘 器底部,由排尘孔排出。净化后的气体形成上升的内旋 流并经过排气管排出。
应用范围及特点 旋风除尘器适用于净化大于5~10微米 的非粘性、非纤维的干燥粉尘。它是一种结构简单、操 作方便、耐高温、设备费用和阻力较低(80~160毫米水 柱)的装置。 旋风除尘器广泛应用于空气净化、烟道除 尘、细小颗粒回收等领域。 例如,火力发电厂的锅炉烟 道上就装有这种装置,它有效的降低了排出的烟尘,否 则,早晨起来时,电厂附近的马路上会铺满一层烟灰。
过程工程原理第三章:机械分离与固体流态化.
滤饼 过滤介质 滤液
预涂
混入待滤的滤浆中一起过滤。
浙江大学《化工原理》电子教案/第三章
滤饼过滤
9/75
二、过滤基本方程
------滤液量V~过滤时间 的关系
L
滤饼过滤过程中,滤饼越来越厚
非恒定
~ dV 过滤速率 d
滤液量越来越大; A 过滤速率(速度)越来越小。 u ~ V (滤液量) m3/s
△p △p1 △p2 u 14/75
浙江大学《化工原理》电子教案/第三章
4
浙江大学《化工原理》电子教案/目录
第三章 机械分离与固体流态化
均相物系 ------将在甲II、甲III中介绍 分离 ------筛分、沉降、过滤 非均相物系
悬浮液-----固-液混合物 乳浊液-----液-液混合物 含尘气体----气-固混合物 含雾气体----气-液混合物
5/75
浙江大学《化工原理》电子教案/第三章
流体的流动空间等于 床层中颗粒之间的全 部空隙体积。
------滤液量V~过滤时间 的关系
p1
le
u1
u
de
u
实际情况:流体流动路径很复杂, 阻力损失无法计算 属层流 可视为并联管路
2 p1 l u l e u12 wf d 2 de 2 64 d e u1 Re1 Re1
L u de
流体在固定床内流动的简化模型
le u
假定:
(1)细管长度le与床层高度L成正比 (2)细管的内表面积等于全部颗粒的表面积,
l e CL
滤饼体积
流体的流动空间等于床层中颗粒之间的全部空隙体积。
de
4 流通截面积
润湿周边
热力学第二章机械分离和固体流态化
A
B
C
D
a
b
AA C DD
cd
• 随着沉降过程的进行,B、C逐渐缩小并消失,C区 刚刚消失这一时刻称为“临界沉降点”(critical sedimentation point),此时清液区与沉聚区有一清
(2-12)
H
Hb
b
L VS
LHb VS
Hb
按降尘分离的必要条件: θ≥θt L/u ≥H/ ut
LHb H
VS
ut
Vs≤ut L b
(2-13)
• 由上式可知,当体系一定,气体的处理量一定时。 要求把一定直径的颗粒完全沉降的条件只取决于降 尘室的底面积(Lb),与其高度无关,这是降尘室 的一个重要特征。因此,降尘室一般上设计为扁型 的。(多层,如P145)
• 降尘室的工艺计算可分为两类,一类是设计型, 已知气体处理量和除尘要求(dm)计算降尘室 大小(H、 b)。一类是操作型,已知降尘室 的尺寸,求处理气量及除尘效果。其计算原理 是一样的。
• 计算例子见P146,例3-2,(操作型)(自学)
3、 沉降槽(subsider)
• 对于液固非均相体系的分离,可使用沉降槽,沉降 槽一般只能用于分离颗粒不很细的稀悬浮液,得到 清液,及含50%左右的固体颗粒的增稠液,工业上 把沉降槽称为增稠器(thickener),应用很广,如烧 碱生产中食盐水沉清等。
考虑是流体或是颗粒静止不动。
• 一般的颗粒都可以看作是球形的,下面就以光滑 球形颗粒在静止流体中沉降为例来讨论沉降过程。
• 把球形颗粒放入静止的流体中,
Fb
颗粒就会受到重力与流体浮力的
作用,如果颗粒与流体的密度不
同,则颗粒受到的重力与浮力就
南京理工化工原理课件3 --机械分离和固体流态化
操作周期为 T=θ +θ
θ
W+θ D
θ ——一个操作循环内的过滤时间,s;
W——一个操作循环内的洗涤时间,s;
θ D——一个操作循环辅助操作所需时间,s。
则生产能力
3600V 3600V Q T W D
V——一个操作循环内所获得的滤液体积,m3
二、连续过滤机的生产能力
阻力:
6
1 2 Fd Ap u 2
根据牛顿第二运动定律:
Fg Fb Fd ma
u 2 3 d s g d g d d s a 6 6 4 2 6
3 3 2
加速阶段:开始沉降瞬间,u=0,因而Fd=0,加速度a等 速阶段:u=ut时,阻力、浮力与重力三者的代数和为零, 加速度a=0。 ut——“沉降速度”,又叫“终端速度”。由于工业上沉 降操作所处理的颗粒往往甚小,阻力随速度增长甚快, 可在短时间内就达到等速运动,所以加速阶段常常可以 忽略不计。
对于不可压缩滤饼
dq p uR 常数 d r q qe
p ruR 2 ruR qe
压强差随过滤时间成直线增高。
3.先恒速后恒压 恒压阶段 :
dV KA2 d 2 V Ve
KA2 d V Ve dV 2
令VR、θ R分别代表升压阶段终了瞬间的滤液体积 及过滤时间,则上式的积分形式为
dV Ad p V Ve r A
可压缩滤饼的情况比较复杂,它的比阻是两侧压强 差的函数。考虑到滤饼的压缩性,通常可借用下面的 经验公式来粗略估算压强差增大时比阻的变化
r=r'(Δ p)s
化工原理第三章非均相物系的分离和固体流态化
第二十一页,编辑于星期六:十八点 十分。
沉降分离-离心沉降
层流:
ur
4d s ut2
3 r
24 Rer
ur
d2
s
18
u2 t r
ut
d
2
s
18
g
ur ut
ut2 gr
Kc
离心分离因数
① 旋风或旋液分离器: Kc 5。~2500
② 比如,旋转半径为0.4 m、切向速度为20 m/s,
1. 非均相物系 ① 非均相物系
混合物
均相混合物
(均相物系)
溶液与混合气体
非均相混合物 (非均相物系)
分散物质 固体颗粒、液滴或气泡 (分散相)
分散介质 气态非均相物系(含尘气体) (连续相) 液态非均相物系(悬浮液)
第二页,编辑于星期六:十八点 十分。
概念-非均相物系
② 非均相物系的分离方法
机械分离
ur
d 2 sui2 18rm
t
B ur
18rm B d 2 sui2
Ne 2 rm
ui
9B dc Nesui
临界粒径
D dc , Ne 0.5 ~ 3 标准旋风分离器,Ne 5
第二十四页,编辑于星期六:十八点 十分。
沉降分离-旋风分离器
② 分离效率
粒级效率曲线
0
C1 C2 C1
0
ur
4d s ut2
3 r
离心沉降速度
第二十页,编辑于星期六:十八点 十分。
沉降分离-离心沉降
ur
4d s ut2
3 r
ut
4d s g
3
① 形式上相似。 ② 离心沉降速度是颗粒运动的径向速度,方向 为沿半径向外。 ③ 离心沉降速度不是恒定值,随颗粒位置而变;
化工原理(第四版)谭天恩 第三章 机械分离与固体流态化
《化工原理》电子教案/第三章
二、沉降设备
气 固 体 系---用于除去>75m以上颗粒 降 尘 室 重 力 沉 降 设 备 液 固 体 系 沉 降 槽
液固体系 旋液分离器
离 心 沉 降 设 备 旋风分离器 气固体系 ---用于除去>5~10m 颗粒
4d s g u0 3
如图3-2中的实线所示。
Re0=du0/ 1或2
24 层流区 Re0
u0
d 2 s g 18
----斯托克斯定律
作业:
10/69
《化工原理》电子教案/第三章
1、自由沉降
离心沉降速度 离心加速度ar=2r=ut2/r不是常量 颗粒受力:
加料 清液溢流 清液
耙 稠浆
除尘原理:与降尘室相同
连续式沉降槽
19/69
《化工原理》电子教案/第三章
增稠器(沉降槽) 特点:
属于干扰沉降 愈往下沉降速度愈慢-----愈往下颗粒浓度愈高,其表观粘 度愈大,对沉降的干扰、阻力便愈大; 沉降很快的大颗粒又会把沉降慢的小颗粒向下拉,结果小颗 粒被加速而大颗粒则变慢。 有时颗粒又会相互聚结成棉絮状整团往下沉,这称为絮凝现 象,使沉降加快。
9 B dc Nu i s
含尘 气体 A
B
净化气体
N值与进口气速有关,对常用形式的旋风分离器,风速 1225 ms-1范围内,一般可取N =34.5,风速愈大,N也 愈大。 思考:从上式可见,气体 ,入口B ,气旋圈数N ,进口气速ui ,临界粒径越小,why?
D
结论:旋风分离器越细、越长,dc越小
这种过程中的沉降速度难以进行理论计算,通常要由实验决 定。
化工原理第三章机械分离与固体流态化.ppt
在过滤过程中,滤液通过过滤介质和 滤饼层流动时需克服流动阻力,因此, 过滤过程必须施加外力。外力可以是重 力、压力差,也可以是离心力,其中以 压力差和离心力为推动力的过滤过程在 工业生产中应用较为广泛。
3.1.2 过滤基本方程
令颗粒比表面积a=颗粒表面积/颗粒体积,则:
de4 a 1
将上述几式式代入式3-1,整理得:
dV 3
p1
Ad 2Ca212 L
(3-2)
r2C2a 12 3
r称为滤饼的比阻,与滤饼的结构有关。r r0ps
可压缩滤饼的s大约为0.20.8。不可压缩滤饼s=0。于是
式3-2可写成:
若过滤介质阻力可忽略不计,则以上两式简化为:
V2 KA2
q2 K
3.1.2 过滤基本方程
• 2.恒速过滤
若过滤时保持过滤速度不变,则过滤过程为恒速过滤。
对恒速过滤,有 dV V 常数
Ad A
代入式3-5中得:
V2
VVe
K 2
A2
或
q2
qqe
K
2
若过滤介质阻力可忽略不计,则以上两式简化为:
V 2 K A2
第三章 机械分离与固体流态化
• 3.1 过 滤 • 3.2 沉 降 • 3.3 固体流态化
3.1 过 滤
• 3.1.1 概述 • 3.1.2 过滤基本方程 • 3.1.3 过滤常数的测定 • 3.1.4 滤饼洗涤 • 3.1.5 过滤设备及过滤计算
3.1.1 概 述
• 滤饼过滤其基本原理是在外力(重力、压力、离心 力)作用下,使悬浮液中的液体通过多孔性介质,而 固体颗粒被截留,从而使液、固两相得以分离,如图 3-1所示。
化工原理机械分离PPT课件
化 学 工 程 系
Ret<2时(Stokes区)
24 Ret
ut
gd
2
s
18
2≤ Ret < 500时(Allen 区)
18.5 0.6 Ret
500 ≤ Ret 时(Newton区)
0.44
化 学 工 程 系
3. 沉降速度的计算
试差法
假设沉降属于斯托克斯区 选用斯托克斯公式计算ut 检验Ret范围:10-4<Ret<2 是 否 重新 假设
pc
pc
2
3
2
51 a Lu
3
化 学 工 程 系
(2)过滤基本方程
过滤速度与过滤速率
A pc dV 2 2 d 5a 1 L
3
pc dV u 2 2 Ad 5a 1 L
(2)分离效率 粒的质
化 学 工 程 系
——旋风分离器所收集的该颗 量分数。
C1 C2 0 C1
总效 率
粒级效率
p,i
C1,i C2,i C1,i
化 学 工 程 系
粒级效率曲线
化 学 工 程 系
d 标准旋风分离器的 p d50
化 学 工 程 系
(3)压降
p
1. 概述 (1)概念和术语
过滤
滤浆 滤饼 过滤介质
滤液
化 学 工 程 系
(2)过滤方式
深层过滤
滤饼过滤
化 学 工 程 系
(3)过滤介质和滤饼
过滤介质
可压缩滤饼
滤饼
机械分离与固体流态化
滤饼 过滤介质
滤液
织物介质,如棉、麻、丝、毛、 合成纤维、金属丝
滤饼过滤操作示意图
等编织成的滤布;
多孔性固体介质,如素瓷板或
管、烧结金属等。
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
4/36
一、概述
滤饼的压缩性和助滤剂:
空隙结构易变形的滤饼为可压缩滤饼
滤浆
助滤剂:
第三章 机械分离与固体流态化
2p 1 s K
r0 c
2Ca 2 1 2
r
3
u 表观速度
13/36
2、恒压过滤
特点: K 为常数
u
dV
Ad
过滤推动力
过滤阻力
KA
2V Ve
积分得: 或者
V 2 2VVe KA2
q 2 2qqe K
2p 1 s K
r0 c
若过滤介质阻力可忽略不计,则
V 2 KA2
是不可压缩的粉状或纤维状固体,
如硅藻土、纤维粉末、活性炭、 石棉。
滤饼 过滤介质
滤液
使用时,可预涂,也可以混入待 滤的滤浆中一起过滤。
滤饼过滤操作示意图
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
5/36
二、过滤基本方程
过滤过程流动的特点: •流体在固定床中同一截面上的流速分布很不均匀 •产生压降的主要原因:
3.1 滤饼过滤 一、概述 二、过滤基本方程 三、过滤常数的测定 四、滤饼洗涤 五、过滤设备及过滤计算
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
1/36
第三章 机械分离与固体流态化
分离
第三章 机械分离及固体流态化
(2)摩擦数群法---- ζ Ret2—Ret ,ζ Ret-1—Ret 4d(ρs -ρ) g 3ρ ut2
ζ=
(3)用K值判别流型
将沉降速度公式带入雷诺数的定义式,再经过换算,可以 得到Ret与K的关系式,将Ret的上、下限数值带入,可求得
K值。
K=2.62,是层流区的上限; K=69.1,是湍流区的下限。 这样,计算已知直径的球形颗粒的沉降速度时,可根据K 值选用相应的公式计算ut,从而避免采用试差法。
下来的最小颗粒的直径计算。
2.沉降槽
沉降槽是利用重力沉降来提高悬浮液浓度并同时得到澄清 液体的设备。所以,沉降槽又称为增浓器和澄清器。
颗粒被分离下来的条件:
φS――颗粒的球形度或形状系数; S――与该颗粒体积相等地球体的表面积,m2; SP――颗粒的表面积,m2。
由于同体积不同形状的颗粒中,球形颗粒的表面积最小, 因此对非球形颗粒,总有φS﹤1,颗粒的形状越接近球形, φS越接近1;对球形颗粒,φS=1。
2.颗粒的当量直径
经常将非球形颗粒以某种“当量”的球形颗粒来代替,以 使非球形颗粒的某种特性与球形颗粒等效,这一球粒的直 径为当量直径。当量直径表示非球形颗粒的大小。 1. 等体积当量直径 颗粒的等体积当量直径为 与该颗粒体积相等的直径,即de = 36Vp/π 2. 等比表面积当量直径 即与非球形颗粒比表 Vp=π de 3/6
Sp= πde 2
a=S/V=6/de
面积相等的直径,即da=6/a
二、颗粒群的特性
工业中遇到的颗粒群可分为两类:
1.
若颗粒群是由大小不同的粒子组成的集合体,称为非均
一性粒子或多分散性粒子;
2.
而将具有同一粒径的颗粒群称为单一性或单分散性粒子
化工原理课件第三章机械分离和固体流态化
川 理 工
§3.1.1 颗粒的特性 一 、单一颗粒的大小和形状
学 1、球形颗粒
院
材 化
体积 :V d 3
6
系
化 学
直径 : d
表面积 : s d 2
工 程
比表面积 : a 6
教
d
研
室
化工原理
机械分离和固体流态化
第五页,编辑于星期六:十八点 十分。
四 2、非球形颗粒
川 以某种特性相当的球形颗粒代表,相应的球的直径称当量直径。 理
工 数值上等于空隙率,即床层中自由截面的大小与床层的轴向高度无关。
程
床层直径
教 研
壁效应
颗粒直径
室
化工原理
机械分离和固体流态化
12 第十二页,编辑于星期六:十八点 十分。
四 §3.2 沉降过程
川 沉降操作:在某中力的作用下,利用分散相与连续相间的密度差异,使 理 之发生相对运动而实现分离的操作过程。分为:重力沉降、离心沉降。
化
L
学
u
B
工
气体
程 教
ut
H
研
多层降尘室
室
颗粒在降尘室中的运动
化工原理
机械分离和固体流态化
20 第二十页,编辑于星期六:十八点 十分。
四 思考 2:要想使某一粒度的颗粒在降尘室中
川 被 100%除去,必须满足什么条件?
理 工 学
t
H ut
ut
d
2 p
p 18
g
院 思考 3:能够被 100%除去的最小颗粒,必须满足什么条件?
于 1.7μm,则简单表示为 d50 =1.7μm。
工 程 教
2.在该批颗粒的最大直径 d pmax
考研 化工原理 必备课件第三章 机械分离与固体流态化
考研化工原理必备课件第三章机械分离与固体流态化.txt25爱是一盏灯,黑暗中照亮前行的远方;爱是一首诗,冰冷中温暖渴求的心房;爱是夏日的风,是冬日的阳,是春日的雨,是秋日的果。
本文由821240550贡献ppt文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
第三章机械分离与固体流态化3.1 颗粒及颗粒床层的特性 3.2 3.3 3.4 3.5 沉降过程过滤离心机固体流态化3.1颗粒及颗粒床层的特性(1)床层空隙率ε固定床层中颗粒堆积的疏密程度可用空隙率来表示,其定义如下:ε=空隙体积床层体积V ? 颗粒所占体积v v = = 1? 床层体积床层体积V Vε的大小反映了床层颗粒的紧密程度,ε对流体流动的阻力有极大的影响ε↓, ∑ h f ↑。
ε < 1。
3.1颗粒及颗粒床层的特性(2)床层自由截面积分率AA0 =。
A 流动截面积床层截面积A-颗粒所占的平均截面积A P = = 1? P 床层截面积床层截面积A A空降率与床层自由截面积分率之间有何关系?假设床层颗粒是均匀堆积(即认为床层是各向同性的)。
想象用力从床层四周往中间均匀压紧,把颗粒都压到中间直径为长为L的圆柱中(圆柱内设有空隙)。
ε = 1?v ?D ? = 1? 4 = 1? ? 1 ? π 2 V ?D? D L 4πD1 L222 D12 AP ? D1 ? 4 A0 = 1 ? = 1? = 1? ? ? π 2 A ?D? D 4π所以对颗粒均匀堆积的床层(各向同性床层),在数值上ε = A03.1颗粒及颗粒床层的特性(3)床层比表面aB = 颗粒表面积S 床层体积V颗粒比表面S aB , = 1a=颗粒表面积S 颗粒体积V取V =的床层考虑, 1m3a=S S = v 1? εaB = a(1 ? ε ) * 所以此式是近似的,在忽略床层中固颗粒相互接触而彼此覆盖使裸露的颗粒表面积减少时成立。
化工原理 第三章 非均相物系的分离和固体流态化.
' 4.17 0.29
Reb
pf L
1 2 a2u
4.17
3
1 au2
0.29 3
6 a
sde
pf L
1 2 u 150 3 sde 2
1 u2
1.75
3 sde
Reb
3
pf L
1 2 u 150 3 sde 2
Reb
100
pf L
1 u2 1.75 3 sde
第三章 非均相物系分离和固体流态化
目的→基于流体 力学(颗粒与流 体间的相对运 动),掌握非均 相物系的机械分 离方法、过程计 算及其典型设备 的结构、特性和 选型。
非均相物系 概念
颗粒和颗粒床层特性
非均相物系的
沉降
分离和固体流 机械分离
态化
过滤
固体流态化
概念-非均相物系
1. 非均相物系 ① 非均相物系
均相混合物 (均相物系)
溶液与混合气体
混合物
分散物质 固体颗粒、液滴或气泡
非均相混合物 (分散相)
(非均相物系) 分散介质 气态非均相物系(含尘气体)
(连续相) 液态非均相物系(悬浮液)
概念-非均相物系
② 非均相物系的分离方法 沉降→颗粒相对于流体(静止或运动)运动而实现悬 浮物系分离,作用力是重力或离心力。
1/100 0.0042 0.0058 in或147 μm
概念-颗粒
② 颗粒群的平均粒径 颗粒群的平均粒径→常用平均比表面积直径,即Sauter直径。
k
da2
6
da3
ni di2
i 1
k i 1
ni
6
di3
xi K nisdi3
电子教案与课件:《化工原理》 第3章-固体颗粒流体力学基础与机械分离
Fg 重力
F (重力 浮力) 阻力
Fg Fd Fb m a
•2021/2/7
重力: Fg
6
d 3sg
(N)
u
浮力:
Fb
6
d 3g
(N) u0
阻力系数
加速段 匀速段
阻力:
Fd
d2
4
ut2
2
(N)
t
•2021/2/7
颗粒做匀速运动,沉降速度恒定不变,该速度称
为自由沉降速度。达到恒定的沉降速度时,合力
常用的粒径测量方法: 1、沉降分析 2、激光粒度分析 3、显微镜粒度分析 4、自动计数器法
•2021/2/7
3.2 固体颗粒在流体中运动时的阻力
曳力或阻力:当流体以一定的速度绕过静止的固体 颗粒流动时,黏性流体会对颗粒施加一定的阻力; 反之,当固体颗粒在静止流体中移动时,流体同样 会对颗粒施加作用力,这两种情况的作用力性质相 同,称为~
球形颗粒,各区域的曲线可用不同的计算式表示:
①层流区(Stokes区)
准确
②过渡区(Allen区)
③湍流区(牛顿区)
近似
•2021/2/7
4.3 沉降分离(Sedimentation)原理及设备
沉降:在某种力场中利用分散相和连续相间密度之 差,使之发生相对运动而实现分离的操作过程。 分为重力沉降和离心沉降。 一、重力沉降(Gravitational sedimentation)
(H, L, d, Vs, 操作条件等)
分离所需最低沉降速度
即:Vs≤ ut A→除尘条件 降尘室的生产能力:单位时间内通过降尘室的含尘 气体的体积流量。即:Vs=BHu
停留时间=沉降时间,有Lut=Hu
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 筛分
一、颗粒的特性 二、颗粒群的特性 三、筛分
第二节 沉降分离
一、沉降原理 二、沉降设备
1
第三章 机械分离与固体流态化
第三节 过滤
一、概述 二、过滤基本方程 三、过滤常数的测定 四、滤饼洗涤 五、过滤设备及过滤计算 习题课
2
第三章 机械分离与固体流态化
第四节 离心分离 第五节 固体流态化
7
第一节
一、颗粒的特性
球形颗粒 大小(粒径) 直径dp
形状
球形度 1
筛分
----分离固体颗粒群
非球形颗粒
当量直径,如体积当量直径 deV
与颗粒体积相等的球 表的 面积
颗粒的表面积
表面积
a
球=
A V
6 dp
a= 6 d eV
8
第一节 筛分
二、颗粒群的特性
粒度分布
-----频率分布曲线(见下图)。
离心 Fc力 mra
浮F b 力 m ar s
曳
力 FD
ur2
2
A
类似重力沉降速度推导,得:
ur
4ds ar
3
A
r1 O
r2
r
B ur
C
u
ut
对照重力场 u0
4ds g
3
颗粒在旋转流场中的运动
14
1、自由沉降
Rer=dur/ 1或2
层流区 24
Re r
u r d 2 1 s 8 a r d 2 s 1 8 2 r d 2 1 s r 8 u t2
颗粒在流体中沉降时受力
12
1、自由沉降
d 63s1sgd 422 u0 20
u0
4ds g
3
Re0=du0/ 1或2
层流区 24
Re 0
u0
d2s g
18
----斯托克斯定律
13
1、自由沉降
离心沉降2/r不是常量
❖ 沉降过程没有匀速段,但在小颗粒 沉降时,加速度很小,可近似作为匀速 沉降处理
气液系统(如气体中的液滴,含雾气体); 液液系统(如乳浊液中的微滴)。
4
非均相物系分离的依据是连续相与分散相具有 不同的物理性质(如密度),故可用机械方法进行 分离。利用密度差进行分离时,必须使分散相与连 续相产生相对运动,因此,分离非均相物系的单元 操作遵循流体力学的基本规律,按两相运动方式的 不同分为筛分、沉降和离心分离和过滤。 非均相物系的分离主要用于: 1、回收有用物质,如颗粒状催化剂的回收; 2、净化气体,如除尘、废液、废气中有害物质的清 除等。
一、什么是流态化 二、流化床的两种形态 三、流化床的主要特性
小结
3
概述: 均相物系:指物系内部各处均匀且无相界面,包括 溶液、气体混合物等。 非均相物系:指物系内部有隔不同相的界面且界面 两侧的物料性质有差异。 包括: 气固系统(如空气中的尘埃等含尘气体); 液固系统(如液体中的固体颗粒,悬浮液);
频率分布曲线
9
二、颗粒群的特性
平均直径
长度平均直径
d L m n 1 d 1 n 1 n 2 d n 2 2 n n 3 3 d 3 n k n k d k i k 1n id i
k
n i
i 1
表面积平均直径----每个颗粒平均表面积等于全部颗粒的表面积之
和除以颗粒的总数
k
k
dAm nidi2
5
❖ 非均相物系的分离方法
1、气-固体系
旋风分离器 :含尘气体从入口导入除尘器的外壳和排气 管之间,形成旋转向下的外旋气流。悬浮于外旋流的粉 尘在离心力的作用下移向器壁,并随外旋流旋转到除尘 器底部,由排尘孔排出。净化后的气体形成上升的内旋 流并经过排气管排出。
应用范围及特点 旋风除尘器适用于净化大于5~10微米 的非粘性、非纤维的干燥粉尘。它是一种结构简单、操 作方便、耐高温、设备费用和阻力较低(80~160毫米水 柱)的装置。 旋风除尘器广泛应用于空气净化、烟道除 尘、细小颗粒回收等领域。 例如,火力发电厂的锅炉烟 道上就装有这种装置,它有效的降低了排出的烟尘,否 则,早晨起来时,电厂附近的马路上会铺满一层烟灰。
10
标准筛 筛分
三、筛分
筛网用金属丝 制成,孔类似 正方形。
泰勒(Tyler)标准筛------其 筛孔大小以每英寸长度筛网
上的孔数表示,称为“目”。 例如100目的筛即指每英寸 筛网上有100个筛孔。 目数越大,筛孔越小。
将几个筛子按筛孔从大到小的次序从上到 下叠置起来,最底下置一无孔的盘-----底 盘。样品加于顶端的筛上,摇动或振动一定 的时间。通过筛孔的物料称为筛过物,未能 通过的称为筛留物。筛留物的直径等于相邻 两号筛孔宽度的算术平均值,将筛留物取出 称重,可得样品质量分率分布曲线。
ni
i1
i1
体积平均直径 ----每个颗粒平均体积等于全部颗粒的体积之
和除以颗粒的总数
dVm 3 1
k ai d3
i1 i
体积表面积平均直径----每个颗粒的平均比表面积等于全部颗粒的
比表面积平均值
k
比 表 面 积6= ddV2V3AAmm
nidi2
i1
k i1
ni
6
di3
dVm 1
k ai i1 di
6
2、固-固体系 如果是一个可溶而另一个难溶的话,可以加水溶解,然后 过滤,蒸发就可以 如果都可溶,看它们的溶解度随温度变 化大不大,如果是一个大一个不大的话,可以加水溶解然 后升温,再加固体直至饱和,再降温结晶。 3.液液分离 是两种互不相溶的(如氯仿和水溶液)用分液漏斗,静置 分层后分离即可。原理是两种溶液不相溶和密度不同会出 现分层现象。 4.液固分离,简单的用适当的滤器过滤,分别收集处理。 另外就是使用离心机,原理是分子或颗粒的重量不同。
KC
a c -----离心分离因数
g
数值约为几千~几万
A
r1 O
r2
r
B ur
C
u
ut
对照重力场
u0
d2s g
18
颗粒在旋转流场中的运动
15
2、实际沉降 ❖ 干扰沉降
由于干扰作用,实际沉降速度 小于自由沉降速度。
❖ 非球形颗粒的沉降 球形度越小,沉降速度越小; 颗粒的位向对沉降速度也有影响。
❖ 壁面效应 由于壁面效应,实际沉降速度小于自由沉降速度。
11
第二节 沉降分离
一、沉降原理
1、自由沉降 ---单个颗粒在无限流体 中的降落过程
加速段:极短,通常可以忽略
曳力FD
u02
2
d2
4
浮力Fb
mg
s
等速段:该段的颗粒运动速度称为 沉降速度,用u0表示。
重力沉降速度:以球形颗粒为例
合 外 F c F b 力 F D 0
mg1s2u02
d20
4
质m 量力或 gFm c ra