含参数导数问题分类讨论
导数应用中对含参问题的分类讨论
导数应用中对含参问题的分类讨论作者:张艳来源:《考试·高考数学版》2012年第02期导数是解决函数单调性、最值等问题十分有利的工具,但学生在运用导数解决含参的问题时,往往会束手无措,特别是对其中的分类讨论感到无从下手。
其实联想到含参的二次函数求最值中,主要有两类:动轴定区间和定轴动区间,不论哪一类,我们通常是按照轴在区间左侧、轴在区间内和轴在区间右侧分三类来讨论。
类比上述方法,就可以轻松解决导数应用中对含参问题的分类讨论。
举例说明如下:一、动点定区间例1 已知函数f(x)=lnx-ax,若f(x)在[1,e]上的最小值为32,求a的值.分析:先假设函数f(x)的定义域为R,由f(x)=lnx-ax,得f′(x)=1x+ax2=x+ax2,由f′(x)=0,解得x=-a.令f′(x)>0,解得x>-a;令f′(x)<0,解得x<-a.所以f(x)在(-∞,-a)上是减函数,在(-a,+∞)上是增函数,若仅考虑函数的单调性,那么f(x)图像的增减情况大致为图1,则f(x)在[1,e]上的图像应为图1在[1,e]上的部分。
考虑到极值点-a是动点,[1,e]是定区间,即动点定区间,联想到二次函数动轴定区间求最值的方法,将问题分为极值点在区间左侧,内部,右侧三类来讨论。
解:由f(x)=lnx-ax,得f′(x)=1x+ax2=x+ax2,(1)(若极值点在区间左侧)如图11.当-a≤1即a≥-1时,∵ 1≤x≤e,∴ x+a≥0,即f′(x)≥0对x∈[1,e]恒成立,当且仅当x=-a 时,f′(x)=0.所以f(x)在[1,e]上是增函数。
当x=1时,f(x)min=f(1)=ln1-a1=-a=32,解得a=-32,不满足a≥-1,故舍去;(2)(若极值点在区间内)如图12.当1<-a<e即-e<a<-1时,当x变化时,f′(x)、f(x)的变化情况如下表:x=-a是f(x)在[1,e]上的唯一极小值点,也是最小值点.当x=-a时,f(x)min=f(-a)=ln(-a)-a-a=ln(-a)+1=32,解得a=-e∈(-e,-1),符合题意;(3)(若极值点在区间右侧)如图13.当-a≥e即a≤-e时,∵ 1≤x≤e,∴ x+a≤0,即f′(x)≤0对x∈[1,e]恒成立,当且仅当x=-a时,f′(x)=0.所以f(x)在[1,e]上是减函数。
第3讲 导数中含参问题的分类讨论(解析版)
第3讲导数中含参问题的分类讨论(解析版)第3讲导数中含参问题的分类讨论(解析版)在数学中,导数是研究函数变化率的重要工具之一。
在第2讲中,我们已经学习了导数的基本定义和求法,并且在一些具体的例子中进行了应用。
而在本讲中,我们将进一步讨论导数中含参问题的分类。
一、常函数的导数首先,我们来看一类比较简单的情况——常函数的导数。
常函数指的是函数中的自变量对应的函数值都是一个常数。
例如,函数f(x) = 2是一个常函数,因为对于任意的x值,f(x)的值都是2。
那么,对于常函数来说,它的导数是多少呢?我们回顾一下导数的定义:当x的增量趋于0时,函数f(x)的增量与x的增量之比的极限,即为f(x)的导数。
而对于常函数来说,不管x 的取值如何变化,函数f(x)的值都保持不变,因此其导数为0。
所以,对于常函数 f(x) = c 来说,它的导数始终等于0。
二、幂函数的导数接下来,我们来看一类更为常见的函数——幂函数的导数。
幂函数指的是函数中的自变量的幂次不同,例如 f(x) = x^2 和 f(x) = x^3 均为幂函数。
那么,对于幂函数来说,它的导数又是怎样计算的呢?我们可以利用导数的定义来计算幂函数的导数。
假设 f(x) = x^n ,其中n是正整数。
我们固定x的值,令x的增量为h,那么 f(x) 的值就会增加到 f(x+h)。
接下来,我们计算 f(x+h) 与 f(x) 之差与 h 之比的极限。
根据幂函数的性质,我们可以展开计算,并通过化简得到幂函数的导数公式。
通过计算可以得出以下结论:当n为正整数时,幂函数 f(x) = x^n 的导数为 f'(x) = n * x^(n-1)。
例如,当n=2时,即为二次函数,导数为 f'(x) = 2 * x^(2-1) = 2x。
当n=3时,即为三次函数,导数为 f'(x) = 3 * x^(3-1) = 3x^2。
三、三角函数的导数另外一个常见的函数类型是三角函数。
第3讲 导数中含参问题的分类讨论(解析版)
导数中含参问题的分类讨论本讲义由作业帮周永亮老师(白哥)独家编撰,侵权必究或知识导航★ 1.-次型导函数一次型导函数,是指能够影响原函数单调性的部分是一次函数形式,或者说导函数中,除去里面的一次函数形式,剩余的部分全部恒为正(负).例:f (x) = ax + b;f (a:) = (ax + b) e x ; f' (a;) = 口“ * " (z > 0)X★ 2.二次型导函数二次型导函数:二次型导函数,是指能够影响原函数单调性的部分是二次函数形式,或者说导函数中,除去里面的二次函数形式,剩余的部分全部恒为正(负).例:f (a:) = ax2 +bx + c;f (x) = (ax2 +bx + cj e x ; f (x) —* 况* ° (a; > 0)注:以上a尹0,若不确定a是否可以为0,就先讨论是一次型还是二次型;★ 3 .含参函数单调性的分类讨论(1)先确定导函数是一次型还是二次型,一次型按照一次型的讨论方式讨论;①判断是否有根,没有根会出现恒成立状况;②求出导函数的根,判断根是否在定义域内,不在定义域会出现恒成立问题;③根在定义域内,穿根法确定导函数正负,进而确定原函数的单调性;(2)若是二次型,先判断二次型函数是否有根,没有根会出现恒成立状况;①如果二次型函数有根,就先求出根(能因式分解就因式分解);②判断根是否在定义域内(讨论根与定义域端点值的大小关系);③如果两根全在定义域,那么确定两根大小关系;④穿根法确定导函数正负,进而确定原函数的单调性;★ 4.拟合函数(1)拟合函数是指,根据散点图,拟合出函数的解析式,这里考虑到的点越多,拟合的解析式就越精确.(2 )在求导中,我们会发现很多函数的导函数是指数型或者对数型的,如:f' (x) = e x—2 ; (/ (x) = (a; — a) (In x — S),这种类型的导函数,我们判断原函数的单调性比较麻烦,所以我们会采用拟合函数的形式进行讨论就可以了;(3)在单调性讨论中,拟合的形式比较简单,只需要参考两个关键点就可以了,分别是:①等于0的解,②所需拟合函数单调性;例如:f (a;) = e x -2,①当 / (a:) = 0 时,c = ln2 :② f (时=e x -2单调递增;则,我们也可以找到一个具有相同性质的一次函数,所以f (x) = 可以拟合成f' {x) — x — \n.2 ;再如:寸(x) = (a; — a) (In a: — 3),只需要讨论g = In r - 3这部分就可以了,此函数可以拟合成:y = x-^(x>0);则寸(c) = (z — a) (Ina: — 3)可以拟合成(/ (x) = (x — a) (x — e3) (z > 0).知识札记歩经典例题考点1 一次型含参导函数的分类讨论已知函数f(x) = lnx + --l ^R),讨论函数六z)的单调性. X解答:由题意知该函数的定义域为(0, +8),且/ (^) = - - 4 = 与凸从而当a W0时,/(苛>0,则,(z)在(0,+8)上单调递增当a > 0时(1 )若z € (0,a),则「(r) < 0,从而/(a:)在(0,a)上单调递减(2)若z€(a,+8),则f(z)>0,从而f(3!)在(a,+8)上单调递增综上所述,当aWO时,义时在(0,+8)上单调递增;当a>0时,山z)在(0,a)上单调递减,在(a, +oo)上单调递增讨论函数f(x)=ax-inx的单调区间.解答:函数,(z)的定义域是(0,+8) m—,若aWO,则/ (x) <。
含参导数问题常见的分类讨论
题型4.求导后,导函数等于零有实根,需要判断实根是否在定
义域内,从而引发讨论:
例4.设f (x) 1 x2 (a 1)x a ln x,求f (x)的单调减区间。 2
f (x)的定义域为(0,+) 1)a 0时,f(x)<0 0 x 1
f (x) x (a 1) a x
x2 (a+1)x a x
解:f(x)的定义域为R f (x) 3x2 6ax 3
反思:分类点如何确定?
解f (x) 0; f (x) 0? 导函数等于零是否有解
解不等式:3x2 6ax 3 0或3x2 6ax 3 0
=b2 4ac 36(a2 1)
1)当-1 a 1时, 0,f (x) 0解为R, f (x) 0解为
a
a
3)a 0, f (x) 0恒成立
f (x) 0 3)当a 11,即a<2,f(x)0 x<a-1或x>1 f(x)>0 a 1 x 1
反思:讨论点在哪里?
根的大小不确定引发的讨论
题型3.求导后,对于导数最高次项系数影响不等式类型或性质,
从而引发讨论:
例3.(10辽文21)已知函数f(x)=(a+1)lnx+ax2+1. (1)讨论函数f(x)的单调性;
基础回顾:
1.已知函数f (x) ln x x,求函数的单调区间?
基本步骤:
1.求定义域
2.求导函数 f (x)
3.在定义域内解不等式 f (x) 0, f (x) 0
4.根据第三步的结果写出f(x)单调区间
题型1.求导后,需要判断导数等于零是否有实根,从而引发讨论:
例1.求函数f (x) x3 3ax2 3x 1的单调区间。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳
导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
专题1 含参数导数问题的分类讨论
专题一 含参数导数问题的分类讨论导数是研究函数的图象和性质的重要工具,自从导数进入高中数学教材以来,有关导数问题几乎是每年高考的必考试题之一.随着高考对导数考查的不断深入,含参数的导数问题成为了历年高考命题的热点.由于含参数的导数问题在解答时往往需要对参数进行分类讨论,如何进行分类讨论成为绝大多数考生答题的难点.模块1 整理方法 提升能力在众多的含参数导数问题中,根据所给的参数的不同范围去讨论函数的单调性是最常见的题目之一,求函数的极值、最值等问题,最终也需要讨论函数单调性.对于含参数导数问题的单调性的分类讨论,常见的分类讨论点有以下三个:分类讨论点1:求导后,考虑()0f x '=是否有实根,从而引起分类讨论;分类讨论点2:求导后,()0f x '=有实根,但不清楚()0f x '=的实根是否落在定义域内,从而引起分类讨论;分类讨论点3:求导后,()0f x '=有实根,()0f x '=的实根也落在定义域内,但不清楚这些实根的大小关系,从而引起分类讨论.以上三点是讨论含参数导数问题的单调性的三个基本分类点,在求解有关含参数导数问题的单调性时,可按上述三点的顺序对参数进行讨论.因此,对含参数的导数问题的分类讨论,还是有一定的规律可循的.当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就会复杂一些了,也有些题目可以根据其式子和题目的特点进行灵活处理,减少分类讨论,需要灵活把握.例1设0a >,讨论函数()()()2ln 121f x x a a x a x =+---的单调性. 【解析】()f x 的定义域是()0,+∞.()()()12121f x a a x a x'=+--- ()()221211a a x a x x---+=.令()()()221211g x a a x a x =---+,则()0f x '=的根的情况等价于()0g x =的根的情况.由于()g x 的函数类型不能确定,所以需要对a 进行分类讨论从而确定函数的类型.(1)当1a =时,()g x 是常数函数,此时()1g x =,()10f x x'=>,于是()f x 在()0,+∞上递增.(2)当1a ≠时,()g x 是二次函数,类型确定后,我们首先考虑讨论点1——()0f x '=是否有实根的问题.由于()g x 不能因式分解,所以我们考虑其判别式()()4131a a ∆=--,判别式的正负影响到()0g x =的根的情况,由此可初步分为以下三种情况:①当0∆<,即113a <<时,()0g x =没有实根;②当0∆=,即13a =时,()0g x =有两个相等的实根;③当0∆>,即103a <<或1a >时,()0g x =有两个不等的实根.对于第①种情况,()0g x =没有实根且永远在x 轴上方,于是()0f x '>,所以()f x 在()0,+∞上递增.对于第②种情况,()0g x =有两个相等的实根32x =,于是()0f x '≥,所以()f x 在()0,+∞上递增.对于第③种情况,()0g x =有两个不等的实根,112x a=-和212x a=.由于不知道两根是否落在定义域()0,+∞内,因此要考虑讨论点2,而利用韦达定理进行判断是一个快捷的方法.因为121x x a +=,()12121x x a a =-,所以当103a <<时,有120x x +>且120x x >,此时两个根都在定义域内切120x x <<(因为1x 与2x 的大小关系已经确定,所以不需要考虑讨论点3).由()0f x '>可得10x x <<或2x x >,所以()f x 在()10,x 和()2,x +∞上递增;由()0f x '<可得12x x x <<,所以()f x 在()12,x x 上递减.当1a >时,有120x x +>且120x x <,此时210x x <<,由()0f x '>可得10x x <<,所以()f x 在()10,x 上递增;由()0f x '<可得1x x >,所以()f x 在()1,x +∞上递减.综上所述,当103a <<时,()f x 在()10,x 和()2,x +∞上递增,在()12,x x 上递减;当113a ≤≤时,()f x 在()0,+∞上递增;当1a >时,()f x 在()10,x 上递增,在()1,x +∞上递减.其中112x a=212x a =.【点评】只要按照3个分类讨论点进行思考,就能很好地处理含参数导数问题的单调性.此外,涉及两根与0的大小比较的时候,利用韦达定理往往比较简单.例2已知函数()ln f x x kx k =-+(k ∈R ). (1)求()f x 在[]1,2上的最小值;(2)若1ln 1x a x x ⎛⎫+≥ ⎪ ⎪-⎝⎭对()1,1x ∈-恒成立,求正数a 的最大值.【解析】(1)定义域为()0,+∞,()11kx f x k x x-+'=-=. 法1:①当0k =时,()10f x x'=>,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦.②当0k ≠时,令()0f x '=可得1x k=. (i )当10k<,即0k <时,()0f x '>在[]1,2上恒成立,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦.(ii )当101k<≤,即1k ≥时,()0f x '≤在[]1,2上恒成立,所以()f x 在[]1,2为减函数,所以()()min 2ln 2f x f k ⎡⎤==-⎣⎦.(iii )当12k ≥,即102k <≤时,()0f x '≥在[]1,2上恒成立,所以()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦.(iv )当112k <<,即112k <<时,由()0f x '>可得11x k <<,由()0f x '<可得12x k<<,所以()f x 在11,k ⎛⎫ ⎪⎝⎭上递增,在1,2k ⎛⎫⎪⎝⎭上递减.于是()f x 在[]1,2上的最小值为()10f =或()2ln 2f k =-.当0ln2k <-,即1ln 22k <<时,()()min10f x f ⎡⎤==⎣⎦;当0ln2k ≥-,即ln21k ≤≤时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.综上所述,当ln2k <时,()()min 10f x f ⎡⎤==⎣⎦;当ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦. 法2:①当0k ≤时,()0f x '>,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦. ②当0k >时,由()0f x '>可得10x k <<,由()0f x '<可得1x k >,所以()f x 在10,k ⎛⎫⎪⎝⎭上递增,在1,k ⎛⎫+∞ ⎪⎝⎭上递减.于是()f x 在[]1,2上的最小值为()10f =或()2ln 2f k =-.(i )当0ln2k <-,即0ln2k <<时,()()min 10f x f ⎡⎤==⎣⎦. (ii )当0ln2k ≥-,即ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.综上所述,当ln2k <时,()()min 10f x f ⎡⎤==⎣⎦;当ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦. (2)解答详见专题三例1.【点评】处理好函数的单调性,就能求出函数的最值.法1是按照常见的3个分类讨论点进行讨论:当0k =时,()0f x '=没有实根.当0k ≠时,()0f x '=有实根1x k=,此时需考虑根在不在定义域[]1,2内.当10k <或101k <≤或12k ≥时,根都不在定义域内(把11k=和12k =并在里面是为了减少分类的情况);当112k<<时,根在定义域内,由于定义域内只有1个根,所以就不用考虑第3个分类讨论点了.法2是根据式子和题目的特点进行分类:由()1f x k x'=-可知当0k ≤时,()f x 在[]1,2上递增;当0k >时,()f x 在()0,+∞上先增后减,所以最小值只能在()1f 或()2f 处取到,此时只需要比较两者的大小就可以了.由于法2是根据式子和题目的特点进行分类的,所以能减少分类的情况.例3设函数()()2ln 1f x x b x =++,其中0b ≠. (1)当12b >时,判断函数()f x 在定义域上的单调性; (2)当0b ≠时,求函数()f x 的极值点.【解析】(1)函数()()2ln 1f x x b x =++的定义域为()1,-+∞,()222211b x x b f x x x x ++'=+=++.令()222g x x x b =++,则48b ∆=-.当12b >时,0∆<,所以()g x 在()1,-+∞上恒大于0,所以()0f x '>,于是当12b >时,函数()f x 在定义域()1,-+∞上递增.(2)首先考虑()0g x =是否有实根. ①当0∆<,即12b >时,由(1)知函数()f x 无极值点.②当0∆=,即12b =时,()0g x =有唯一的实根,()0g x ≥,于是()0f x '≥在()1,-+∞上恒成立,所以函数()f x 在()1,-+∞上递增,从而函数()f x 在()1,-+∞上无极值点.③当0∆>,即12b <时,()0g x =有两个不同的根1x =,2x =,其中12x x <.这两个根是否都在定义域()1,-+∞内呢?这需要对参数b 的取值进一步分类讨论.当0b <时,11x <-,21x =>-,由()0f x '>可得2x x >,由()0f x '<可得21x x -<<,所以()f x 在()21,x -上递减,在()2,x +∞上递增,所以当0b <时,()f x 在()1,-+∞上有唯一极小值点2x =.当102b <<时,1112x -=>-,2112x -+=>-,由()0f x '>可得11x x -<<或2x x >,由()0f x '<可得12x x x <<,所以()f x 在()11,x -上递增,在()12,x x 上递减,在()2,x +∞上递增,所以当102b <<时,()f x 在()1,-+∞上有一个极大值点1x和一个极小值点2x =. 综上所述,当0b <时,()f x 在()1,-+∞上有唯一的极小值点2x =;当102b <<时,()f x有一个极大值点112x -=和一个极小值点212x -=;当1b ≥时,函数()f x 在()1,-+∞上无极值点.12x x <,所以只需要考虑讨论点2,判断这两个根是否都在定义域()1,-+∞内就可以了,显然之间的大小符号待定为,则有11122112bb b -⇔----⇔-⇔1120b b -⇔,所以当0理,判断1x 、2x 与1-的大小关系等价于判断121x x +=-⎧⎪(1x ⎧+⎪模块2 练习巩固 整合提升练习1:设函数()1ln 1x f x a x x -=++,其中a 为常数. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 的单调性. 【解析】(1)当0a =时,()11x f x x -=+,()0,x ∈+∞.此时()()221f x x '=+,于是()112f '=,()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为210x y --=.(2)函数()f x 的定义域为()0,+∞,()()()()22221211ax a x a a f x x x x x +++'=+=++. ①当0a ≥时,()0f x '>,所以函数()f x 在()0,+∞上递增.②当0a <时,令()()221g x ax a x a =+++,则()()22414421a a a ∆=+-=+. (i )当12a ≤-时,0∆≤,所以()0g x ≤,于是()0f x '≤,所以函数()f x 在()0,+∞上递减.(ii )当102a -<<时,0∆>,此时()0g x =有两个不同的根,()11a x a -++=,()21a x a-+=,12xx <.下判断1x 、2x 是否在定义域()0,+∞内.法1:(待定符号法)()()101210121a a a a a a-+⇔+-+⇔++⇔()221210a a a ++⇔,由于0a >,所以10x >.法2:(韦达定理)由()121221010a x x ax x ⎧++=->⎪⎨⎪=>⎩可得120x x <<. 法3:(图象法)()g x 是开口方向向下的抛物线,对称轴为10a a+->,()00g a =<,由图象可知1x 、2x 都在定义域()0,+∞内.当10x x <<或2x x >时,有()0g x <,()0f x '<,所以函数()f x 递减;当12x x x <<时,有()0g x >,()0f x '>,所以函数()f x 递增.综上所述,当0a ≥时,函数()f x 在()0,+∞上递增;当12a ≤-时,函数()f x 在()0,+∞上递减;当102a -<<时,函数()f x 在()10,a a ⎛-++ ⎪⎝⎭,()1a a ⎛⎫-+-+∞⎪ ⎪⎝⎭上递减,在()()11a a a a ⎛-++-+ ⎪⎝⎭上递增.练习2:设函数()()2ln f x x a x =++.(1)若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (2)若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于eln2. 【解析】(1)由()10f '-=解得32a =,此时()2123123322x x f x x x x ++'=+=++,由()0f x '>解得312x -<<-或12x >-,由()0f x '<解得112x -<<-,所以()f x 在区间3,12⎛⎫-- ⎪⎝⎭,1,2⎛⎫-+∞ ⎪⎝⎭上递增,在区间11,2⎛⎫-- ⎪⎝⎭上递减. (2)()f x 的定义域为(),a -+∞,()2221x ax f x x a++'=+,记()2221g x x ax =++,其判别式为248a ∆=-.①若0∆≤,即a ≤时,()0f x '≥在(),a -+∞上恒成立,所以()f x 无极值.②若0∆>,即a >a <()0g x =有两个不同的实根1x =22a x -=,且12x x <,由韦达定理可得121212x x ax x +=-⎧⎪⎨⋅=⎪⎩,即()()()()121212x a x a a x a x a ⎧+++=⎪⎨+⋅+=⎪⎩.(i)当a <10x a +<,20x a +<,即1x a <-,2x a <-,从而()0f x '=在(),a -+∞上没有实根,所以()f x 无极值.(ii)当a 10x a +>,20x a +>,即1x a >-,2x a >-,从而()0f x '=在(),a -+∞上有两个不同的根,且()f x 在1x x =,2x x =处取得极值.综上所述,()f x 存在极值时,a的取值范围为)+∞.()f x 的极值之和为()()()()()()()222121122121212ln ln ln 2f x f x x a x x a x x a x a x x x x +=+++++=⎡++⎤++-⎣⎦,而()()121ln ln 2x a x a ⎡++⎤=⎣⎦,()()222121212212x x x x a a +-=--⨯=-,所以()()21211eln 1ln 1ln 222f x f x a +=+->+=.练习3:已知函数()2e 1x f x ax bx =---,其中a 、b ∈R ,e 2.71828=为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[]0,1上的最小值; (2)若()10f =,函数()f x 在区间()0,1内有零点,求a 的取值范围. 【解析】(1)()()e 2x g x f x ax b '==--,()e 2x g x a '=-.因为[]0,1x ∈,所以()12e 2a g x a '-≤≤-.①若21a ≤,即12a ≤时,有()e 20x g x a '=-≥,所以函数()g x 在区间[]0,1上递增,于是()()min 01g x g b ⎡⎤==-⎣⎦.②若12e a <<,即1e22a <<时,当()0ln 2x a <<时,()e 20x g x a '=-<,当()ln 21a x <<时()e 20x g x a '=->,所以函数()g x 在区间()()0,ln 2a 上递减,在区间()ln 2,1a ⎡⎤⎣⎦上递增,于是()()()min ln 222ln 2g x g a a a a b ⎡⎤=⎡⎤=--⎣⎦⎣⎦.③若2e a ≥,即e2a ≥时,有()e 20x g x a '=-≤,所以函数()g x 在区间[]0,1上递减,于是()()min 1e 2g x g a b ⎡⎤==--⎣⎦.综上所述,()g x 在区间[]0,1上的最小值为()()min11,21e 22ln 2,22e e 2,2b a g x a a a b a a b a ⎧-≤⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(2)法1:由()10f =可得e 10a b ---=,于是e 1b a =--,又()00f =,所以函数()f x 在区间()0,1内有零点,则函数()f x 在区间()0,1内至少有三个单调区间.由(1)知当12a ≤或e2a ≥时,函数()g x 即()f x '在区间[]0,1上递增或递减,所以不可能满足“函数()f x 在区间()0,1内至少有三个单调区间”这一要求.若1e22a <<,则()()()min22ln 232ln 2e 1g x a a a b a a a ⎡⎤=--=---⎣⎦.令()()32ln 2e 1h x x x x =---(1e 22x <<),则()()12ln 2h x x '=-.由()0h x '>可得1e2x <<,由()0h x '<e e2x <<,所以()h x 在区间1e 2⎛ ⎝上递增,在区间e e 2⎫⎪⎪⎭上递减,所以()max e e e e 32ln 2e 1e e 10h x h ⎡⎤⎡⎤==---=--<⎢⎥⎣⎦⎢⎥⎣⎦,即()min 0g x ⎡⎤<⎣⎦,于是函数()f x 在区间()0,1内至少有三个单调区间⇔()()02e 0110g a g a ⎧=-+>⎪⎨=-+>⎪⎩,由此解得e 21a -<<,又因为1e22a <<,所以e 21a -<<.综上所述,a 的取值范围为()e 2,1-.法2:由()10f =可得e 10a b ---=,于是e 1b a =--,又()00f =,所以函数()g x 在区间()0,1上至少有两个零点.()e e 10e 2e 1021x xg x ax a a x -+=⇔--++=⇔=-,所以()g x 在区间()0,1上至少有两个零点y a ⇔=与()e e 121x k x x -+=-,110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭的图象至少有两个交点.()()()22e 3e 2e 121x x x k x x -+-'=-,令()()2e 3e 2e 1x x p x x =-+-,则()()e 21x p x x '=-,由()0p x '>可得12x >,由()0p x '<可得12x <,所以()p x 在10,2⎛⎫ ⎪⎝⎭上递减,在1,12⎛⎫⎪⎝⎭上递增,()min12e 2e 202p x p ⎛⎫⎡⎤==-> ⎪⎣⎦⎝⎭,所以()0k x '>,于是 ()k x 在10,2⎛⎫ ⎪⎝⎭上递增,在1,12⎛⎫⎪⎝⎭上也递增.因为()0e 2k =-,()11k =,当12x -→时,()k x →+∞,当12x +→时,()k x →-∞,于是y a =与()e e 121x k x x -+=-,110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭的图象有两个交点时,a 的取值范围是() -.e2,1。
利用导数求含参数的函数单调区间的分类讨论归类
利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。
例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。
帮你归纳总结五导数中常见的分类讨论
帮你归纳总结五导数中常见的分类讨论在导数的学习中,我们经常会遇到各种不同的函数和问题,为了更好地理解和解决这些问题,我们需要进行分类讨论。
下面将介绍导数中常见的五种分类讨论,并探讨每种分类讨论的应用。
一、基本函数的导数基本函数是指一些常见的函数,如常数函数、幂函数、指数函数、对数函数、三角函数等。
对于这些函数,我们可以通过公式或运用基本性质来求导数。
例如,对于常数函数f(x) = c,其导数为f'(x) = 0;对于幂函数f(x) = x^n,其中n为常数,其导数为f'(x) = nx^(n-1)。
基本函数的导数可以通过记忆公式或基本性质来求解,这是导数求解中最基础的分类讨论。
二、复合函数的导数复合函数是指由两个或多个函数相互组合而成的函数。
对于复合函数的导数求解,我们可以运用链式法则。
链式法则指出,若y=f(g(x)),其中f(u)和g(x)分别是两个可导函数,则复合函数y的导数可以表示为y'=f'(g(x))*g'(x)。
通过链式法则的应用,我们可以将复合函数的导数求解转化为求两个基本函数的导数,从而简化导数的计算。
三、隐函数的导数隐函数是指由一个关系式所定义的函数,其自变量和因变量的关系并不明显。
对于隐函数的导数求解,我们可以运用隐函数求导法。
隐函数求导法是一种通过求全微分和利用导数的定义来求解隐函数的导数的方法。
具体而言,我们可以将隐函数的方程两边求导,并利用导数的表示推导出隐函数的导数表达式。
隐函数的导数求解不仅可以帮助我们理解隐函数的性质,还可以解决一些与隐函数相关的问题。
四、参数方程的导数参数方程是指用参数的形式表示的函数。
对于参数方程的导数求解,我们可以运用参数方程的求导法。
参数方程的求导法是一种通过将参数作为自变量,并利用导数的定义和基本性质来求解参数方程的导数的方法。
具体而言,我们可以将参数方程中的每个参数视为独立的变量,然后对每个参数分别求导得到参数方程对应的导数表达式。
导数分类讨论解决含参问题(三种常见类型)
导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释.几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论.类型一:导函数根的大小比较实例1:求函数()321132a f x x x ax a -=+--,x R ∈的单调区间.分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数()321132a f x x x ax a -=+--进行求导可以得到导函数()()'21f x x a x a =+--,观察可知导函数可以因式分解为()()()()'211f x x a x a x a x =+--=-+,由此可知方程()'0f x =有两个实根1x a =,21x =-,由于a 的范围未知,要讨论函数()321132a f x x x ax a -=+--的单调性,需要讨论两个根的大小,所以这里分1a <-,1a =-,1a >-三种情况进行讨论:当1a <-时,()f x ,()'f x 随x 的变化情况如下:x (),a -∞a(),1a --1()1,-+∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -.当1a =-时,()'0f x ≥在R 上恒成立,所以函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间.当1a >-时,()f x ,()'f x 随x 的变化情况如下:x (),1-∞--1()1,a -a(),a +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.综上所述,当1a <-时,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -;当1a =-时,函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当1a >-时,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两根的大小又会影响到原函数的单调区间,而由于a R ∈,所以要分1a <-,1a =-,1a >-三种情况,这里注意不能漏了1a =-的情况.类型二:导函数的根的存在性讨论实例2:求函数()32f x x ax x =++的单调区间分析:这道题跟实例1一样,可以用求导法讨论单调区间,对函数()32f x x ax x =++进行求导可以得到导函数()'2321f x x ax =++,观察可以发现,该导函数无法因式分解,故无法确定方程23210x ax ++=是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式2412a ∆=-,若24120a ∆=-<即a <<23210x ax ++=没有实根,即()'0f x >在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=-=即a =,方程23210x ax ++=有两个相等的实根123ax x ==-,即()'0f x ≥在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=->即a a <>,则方程23210x ax ++=有两个不同实根,由求根公式可解得13a x --=,23a x -+=,显然12x x <此时()f x ,()'f x 随x 的变化情况如下:x ()1,x -∞1x ()12,x x 2x ()2,x +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增综上所述,当a ≤≤时,()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当a a <>时,()f x 的单调递增区间为,3a ⎛---∞ ⎪⎝⎭和,3a ⎛⎫-++∞ ⎪ ⎪⎝⎭,单调递减区间为,33a a ⎛---+ ⎝⎭点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出来的两根大小已知,所以不用再讨论。
分类讨论解含参数的导数问题
2
② 若。 ÷ , 2 > 一 , 变 () ) 变化 < 则一a o 2当 化时 的
情 况 如下 表 :
(一 , 2 口一 )
+
口一 2
0
( 2 一 a 口一 , 2 )
一a 2
0
(一 a +。 ) 2 , 。
+
g )= 一∞ + , 次 方程 g )= ( 2二 ( 0的判 别 式 △= . a 一8
例 2 (09年安 徽 卷理 ) . 20
+
≯
极 大值
极 小值
≯
所 以 , ) (一o , 。 , a~ , ) 是 增 雨 数 , ( 在 。 一2 ) ( 2 + 内 在
( 2 , 2 内是 减 函数 一 a。一 )
函数 , ) ( 在 = 一 a 取 得极 大值 , 一 o , , 一 a 2处 ( 2 ) ( 2 )=
1 1当 a ≤3时 , ≤O ( ≥O A ) ) 在 递增
厂 1 —
令厂() 0解得 =一a或 = 一 :, 2, 口 2由0 ÷ 知, 2≠ ≠ 一a
a一 . 2 以下分 两种 情 况 讨论 。
①若 0 ÷ , 2 < 一 . 变化时 () > 则一 a 。 2当
方程 g ): ( o有 两 个 不 同 的 实 根 . :
a +
二 墨
,
数 ) 在 =一 o处取得极小值 , 一 o , 一 a = 2 ( 2 )且 ( 2 )
:
30 e一
 ̄ - ’< 80
2 … 一 … :
三、 依据“ 、 一 二次项 系数的正负” 来讨论
30 2 e-a
.
导数中分类讨论的三种常见类型
导数中分类讨论的三种常见类型在高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径。
分类讨论就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释。
虽然几乎所有的高中生都对分类讨论思想有所了解,但能正确运用分类讨论思想解决问题的不到一半。
主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类。
下面根据导数中三种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论。
第一种分类讨论类型是导函数根的大小比较。
例如,对于函数$f(x)=x^3+x-ax-a$,$x\in R$,我们需要求其单调区间。
对三次或三次以上的函数求单调区间,基本上都是用求导法。
因此,对函数$f(x)$进行求导可以得到导函数$f'(x)=x^2+(1-a)x-a$。
观察可知导函数可以因式分解为$f'(x)=(x-a)(x+1)$,由此可知方程$f'(x)=0$有两个实根$x_1=a$和$x_2=-1$。
因此,要讨论函数$f(x)$的单调性,需要讨论两个根的大小。
因此,这里分$a-1$三种情况进行讨论。
当$a<-1$时,$f(x)$,$f'(x)$随$x$的变化情况如下:$x\in(-\infty,a)$时,$f(x)$单调递增;$x\in(a,-1)$时,$f(x)$单调递减;$x=-1$时,$f(x)$有极小值;$x\in(-1,+\infty)$时,$f(x)$单调递增。
因此,函数$f(x)$的单调递增区间为$(-\infty,a)$和$(-1,+\infty)$,单调递减区间为$(a,-1)$。
当$a=-1$时,$f'(x)\geq 0$在$R$上恒成立,所以函数$f(x)$的单调递增区间为$(-\infty,+\infty)$,没有单调递减区间。
导数的含参分类讨论练习(含答案)
贯穿高中的数学工具系列之5《一元二次类与韦达定理》下篇含参一元二次类在高中数学的应用1、讨论导数的单调性(含参二次不等式)(1)设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________.(2)(2019·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(a)求b ,c 的值;(b)若a >0,求函数f (x )的单调区间.(3)已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.(4)已知函数g (x )=ln x +ax 2-(2a +1)x ,若a ≥0,试讨论函数g (x )的单调性.(5)(2019·兰州模拟)已知函数f (x )=ln x -ax +1-a x-1(a ∈R ).当0<a <12时,讨论f (x )的单调性.(6)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .讨论f (x )的单调性.(7)设函数f (x )=ax 2-a -ln x ,其中a ∈R ,讨论f (x )的单调性.(8)讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.(9)已知函数2()(2ln )(0)f x x a x a x=-+->,讨论()f x 的单调性.(10)(2018·高考全国卷Ⅰ节选)已知函数f(x)=1x-x+a ln x,讨论f(x)的单调性.(11)已知函数f(x)=x2e-ax-1(a是常数),求函数y=f(x)的单调区间.mx3+(4+m)x2,g(x)=a ln(x-1),其中a≠0.(12)设函数f(x)=13(1)若函数y=g(x)的图象恒过定点P,且点P关于直线x=32对称的点在y=f(x)的图象上,求m的值.(2)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性.(13)已知函数g(x)=ln x+ax2+bx,其中g(x)的函数图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.下篇含参一元二次类在高中数学的应用参考答案1讨论导数的单调性(含参二次不等式)(1)解析:f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ),由a >1知,当x <2时,f ′(x )>0,故f (x )在区间(-∞,2)上单调递增;当2<x <2a 时,f ′(x )<0,故f (x )在区间(2,2a )上单调递减;当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上单调递增.综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上单调递增,在区间(2,2a )上单调递减.答案:(2,2a )(2)解析:(a)f ′(x )=x 2-ax +b ,0)=1,(0)=0,=1,=0.(b)由(a)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)解f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a>1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a.②当a =1时,f ′(x )≥0在(0,+∞)上恒成立.③当a >1时,0<1a<1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )(0,1)当a=1时,f(x)在(0,+∞)上单调递增,当a>1时,f(x)在(1,+∞)(4)解g′(x)=2ax2-(2a+1)x+1x=(2ax-1)(x-1)x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1.当a>0时,令g′(x)=0,得x=1或x=1 2a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<1 2a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12,在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,当a=12时,函数g(x)在(0,+∞)上单调递增;当a>12时,函数g(x)(1,+∞)上单调递增.(5)解析:因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1,因为0<a <12,所以1a-1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ,1a -f ′(x )>0,函数f (x )单调递增;当x ∈(1a -1,+∞)时,f ′(x )<0,函数f (x )单调递减.(6)【解】f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )(1)0<a <2时,2a>1,当x ∈(0,1)或x f ′(x )>0,f (x )单调递增.当x f ′(x )<0,f (x )单调递减.(2)a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.(3)a >2时,0<2a<1,当x x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )(1,+∞)内单调递增.(7)解:f (x )的定义域为(0,+∞)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a.此时,当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.综上当a ≤0时,f (x )的递减区间为(0,+∞),当a >0时,f (x )(8)解:f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈,时,f ′(x )<0;当x 1-a2a,+f ′(x )>0,故f (x ),1-a2a,+(9)解析函数()f x 的定义域为()()222220,,1a x ax f x x x x-+'+∞=+-=。
导数问题常见分类讨论
在高考中导数问题常见的分类讨论(一)热点透析由于导数内容对大学数学与中学数学的衔接具有重大的作用,所以自从导数进入高考后,立即得到普遍地重视,在全国各地的数学高考试卷中占有相当重的份额,许多试题放在较后的位置,且有一定的难度..分类讨论是中学数学的一种解题思想,如何正确地对某一问题进行正确地分类讨论,这就要求大家平时就要有一种全局的观点,同时要有不遗不漏的观点。
只有这样在解题时才能做到有的放矢。
下面我想通过对导数类题的解答的分析,来揭示如何水道渠成顺理推舟进行分类讨论。
(二)知识回顾1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y =f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.(三)疑难解释1.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.2.f′(x)>0在(a,b)上成立是f(x)在(a,b)上单调递增的充分条件.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.附件:当堂过手训练(快练五分钟,稳准建奇功!)1. 若函数f (x )=x +ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=2x 2+2x -x 2-a (x +1)2=x 2+2x -a(x +1)2.因为f (x )在x =1处取极值,所以1是f ′(x )=0的根,将x =1代入得a =3.2. 函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f ′(x )在区间(1,+∞)上是增函数,则f ′(x )=3x 2+a ≥0在(1,+∞)上恒成立,即a ≥-3x 2在(1,+∞)上恒成立.∴a ≥-3.3. 如图是y =f (x )导数的图象,对于下列四个判断:①f (x )在[-2,-1]上是增函数; ②x =-1是f (x )的极小值点;③f (x )在[-1,2]上是增函数,在[2,4]上是减函数; ④x =3是f (x )的极小值点.其中正确的判断是________.(填序号) 答案 ②③解析 ①∵f ′(x )在[-2,-1]上是小于等于0的, ∴f (x )在[-2,-1]上是减函数;②∵f ′(-1)=0且在x =0两侧的导数值为左负右正, ∴x =-1是f (x )的极小值点; ③对, ④不对,由于f ′(3)≠0.4. 设函数g (x )=x (x 2-1),则g (x )在区间[0,1]上的最小值为( )A .-1B .0C .-239D.33答案 C解析 g (x )=x 3-x ,由g ′(x )=3x 2-1=0,解得x 1=33,x 2=-33(舍去). 当x 变化时,g ′(x )与g (x )的变化情况如下表:所以当x 5. (2011·辽宁)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 设m (x )=f (x )-(2x +4),∵m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞). 二、高频考点专题链接题型一. 需对导数为零的点与定义域或给定的区间的相对位置关系讨论的问题。
(完整word版)导数单调性分类讨论
类型二:导数单调性专题类型1。
导数不含参。
类型2.导数含参。
类型3:要求二次导 求单调性一般步骤:(1) 第一步:写出定义域,一般有()0ln >⇒x x(2) 第二步:求导,(注意有常数的求导)若有分母则通分。
一般分母都比0大,故去死若无分母,因式分解(提公因式,十字相乘法)或求根(观察分子)判断导函数是否含参,再进行讨论(按恒成立与两个由为分界)(3) 第三步由()()⎩⎨⎧≤≥解出是减区间解出是增区间00x f x f(4) 下结论类型一:导函数不含参:()()()⎪⎩⎪⎨⎧-+=--++=++=21223,22,,x x e m e x f x x c bx ax x f x b kx x f 如指数型如:二次型如:一次型对于这类型的题,直接由导函数大于0,小于0即可(除非恒成立) 例题1求函数()()x e x x f 3-=的单调递增区间 解:()()()23'-=-+=x e e x e x f x x x 由()()202'>⇒>-=x x e x f x 所以函数在区间()+∞,2单调递增 由()()202'<⇒<-=x x e x f x所以函数在区间()2,∞-单调递减例题2:求函数()()2211x e x x f x --=的单调区间解:()()()()x e e x e x xe e x f x x x x x +-=-+-=-+-=11111'由()()()01011'>-<⇒>+-=x x x e x f x 或所以函数在区间(][)∞+-∞-,和01,单调递增由()()()01011'<<-⇒<+-=x x e x f x 所以函数在区间()0,1-单调递减 例题3:求函数()xxx f ln =的单调区间例题4:已知函数()()()R k kx e x x f x ∈--=21 (1)若1=k 时,求函数()x f 的单调区间例题5.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2.(1)若a =错误!,求f (x )的单调区间;例题6:已知函数()()112++-=x e ax x f x (1)若0=a ,求函数()x f 的单调区间7。
导数含参数问题的分类讨论
导数含参数问题的分类讨论利用导数来研究函数的单调性、极值、最值问题是高中数学的重要内容,分类讨论的思想又是高中阶段着重培养的思想方法。
导数大题的共同点就是求完导数后往往转化为带参数的函数,因此,需要利用分类讨论来解决含参数的导数问题成为近几年高考考查的一个重点和热点。
导数是解决函数单调性,最值等问题十分有利的工具,但学生在运用导数含参的问题时,往往产生惧怕心理,尤其对分类讨论感到困惑。
关于导数的分类讨论最常用有以下两种。
一、区间固定讨论极值点现在以2012年北京高考题为例。
本题第二问主要考察用导数来求函数的单调区间,以及在确定区间内求函数的最值问题。
试题的背景是以人教版A版2-2 1.3.2节例4,例5为蓝本。
例4是求函数的极值,例题的极值点是确定的具体的数。
例5是在闭区间内求最值。
此例题的极值点和端点值都是具体的实数。
接下来要讲的这道高考题和这道例题类似,把极值点变成含参数的极值点。
这道高考题目是来源于例题又高于例题。
(2012年北京卷理科18题)已知函数f(x)=ax2+1(a>0)与曲线g(x)=x3+bx(1)若曲线y=f(x),y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值。
此例题与课本例4:求y=x3/3-4x+4的极值,例5求y=x3/3-4x+4在区间[0,3]上求函数的最值进行对比。
首先是找出两例题的相同点。
两题的相同之处都是三次函数,都是求函数的单调区间和在固定的区间内求最值。
不同点是北京高考题中函数的极值点含有参数,极值点不固定,而课本例题的极值点是确定的。
要研究函数在固定区间上的最值问题,就是研究函数在此区间上的单调性,要研究函数的单调性就是研究函数的极值点,利用传递性可得解决问题的实质就是研究函数的极值点。
研究函数的最值问题就是研究函数的极值点与区间位置关系的问题。
导数之含参函数的单调性的分类讨论
高考数学微专题第 1 页 导函数三种含参的单调性讨论类型一:导函数为含参一次型的函数单调性针对通分后分子是一次型的,我们考虑能否参数取得某一个范围使得导数是大于0或者小于0恒成立,如果可以,再去讨论另外的范围。
这样做的好处是思路清晰,不会导致漏了讨论的范围。
例题1:已知函数)1(ln )(x a x x f -+=,讨论f(x)的单调性变式1:函数)(ln )(R a x a x x f ∈-=,求函数的单调区间变式2:已知函数x e x f ax 3)(+=,求f(x)的单调区间变式训练3:已知函数2ln )(-+=x xa x f ,是否存在实数a,使得函数f(x)在],0(2e 上有最小值?若存在,求a 的值,若不存在,说明理由 类型二:导函数为含参二次型可因式分解的函数单调性针对求导后为含参二次型可因式分解的函数单调性,如果参数处在二次项系数,先讨论能否为0;再通过因式分解为两个因式的积。
接着首先讨论两根相等时,因为我们寻找了一种临界情况。
接下来就好确定分类标准了,这一点不可不知。
也会省去求不等式解集的麻烦。
例2:求函数2ln )1()(2ax x x a x f +--=的单调区间 变式1:已知函)(11ln )(R a xa ax x x f ∈--+-=,讨论f(x)的单调性 变式2:已知函数2)1()2()(-+-=x a e x x f x 。
讨论f(x)的单调性变式3:已知函数x x x f cos 2)(2+=,函数)22sin (cos )(-+-=x x x e x g x(1)求曲线y=f(x)在点))(,(ππf 处的切线方程(2)令))(()()(R a x af x g x h ∈-=,讨论会h(x)的单调性,并判断有无极值,有极值时求出极值类型三:导函数为含参二次型不可因式分解的函数单调性导数含参二次型不可因式分解是我们遇到的第三种情况,我们依然遵循求导通分定义域的步骤书写大题过程。
导数的复习——含参单调性的讨论问题
JIETI JIQIAO YU FANGFA解题技巧与方法133数学学习与研究2019.9导数的复习———含参单调性的讨论问题◎靖晶陈艳宝(大庆市第四中学,黑龙江大庆163711)高考中导数问题可谓是学生拉开区分度的分水岭.而含参的单调性的讨论问题是重中之重.单调性的问题讨论清楚了,那么极值最值等问题就可迎刃而解.利用导数求函数单调区间的依据:在定义域范围内,由导数大于0解得的x 的区间为函数的增区间;由导数小于0解得的x 的区间为函数的减区间.常见的分类标准有哪些呢?一般的含参的函数单调性的讨论常见的分类标准有:1.函数类型;2.开口方向;3.判别式;4.导数等于0有根无根;5.两根大小;6.极值点是否在定义域内.通过以下两个例题进行说明.例1讨论函数f (x )=x -1x -a ln x (a ∈R)的单调性.分析根据导数的符号得函数在相应区间上的单调性,先进行求导.函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2分母是恒正的,只需看分子的符号.由f'(x )=0得x 2-ax +1=0.一元二次方程有根无根需看判别式.故而确定了第一个分类讨论的原因:二次函数的判别式.当Δ>0时,a >2或a <-2,方程有两个不等实根.是否需要进一步讨论呢?可以发现此时分子为零的两根记为x 1,x 2,x 1+x 2=a ,x 1x 2=1>0,而定义域为(0,+ɕ),方程的两根符号与a 相同,故而确定第二个分类讨论的标准:方程的根是否在定义域内.解函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2.令f'(x )=0得x 2-ax +1=0.(1)当Δ≤0时,-2≤a ≤2时,f'(x )≥0,f (x )在(0,+ɕ)上单调递增.(2)当Δ>0时,方程有两个不等的实根,x 1=a -a 2槡-42,x 2=a +a 2槡-42.①a >2时,x 1+x 2=a >0,x 1x 2=1>0,ʑx 1>0,x 2>0,ʑf (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.(根据图1)图1②a <-2时,x 1+x 2=a <0,x 1x 2=1>0ʑx 1<0,x 2<0,ʑf (x )在(0,+ɕ)上单调递增.(根据图2)图2综上,当时,f (x )在(0,+ɕ)上单调递增.当a >2时f (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.例2讨论函数f (x )=e-kxx 2+x -1()k(k ∈R)的单调性.分析函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).ȵe -kx >0,ʑf'(x )的符号只需看-kx 2+(2-k )x +2的符号,而x 2的系数含字母,影响函数的类型,故第一类讨论的原因即高次项的系数是否为0.由题意k ≠0.当k ≠0时,其正负影响开口的方向,故第二类分类讨论的原因即开口方向.当k <0时,导数等于0的两根大小不确定,故而第三类分类讨论的原因为两根大小,确定分界点-2.解函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).(1)当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.(2)当k <0时,2k -(-1)=2+kk.①当k <-2时,2k >-1,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.②当k =-2时,2k =-1,f (x )在(-ɕ,+ɕ)单调递增.③当k >-2时,2k <-1,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k ,()-1单调递减.综上,当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.当k <-2时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.解题技巧与方法JIETI JIQIAO YU FANGFA134数学学习与研究2019.9当k =-2时,f (x )在(-ɕ,+ɕ)单调递增.当k >-2时,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k,()-1单调递减.一般涉及含参单调性的讨论问题,我们可按以下步骤进行:1.先求出函数的定义域,再求出导函数,有分母要通分,能因式分解要分解彻底;2.若导函数带分母,通分因式分解彻底后,判断导数分子最高次项系数是否含有参数,有可以讨论该参数得0和不得0,最高次项系数是否为0影响的是函数的类型;3.判断导数等于0是否有根,导数等于0得到的方程若为一元二次方程,可判断其判别式的符号:当判别式小于等于0时,若二次项系数为正,则导数恒大于等于0,函数在定义域内为增函数,若二次项系数为负,则导数恒小于等于0,函数在定义域内为减函数;当判别式大于0时,可以结合韦达定理分析导数等于0的两根与定义域的关系,确定单调区间;4.导数等于0得到的方程不是二次函数时,根据方程的特点判断有根无根,若有根,再判断其与定义域的关系,若根在定义域内,则根为极值点,再判断定义域内极值点分成的各段区间导数的正负从而得到函数的单调性;5.若导数等于0,方程有两个根且均在定义域内,当两根大小不确定时,可通过比较两根大小确定讨论的分界点.(上接132页)度”、有“智慧挑战”,要遵循由易及难,由简到繁,由基本到拓展的发展顺序去安排,让不同水平的学生都练有所得.如“平行四边形面积”一课,学生探讨出计算方法之后,我设计了以下的练习:1.基本性练习:计算下面平行四边形的面积,需要什么条件?这个平行四边形已知高的长度,要求它的面积还需要已知什么条件?学生回答完后教师再补充“底是18分米”,让学生独立完成.2.提高练习:(1)计算右图平行四边形的面积,算式是().(单位:厘米)A.7.5ˑ4B.7.5ˑ6C.6ˑ4(2)下面第()个平行四边形的面积算式是12ˑ8.ABC3.实践性练习:(1)选择条件,求出右边图形的面积.(单位:米)本组练习设计由浅入深,分层训练,逐步形成技能.基本练习在于检查学生是否会运用公式计算平行四边形的面积,加深对公式的巩固.提高练习是让学生明确计算平行四边形面积要选择正确的“底”和“高”.实践练习在于让学生能运用所学的知识解决生活当中的实际问题,培养学生的实践能力.发展性练习目的在于帮助学生深化知识、扩展知识,沟通知识间的内在联系,发展学生思维的广度和深度,培养学生创新的精神.四、总结反思要提炼数学思想方法数学思想方法是处理数学问题的指导思想和基本策略,是数学学习的灵魂,是学生数学素养的核心.刘云章教授认为:“重视对数学思想方法的领悟将能唤起数学学习者潜在的数学天赋,提高其数学素养,从而提高学习效益和质量”.数学思想方法的获得,一方面,需要教师进行有意识的渗透和培养,另一方面,也要靠学生的“悟”———在自身总结反思中提炼.例如,在“平面图形的面积复习”教学中,教师可引导学生思考:平行四边形、三角形、梯形的面积公式是怎样推导的?有什么共同点?学生在总结反思中理解了“转化”的数学思想方法.如学生学习完“三角形内角和”时,我让学生回顾学习过程:先计算直角三角形、等边三角形的内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度.学生回顾思维过程中总结出“归纳”的思想方法.因此,当数学学习结束后,教师要引导学生回顾自己的思维活动,总结反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对所应用的数学思想方法进行概括与提炼,从数学思想方法的高度把握知识的本质,提升课堂教学的价值.“本真数学”课堂教学,主张以“本”为核心,以“真”为重点,遵循“问题情境—探索活动—实践应用—反思提升”的教学程序,经历提出问题、分析问题、解决问题、应用问题的过程,探索数学本质,建构数学模型,提升数学素养.【参考文献】[1]刘加霞.小学数学课堂的有效教学[M ].北京:北京师范大学出版,2008.[2]陈桂香.小学数学课堂教学中应体现“数学味”[J ].教师博览(科研版),2011(11):61.。
导数单调性含参讨论问题
导数单调性含参讨论问题
讨论导数单调性含参问题,需要找到临界点。
临界点的确定可以从以下四个方面入手:极值点、二次项系数、定义域和绝对值。
一、极值点大小比较的分类讨论是最主流的,如江苏高考和四川高考的例题。
在这种情况下,需要比较极值点的大小,然后讨论单调性。
二、二次项系数含有参数时也需要分类讨论,如北京高考的例题。
这时需要根据参数的取值讨论二次项系数的正负和单调性。
三、定义域的限制也会产生分类讨论,如山东高考的例题。
在这种情况下,需要考虑定义域的限制对单调性的影响。
四、绝对值也会产生分类讨论,如浙江高考的例题。
在这种情况下,需要分别讨论绝对值内外的函数单调性,然后综合得出结论。
回家作业:练以上四种分类讨论的方法,掌握如何确定临界点,进一步提高导数单调性问题的解题能力。
导数中含参数的解题策略
导数中含参数的讨论策略导数是研究函数性质的一种重要工具,利用导数可判断函数单调性、极值、最值等,其中渗透并充分利用着构造函数、分类讨论、转化与化归、数形结合等重要思想方法,导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力。
而含参数的导数问题是近年来高考的难点和热点,本文着重就含参数导数的几种常见的解题策略加以归纳.一.求导后,导函数的解析式为一次函数y=kx+b ,如k 不定就分清况讨论k>0,k=0,k<0,然后导函数y=kx+b 为零时有无实根,根是否落在定义域内,(2008高考浙江卷理科)已知a 是实数,函数())f x x a =-(1)求函数()f x 的单调区间;解:(Ⅰ)函数的定义域为[)0,+∞,())'30a x f x x ⎛⎫- ⎪===>,由'()0f x =得3ax =。
考虑3a是否落在导函数'()f x 的定义域()0,+∞内,需对参数a 的取值分0a ≤及0a >两种情况进行讨论。
(1) 当0a ≤时,则'()0f x >在()0,+∞上恒成立,所以()f x 的单调递增区间为[)0,+∞。
(2) 当0a >时,由'()0f x >,得3a x >;由'()0f x <,得03a x <<。
因此,当0a >时,()f x 的单调递减区间为0,3a ⎡⎤⎢⎥⎣⎦,()f x 的单调递增区间为,3a⎡⎫+∞⎪⎢⎣⎭。
二.求导后,导函数可以转化为c bx ax y ++=2时,如a 不定先讨论a>0,a=0,a<0;再按在二次项的系数不等于零时对判别式按△>0、△=0、△<0;在△>0时,求导函数的零点再根据零点是否在定义域内进行讨论,若零点含参数在定义域内则对零点之间的大小进行讨论。
含参数导数问题分类讨论
含参数导数的解题策略导数是研究函数性质的一种重要工具,利用导数可判断函数单调性、极值、最值等,其中渗透并充分利用着构造函数、分类讨论、转化与化归、数形结合等重要思想方法,导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力。
而含参数的导数问题是近年来高考的难点和热点,本文着重就含参数导数的几种常见的解题策略加以归纳. 一、分离参数,转化为最值策略在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值.例1、已知函数x x x f ln )(=.(Ⅰ)求)(x f 的最小值; (Ⅱ)若对所有1≥x 都有,1)(-≥ax x f 求实数a 的取值范围.二、导数为0的点是否在定义域内,分类讨论策略求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,所以必须分类,通过令导函数为零的实根等于定义域端点值,求分点,从而引起讨论.例2.已知a 是实数,函数))(2a x xx f -=(. (Ⅰ)若3)1(='f ,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 在区间[0,2]上的最大值.三、导函数为0是否存在,分类讨论策略求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),涉及到二次方程问题时,△与0的关系不定,所以必须分类,通过导函数是二次函数或者与二次函数有关,令△=0,求分点,从而引起讨论.例3、已知函数2()ln f x x x a x =-+,()a R ∈,讨论()f x 在定义域上的单调性.四、导函数为0的方程的根大小不确定,分类讨论策略求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义域内,但这些实根的大小关系不确定,分不了区间.所以必须分类,通过令几个根相等求分点,从而引起讨论.例4、已知0>m ,讨论函数xe m x m mx xf 63)1(3)(2++++=的单调性.练习求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数导数的解题策略导数是研究函数性质的一种重要工具,利用导数可判断函数单调性、极值、最值等,其中渗透并充分利用着构造函数、分类讨论、转化与化归、数形结合等重要思想方法,导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力。
而含参数的导数问题是近年来高考的难点和热点,本文着重就含参数导数的几种常见的解题策略加以归纳. 一、分离参数,转化为最值策略在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值.例1、已知函数x x x f ln )(=.(Ⅰ)求)(x f 的最小值; (Ⅱ)若对所有1≥x 都有,1)(-≥ax x f 求实数a 的取值范围.二、导数为0的点是否在定义域内,分类讨论策略求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,所以必须分类,通过令导函数为零的实根等于定义域端点值,求分点,从而引起讨论.例2.已知a 是实数,函数))(2a x xx f -=(. (Ⅰ)若3)1(='f ,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 在区间[0,2]上的最大值.三、导函数为0是否存在,分类讨论策略求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),涉及到二次方程问题时,△与0的关系不定,所以必须分类,通过导函数是二次函数或者与二次函数有关,令△=0,求分点,从而引起讨论.例3、已知函数,,讨论在定义域上的单调性.四、导函数为0的方程的根大小不确定,分类讨论策略求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义域内,但这些实根的大小关系不确定,分不了区间.所以必须分类,通过令几个根相等求分点,从而引起讨论.例4、已知0>m ,讨论函数xe m x m mx xf 63)1(3)(2++++=的单调性.练习求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。
一、求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,从而引起讨论。
二、求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
三、1.08广东(理) 设k R ∈,函数1,11(),()(),1x x f x F x f x kx x R x ⎧<⎪-==-∈⎨⎪≥⎩,试讨论函数()F x 的单调性。
2. (08浙江理)已知a 是实数,函数())f x x a =-(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[]0,2上的最小值。
(i )写出()g a 的表达式;(ii )求a 的取值范围,使得()62g a -≤≤-。
3(07天津理)已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
4(07高考山东理改编)设函数()()2ln 1f x x b x =++,其中0b ≠,求函数()f x 的极值点。
含参数导数的解题策略例1、解:(Ⅰ)略. (Ⅱ)∵ 对所有1≥x 都有1)(-≥ax x f , ∴ 对所有1≥x 都有1ln -≥ax x x ,即.1ln xx a +≤ 记),0(,1ln )(>+=x x x x g 只需 .)(min x g a ≤ 令,011)('2=-=x x x g 解得.1=x.100)(',10)('<<⇔<>⇔>x x g x x g∴ 当1=x 时,)(x g 取最小值.1)1(=g ∴ .1≤a 即a 的取值范围是{}.1≤a a 例2. 解:(I )略.(II )令'()0f x =,解得1220,3ax x ==. 当203a≤,即0≤a 时,()f x 在[0,2]上单调递增,从而max (2)84f f a ==-. 当223a ≥时,即3≥a 时,()f x 在[0,2]上单调递减,从而max (0)0f f ==.当2023a <<,即03a <<,()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤⎢⎥⎣⎦上单调递增,从而 max84,0 2.0,2 3.a a f a -<≤⎧⎪=⎨<<⎪⎩ 综上所述,max84, 2.0, 2.a a f a -≤⎧⎪=⎨>⎪⎩ 例3、 解:由已知得22()21,(0)a x x af x x x x x-+'=-+=>, (1)当180a ∆=-≤,18a ≥时,()0f x '≥恒成立,()f x 在(0,)+∞上为增函数. (2)当180a ∆=->,18a <时,1)108a <<时,11022->>,()f x在11[22+上为减函数,()f x 在)+∞上为增函数, 2)当0a <时,,故()f x 在1[0,]2+上为减函数, ()f x 在[,+∞)上为增函数. 综上,当18a ≥时,()f x 在(0,)+∞上为增函数.当108a <<时,()f x 在上为减函数,()f x 在11(0,],[)22-++∞上为增函数, 当0<a 时,()f x 在(0,]上为减函数,()f x 在[, +∞)上为增函数.例4、解:xex m mx x f 3)3()(2-+--=',设3)3()(2-+--=x m mx x g ,令0)(=x g ,得mx 31-=,12-=x . 1)当30<<m 时,21x x <,在区间)3,(m--∞,),1(+∞-上0)(<x g ,即0)(<'x f ,所以)(x f 在区间)3,(m--∞,),1(+∞-上是减函数; 在区间)13(--,m ,0)(>x g ,即0)(>'x f ,所以)(x f 在区间)13(--,m上是增函数;2)当3=m 时,21x x =,在区间)1,(--∞,),1(+∞-上0)(<x g ,即0)(<'x f ,又)(x f 在1=x 处连续,所以)(x f 在区间),(+∞-∞上是减函数;3)当3>m 时,21x x >,在区间)1,(--∞,)3(∞+-,m上0)(<x g ,即0)(<'x f ,所以)(x f 在区间)1,(--∞,)3(∞+-,m上是减函数; 在区间)31(m --,上,0)(>x g ,即0)(>'x f ,所以)(x f 在区间)31(m--,上是增函数.练习1.解:()()2211,11,1,11()(),'(),11k x x kx x x x F x f x kx F x kx x x ⎧--<⎪⎧-<-⎪⎪-=-==⎨⎨⎪⎪≥⎩>⎪⎩。
考虑导函数'()0F x =是否有实根,从而需要对参数k 的取值进行讨论。
(一)若1x <,则()()2211'()1k x F x x --=-。
由于当0k ≤时,'()0F x =无实根,而当0k >时,'()0F x =有实根,因此,对参数k 分0k ≤和0k >两种情况讨论。
(1) 当0k ≤时,'()0F x ≥在(,1)-∞上恒成立,所以函数()F x 在(,1)-∞上为增函数;(2) 当0k >时,()()2211'()11k x F x x x --==--。
由'()0F x =,得121,1x x ⎛⎛== ⎝⎝,因为0k >,所以121x x <<。
由'()0F x >,得11x <<;由'()0F x <,得1x <- 因此,当0k >时,函数()F x在(,1-∞上为减函数,在(1上为增函数。
(二)若1x >,则'()F x =0k ≥时,'()0F x =无实根,而当0k <时,'()0F x =有实根,因此,对参数k 分0k ≥和0k <两种情况讨论。
(1) 当0k ≥时,'()0F x <在[)1,+∞上恒成立,所以函数()F x 在[)1,+∞上为减函数;(2) 当0k <时,1'()k F x ⎫-⎪==。
由'()0F x >,得2114x k >+;由'()0F x <,得21114x k<<+。
因此,当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上为减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上为增函数。
综上所述:(1) 当0k >时,函数()F x在(,1-∞上为减函数,在(1上为增函数,在[)1,+∞上为减函数。
(2) 当0k =时,函数()F x 在(,1)-∞上为增函数,在[)1,+∞上为减函数。
(3) 当0k <时,函数()F x 在(,1)-∞上为增函数,在211,14k ⎡⎫+⎪⎢⎣⎭上为减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上为增函数。
2.解:(Ⅰ)函数的定义域为[)0,+∞,())'30a x f x x ⎛⎫- ⎪===>,由'()0f x =得3a x =。
考虑3a 是否落在导函数'()f x 的定义域()0,+∞内,需对参数a 的取值分0a ≤及0a >两种情况进行讨论。
(1) 当0a ≤时,则'()0f x >在()0,+∞上恒成立,所以()f x 的单调递增区间为[)0,+∞。
(2) 当0a >时,由'()0f x >,得3a x >;由'()0f x <,得03a x <<。
因此,当0a >时,()f x 的单调递减区间为0,3a ⎡⎤⎢⎥⎣⎦,()f x 的单调递增区间为,3a ⎡⎫+∞⎪⎢⎣⎭。