图论练习题2009(学生练习)

合集下载

离散数学图论部分经典试题及答案

离散数学图论部分经典试题及答案

离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) .A .{(a , d )}是割边B .{(a , d )}是边割集C .{(d , e )}是边割集D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集ο ο ο ο οcab edο f图一图二C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图三7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).图四A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的应该填写:D8.设完全图Kn 有n个结点(n≥2),m条边,当()时,Kn中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m 为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2 B.v+e-2 C.e-v-2 D.e+v +210.无向图G存在欧拉通路,当且仅当( ).A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.1m n-+B.m n-C.1m n++D.1n m-+ 12.无向简单图G是棵树,当且仅当( ).A.G连通且边数比结点数少1 B.G连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 .9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.ο οο ο οca b e dο f 图四2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图? 2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵; (2)求出每个结点的度数; (4)画出图G 的补图的图形.3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试v 1v 2v 3v 4v 5v 6v 1v 2v 3v 5 d bae f ghn图六οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图八(1)给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形.4.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b,d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.5.用Dijkstra算法求右图中A点到其它各点的最短路径。

第二篇 图论习题

第二篇  图论习题

7.证明:若每个顶点的度数大于等于3时,则不存在 有7条边的平面连通图。
(等价命题:证明:不存在7条棱的凸多面体)
8. 设G是顶点p≥11的平面图,证明:G的补图Gc是非平 面图。
(设G是顶点p≥11的图,证明:G与G的补图Gc至少有一个是非平 面图。)
9.设G是平面连通图,顶点为p面数f,证明: (1)若p≥3,则f≤2p-4。(2)若δ(G)=4,则G中至少有6 个顶点的度数≤5。 10.设G是边数q<30的平面图,证明:G中存在顶点v, 使得degv≤4。
e
c b a
f a g j d
d j i
h
i
e h
b
c
f
g
例3 给出一个10个顶点的非哈密顿图的例子,使得每 一对不邻接的顶点u和v,均有degu+degv≥9。 例4 证明:完全图K9中至少存在彼此无公共边的两条 哈密顿回路和一条哈密顿路? 例5 试求Kp中不同的哈密顿圈的个数。 例6(1) 证明具有奇数顶点的偶图不是哈密顿图;用 此结论证明如图所示的图不是哈密顿图。 (2) 完全偶图Km,n为哈密顿图的充要条件是什么? 例7 菱形12面体的表面上有无哈密顿回路? 例8设G=(V,E)是连通图且顶点数为p,最小度数为δ, 若p>2δ,则G中有一长至少为2δ的路。 例9 证明:彼德森图不是哈每个人都至少有10 个朋友,这20人围一圆桌入席,要想使与每个人相 邻的两位都是朋友是否可能?根据什么? 例19 设G是一个有p(p≥3)个顶点的连通图。u和v是 G的两个不邻接的顶点,并且degu+degv≥p 。证明: G是哈密顿图G+uv是哈密顿图。
第六章 树和割集(习题课1)
习题课2
例1设G是连通图,满足下面条件之一的边应具有什 么性质 ? (1)在G的任何生成树中; (2)不在G的任何生成树中。 例2 非平凡无向连通图G是树当且仅当G的的每条边都 是桥。 例3 设T是一棵树,p≥2 ,则 (1)p个顶点的树至多有多少个割点; (2)p个顶点的树有多少个桥? 例4 证明或否定断言:连通图G的任意边是G的某一棵 生成树的弦。 例5 设T是连通图G中的一棵生成树,证明:T的补中 不含中任何割集。[T的补T G T 就是T的弦]

第四部分图论练习题答案

第四部分图论练习题答案

《离散数学》第四部分---图论练习题答案一、选择或填空1、设G是一个哈密尔顿图,则G一定是( )。

(1) 欧拉图(2) 树(3) 平面图(4) 连通图答:(4)2、下面给出的集合中,哪一个是前缀码?( )(1) {0,10,110,101111} (2) {01,001,000,1}(3) {b,c,aa,ab,aba} (4) {1,11,101,001,0011}答:(2)3、一个图的哈密尔顿路是一条通过图中( )的路。

答:所有结点一次且恰好一次4、在有向图中,结点v的出度deg+(v)表示( ),入度deg-(v)表示( )。

答:以v为起点的边的条数,以v为终点的边的条数5、设G是一棵树,则G 的生成树有( )棵。

(1) 0 (2) 1 (3) 2 (4) 不能确定答:16、n阶无向完全图K n 的边数是( ),每个结点的度数是( )。

答:2)1(nn, n-17、一棵无向树的顶点数n与边数m关系是( )。

8、一个图的欧拉回路是一条通过图中( )的回路。

答:所有边一次且恰好一次9、有n个结点的树,其结点度数之和是( )。

答:2n-210、下面给出的集合中,哪一个不是前缀码( )。

(1) {a,ab,110,a1b11} (2) {01,001,000,1}(3) {1,2,00,01,0210} (4) {12,11,101,002,0011}答:(1)11、n个结点的有向完全图边数是( ),每个结点的度数是( )。

答:n(n-1),2n-212、一个无向图有生成树的充分必要条件是( )。

答:它是连通图13、设G是一棵树,n,m分别表示顶点数和边数,则(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。

答:(3)14、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。

答:215、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。

离散数学图论习题

离散数学图论习题

1 第4章 图论综合练习一、 单项选择题1.设L 是n 阶无向图G 上的一条通路,则下面命题为假的是( ). (A) L 可以不是简单路径,而是基本路径可以不是简单路径,而是基本路径 (B) L 可以既是简单路径,又是基本路径又是基本路径 (C) L 可以既不是简单路径,又不是基本路径可以既不是简单路径,又不是基本路径 (D) L 可以是简单路径,而不是基本路径可以是简单路径,而不是基本路径 答案:A 2.下列定义正确的是( ). (A) 含平行边或环的图称为多重图含平行边或环的图称为多重图 (B) 不含平行边或环的图称为简单图不含平行边或环的图称为简单图 (C) 含平行边和环的图称为多重图含平行边和环的图称为多重图 (D) 不含平行边和环的图称为简单图不含平行边和环的图称为简单图 答案:D 3.以下结论正确是.以下结论正确是 ( ).(A) 仅有一个孤立结点构成的图是零图仅有一个孤立结点构成的图是零图 (B) 无向完全图K n 每个结点的度数是n (C) 有n (n >1)个孤立结点构成的图是平凡图个孤立结点构成的图是平凡图 (D) 图中的基本回路都是简单回路图中的基本回路都是简单回路 答案:D 4.下列数组中,不能构成无向图的度数列的数组是( ). (A) (1,1,1,2,3) (B) (1,2,3,4,5) (C) (2,2,2,2,2) (D) (1,3,3,3) 答案:B 5.下列数组能构成简单图的是( ). (A) (0,1,2,3) (B) (2,3,3,3) (C) (3,3,3,3) (D) (4,2,3,3) 答案:C 6.无向完全图K 3的不同构的生成子图的个数为(的不同构的生成子图的个数为( ).). (A) 6 (B) 5 (C) 4 (D) 3 答案:C 7.n 阶无向完全图K n 中的边数为(中的边数为().). (A) 2)1(+n n (B) 2)1(-n n (C) n (D)n (n +1) 答案:B 8.以下命题正确的是( ).(A) n (n ³1)阶完全图K n 都是欧拉图都是欧拉图 (B) n (n ³1)阶完全图K n 都是哈密顿图都是哈密顿图(C) 连通且满足m =n -1的图<V ,E >(½V ½=n ,½E ½=m )是树是树(D) n (n ³5)阶完全图K n 都是平面图都是平面图 答案:C 10.下列结论不正确是( ).(A) 无向连通图G 是欧拉图的充分必要条件是G 不含奇数度结点不含奇数度结点(B) 无向连通图G 有欧拉路的充分必要条件是G 最多有两个奇数度结点最多有两个奇数度结点 (C) 有向连通图D 是欧拉图的充分必要条件是D 的每个结点的入度等于出度的每个结点的入度等于出度(D) 有向连通图D 有有向欧拉路的充分必要条件是除两个结点外,每个结点的入度等2 于出度于出度 答案:D 11.无向完全图K 4是(是().). (A )欧拉图)欧拉图 (B )哈密顿图)哈密顿图 (C )树)树 答案:B 12.有4个结点的非同构的无向树有个结点的非同构的无向树有 ( )个.个. (A) 2 (B) 3 (C) 4 (D) 5 答案:A 13.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.一棵生成树.(A) 1+-n m (B) m n - (C) 1++n m (D) 1+-m n 答案:A 14.设G 是有6个结点的完全图,从G 中删去( )条边,则得到树.条边,则得到树. (A) 6 (B) 9 (C) 10 (D) 15 答案:C 二、 填空题1.数组{1,2,3,4,4}是一个能构成无向简单图的度数序列,是一个能构成无向简单图的度数序列, 此命题的真值是此命题的真值是 . 答案:0 2.无向完全图K 3的所有非同构生成子图有的所有非同构生成子图有个.个. 答案:4 3.设图G =<V ,E >,其中|V |=n ,|E |=m .则图G 是树当且仅当G 是连通的,且m = . 答案:n -1 4.连通图G 是欧拉图的充分必要条件是是欧拉图的充分必要条件是 . 答案:图G 无奇数度结点无奇数度结点5.连通无向图G 有6个顶点9条边,从G 中删去中删去 条边才有可能得到G 的一棵生成树T . 答案:4 6.无向图G 为欧拉图,当且仅当G 是连通的,且G 中无中无 结点.结点. 答案:奇数度答案:奇数度7.设图>=<E V G ,是简单图,若图中每对结点的度数之和是简单图,若图中每对结点的度数之和 ,则G 一定是哈密顿图.一定是哈密顿图. 答案:V ³8.如图1所示带权图中最小生成树的权是所示带权图中最小生成树的权是 .答案:12三、化简解答题1.设无向图G =<V ,E >,V ={v 1,v 2,v 3,v 4,v 5,v 6}, E ={( v 1,v 2), ( v 2,v 2), ( v 4,v 5), ( v 3,v 4), ( v 1,v 3), ( v 3,v 1), ( v 2,v 4)}. (1) 画出图G 的图形;的图形;v 1 v 2v 6 v 5v 3v 4图2 ·2 2 3 · 1 · 7 9 2 · 8 · 6 图1 3 (2) 写出结点v 2, v 4,v 6的度数;的度数; (3) 判断图G 是简单图还是多重图.是简单图还是多重图. 解:(1) 图G 的图形如图5所示.所示. (2) 0)deg(,3)deg(,4)deg(642===v v v .(3) 图G 是多重图.作图如图2. 2.设图G =<V ,E >,其中,其中V ={a ,b ,c ,d ,e }, E ={(a ,b ),(b ,c ),(c ,d ), (a ,e )} 试作出图G 的图形,并指出图G 是简单图还是多是简单图还是多重图?是连通图吗?说明理由. 解:图G 如图8所示.. 图G 中既无环,也无平行边,是简单图.中既无环,也无平行边,是简单图. 图G 是连通图.G 中任意两点都连通.所以,图G 有9个结点.作图如图3.四、计算题1.设简单连通无向图G 有12条边,G 中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求G 中有多少个结点.试作一个满足该条件的简单无向图.中有多少个结点.试作一个满足该条件的简单无向图.解:设图G 有x 个结点,由握手定理个结点,由握手定理2´1+2´2+3´4+3´(x -2-2-3)=12´2 271821243=-+=xx =9 故图G 有9个结点.个结点. 满足该条件的简单无向图如图4所示所示2.设图G (如图5表示)是6个结点a ,b ,c , d ,e ,f的图,试求,图G 的最小生成树,并计算它的权.的最小生成树,并计算它的权.解:构造连通无圈的图,即最小生成树,用解:构造连通无圈的图,即最小生成树,用克鲁斯克尔算法:克鲁斯克尔算法: 第一步:第一步: 取ab =1;第二步:;第二步: 取af =4 第三步:第三步: 取fe =3;第四步:;第四步: 取ad =9 第五步:第五步: 取bc =23 如图6.权为1+4+3+9+23=40 3.一棵树T 有两个2度顶点,1个3度顶点;3个4度顶点,度顶点, 问它有几片树叶?问它有几片树叶?解:设T 有n 顶点,则有n -1条边.T 中有2个 2度顶点,1个3度顶点,3个4度顶点,度顶点, 其余n -2-1-3个1度顶度顶点.点.由握手定理:由握手定理: 2·2+12+1··3+3·4+ (n -2-1-3)=2(n -1) 解得解得 n =15.于是T 有15-6=9片树叶片树叶五、证明题1.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的.中只有两个奇数度结点,则这两个结点一定是连通的.证:用反证法.设G 中的两个奇数度结点分别为u 和v .假若u 和v 不连通.不连通.即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.各含有一个奇数度结点.这与握手定理的推论矛盾.这与握手定理的推论矛盾.这与握手定理的推论矛盾.因而因而u 和v 一定是连通的.通的.a hb h h ec h hd 图3 图4 b · 23 1 c · · a 4 · f 9 3 d · ·e 图6 b · 23 1 15 c · 25 ·a 4 · f 28 9 16 3 d · 15 ·e 图5 。

图论练习题

图论练习题

图论练习题考试时间8:00—11:00评测时间11:00文件名不区分大小写。

评测环境为wind ows。

出门旅行【题目描述】在神奇的oi国度,有n个城市m条双向道路,每条道路连接了两个不同的城市。

寒假到了,小S决定出门旅游一趟。

因为以往跟团旅游多了,这次小S决定自驾游。

对于自驾游,小S最关心的自然是燃油的耗费,为了省钱,小S请你帮他找一条最短的路。

【输入格式】第一行两个整数n,m,表示有n个城市和m条双向道路。

城市从1..n编号。

接下来m行,每行三个正整数a,b,c,表示a和b之间有一条长为c的双向道路。

a,b不相同,且c不超过1000注意:两个城市之间可能会有多条双向道路。

接下来一行两个整数,s,t,表示小S本次旅行的出发地和目的地。

s,t不相同。

【输出格式】仅一行一个整数,表示最短的距离。

如果不能到达,请输出-1。

【样例输入】3 31 2 11 3 32 3 11 3【样例输出】2【样例解释】1→2→3即是最优解。

【数据范围】对于30%的数据,n<=100,m<=1000对于100%的数据,n<=2000,m<=100000关闭道路【题目描述】在神奇的oi国度,有n个城市m条双向道路,每条道路连接了两个不同的城市。

由于金融危机,oi国不得不关闭尽量多道路,来减少维护道路的花费。

但是为了尽量小地影响到原来的交通,所以要保证,如果在关闭道路前从第i个城市沿着道路走可以到第j个城市,那么关闭道路后依然也可以。

求最多能关闭多少道路。

【输入格式】第一行两个整数n,m,表示有n个城市和m条双向道路。

城市从1..n编号。

接下来m行,每行两个不同的1..n的整数,表示这两个城市之间有双向道路相连。

注意:两个城市之间可能会有多条双向道路。

【输出格式】仅一行,包含一个整数,表示最多能关闭多少条道路。

【样例输入】3 31 22 33 2【样例输出】1【样例解释】删去任意一条边均可。

【数据范围】对于30%的数据,m<=20,n<=10对于100%的数据,n<=1000,m<=100000重新关闭道路【题目描述】在关闭道路后,刚旅游完的小S听说了官方关闭道路的方法,就研究了有没有更优的方案。

图论习题

图论习题

习题八8.1 设V={u,v,w,x,y}, 画出图G: (V ,E).(1) E={(u,v),(u,x),(v,w),(v,y),(x,y)} (2) E={(u,v),(v,w),(w,x),(w,y),(x,y)} 再求每个结点的次数。

8.2 设G 是具有4个结点的完全图:(1) 写出G 的所有子图; (2) 写出G 的所有生成子图。

8.3 画出一个多重图,使它们的邻接矩阵为1300301101220120⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. 8.4 对于图1,试求(1) 从a 到h 的所有基本通路; (2) 从a 到h 的所有简单通路; (3) 从a 到h 的距离。

he d图18.5 图2中哪个有欧拉通路、有欧拉回路、有汉密尔顿通路、有汉密尔顿回路?b ce图28.6 图G 1,G 2的邻接矩阵分别为A 1,A 2,试求:(1) 23231122,,,A A A A ;(2) 在G 1内列出每两个结点间的距离; (3) 列出G 1,G 2中的所有基本回路。

10011000001100101010001001A ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪⎝⎭,20001100000001100010001010100100100001000000100000A ⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪⎪⎪ ⎪⎝⎭8.7 设有向图D 如下,试求:(1) 每个结点的入次与出次; (2) 它的邻接矩阵M D ; (3) D 是强连通、弱连通还是单向连通? (4) 求从a 到c 长度小于或等于3的通路数。

8.8 D 是具有结点v 1、v 2、v 3、v 4的有向图,它的邻接矩阵表示如下:0111011011011000⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭(1) 画出这个图; (2) D 是强连通还是单向连通?(3) 求从v 1到v 1长度是3的回路,从v 1到v 2、v 1到v 3、v 1到v 4长度是3的通路数。

习题九9.4 设有代数表示式如下:42(35)(2)x y a b c -+,试画出这个表示式的树. 第四篇1. 在图G=(V,E)中,结点次数与边数的关系是下面4个中的哪一个? (1) deg()2||i v E = (2) deg()||i v E = (3)deg()2||v Vv E ∈=∑ (4) deg()||v Vv E ∈=∑2. 设G 是n 个结点的无向完全图,则图G 的边数是多少?设D 是n 个结点的有向完全图,则图D 的边数又是多少?3. 仅有一个结点是图称为什么图?4. 设G=(V ,E)为无向简单图,|V|=n ,∆(G)为G 中结点的最大次数,请指出下面4个中哪个不等式是正确的。

图论习题

图论习题
称为向量组的秩,记作{1, 2, …., s }=r。
9. 若图G=(V, E)是连通图,且eE,证 明:
(1)e属于每一棵生成树的充要条件是{e} 为G的割集;
(2)e不属于G的任何一棵生成树的充要条 件是e为G中的环。
提示:反证
分析: (1) e属于每一棵生成树, 要证G删去e后
0
P(G2) ......
0

...... ...... ...... 0


0
0 ...... P(Gr )
因为Gi是连通图,Gi的秩是连通分支Gi的 结点个数-1,所以 rank(G)=rank(Gi)=n-r。
本题背景:
1 线性相关/线性无关

如果对m个向量1, 2, …., mFm,
(3)1,2,3,4,5,5
(4)2,2,2,3,3,4
(西南交大1995考研)
(1) V1={a, c, e}, V2={b, d, f}. (2) 不可能画出图。(顶点度数之和为偶数)
(3) 不可能画出图和二分图。由于有两个结点 的度数为5,则该两个结点的度数必与其余5个 结点有边相连(因为是简单图),所以其余4 个结点度数至少为2,但有一个结点的度数为1。
1. n个结点的简单图G,n>2且n奇数,G 和G补图中度数为奇数的结点个数是否相 等?请证明或给出反例。
(西南交大2001考研)
解:一定相等。
因为n>2且n奇数,则对于奇数个结点的 完全图,每个结点的度数必为偶数。若G 中度数为奇数的结点个数是m,则G的补 图中m个结点的度数为(偶数-奇数)=奇 数。 G中度数为偶数的结点,在G的补图 中这些结点的度数仍为(偶数-偶数)=偶 数。

图论习题答案

图论习题答案

习题一1.一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。

若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。

若仅有四个点的度数为偶数,则其余五个点度数均为奇数,度数总是偶数的性质矛盾。

2. 若存在孤立点,则m不超过K n-i的边数,故m <= (n-1)( n-2)/2,与题设矛盾。

3.记a i为结点v i的正度数,a;为结点v i的负度数,则n na i 2「[(n-1)-a「]2二n(n-1)2i 4 i』n因为Z a;=c2 = n(n—1)/2,所以i =14.用向量(a i,a2,a3)表示三个量杯中水的量,其中a i为第i杯中水的量,i = 1,2,3.以满足a1+a2+a3 = 8 (a1,a2,a3为非负整数)的所有向量作为各结点,如果⑻砂厲)中某杯的水倒满另一杯得到(a' a' a'),则由结点到结点画一条有向边。

这样可得一个有向图。

本题即为在此图中找一条由(8, 0, 0 )到(4, 4, 0 )的一条有向路,以下即是这样的一条:5.可以。

7.同构。

同构的双射如下:V V1V2V3V4V5V6f (V)b a c e d f8.记e1=(V1,V2), e2= ( V1,V4), e3=(V3,V1), e4=(V2,V5), e5=(V6,V3), e6=(V6,V4), e7=(V5,V3), e8=(V3,V4), e9 =(V6,V1),贝y-0 1 0 1 0 01-'1 1 -1 0 0 0 0 0 -110 0 0 0 1 0 _ 1 0 0 1 0 0 0 0 0 邻接矩阵为: 1 0 0 1 0 0 关联矩阵为:0 0 1 0 _ 1 0 _ 1 1 00 0 0 0 0 0 ,0 _ 1 0 0 0 _ 1 0 -1 00 0 1 0 0 0 0 0 0 -1 0 0 1 0 01 0 1 1 0 0一[0 0 0 0 1 1 0 0 1一从而总度数为奇数,仍与图的总n n-2(n-1)二a j a j ,i A i =n n亠2 人•一2' a j a j 。

图论练习题2009(学生练习)

图论练习题2009(学生练习)

图论练习题一、基本题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。

A.6 B.5 C.8 D.42、下面哪几种图不一定是树()。

A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。

3、5阶无向完全图的边数为()。

A.5 B.10 C.15 D.204、把平面分成x个区域,每两个区域都相邻,问x最大为()A.6 B.4 C.5 D.35、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、设G=<V,E>为有向图,则有()。

A.E⊆V x V B.E⊄V x V C.V x V⊂E D.V x V=E7、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。

A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件8、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。

A.强连通图B.单向连通图C.弱连通图D.不连通图9、无向图G中的边e是G的割边(桥)的充分必要条件是()。

A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中10、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条11.设无向简单图的顶点个数为n,则该图最多有()条边。

A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n212.要连通具有n个顶点的有向图,至少需要()条边。

A.n-l B.n C.n+l D.2n13.n个结点的完全有向图含有边的数目()。

A.n*n B.n(n+1) C.n/2 D.n*(n-l)14.一个有n个结点的图,最少有()个连通分量。

图论测试题及答案

图论测试题及答案

图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。

答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。

答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。

答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。

解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。

7. 描述图论中的图着色问题,并说明其在实际生活中的应用。

答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。

在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。

结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。

图论试题及答案解析图片

图论试题及答案解析图片

图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。

答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。

答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。

答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。

答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。

答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。

答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。

2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。

四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。

答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。

图论部分练习

图论部分练习

图论部分练习一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是.2.设给定图G(如右由图所示),则图G的点割集是.3.设G是一个图,结点集合为V,边集合为E,则G的结点等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为.7.设完全图Kn 有n个结点(n≥2),m条边,当时,Kn中存在欧拉回路.8.结点数v与边数e满足关系的无向连通图就是树.9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = .二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.2.如下图所示的图G存在一条欧拉回路.3.如下图所示的图G不是欧拉图而是汉密尔顿图.G4.设G是一个有7个结点16条边的连通图,则G为平面图.5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.三、计算题1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示; (2) 写出其邻接矩阵;(3) 求出每个结点的度数; (4) 画出其补图的图形.2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.3.已知带权图G如右图所示.(1) 求图G的最小生成树; (2)计算该生成树的权值.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.四、证明题1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.。

图论习题+答案

图论习题+答案

1 设图G有12条边,G中有1度结点2个,2度结点2个,4度结点3个,其余结点度数不超过3.求G中至少有多少个结点?2 设有向简单图G的度数序列为(2,2,3,3), 入度序列为(0,0,2,3),求G得出度序列 .3 设D是n阶有向简单完全图,则图D的边数为 .4设G是n阶无向简单完全图K n,则图G的边数为 .5 仅有一个孤立结点组成的图称为( )(A)零图(B)平凡图(C)补图(D)子图6设n阶图G中有m条边,每个结点的度数不是k的是k+1,若G中有N k个k度顶点,N k+1个k+1度顶点,则N k = .7设图G如右图.已知路径(1) P1=(v1e5 v5e7 v2e2 v3 )(2) P2=(v5e6 v2e2 v3e3 v4e8 v2e7 v5)(3) P3=(v2e7 v5e6 v2)(4) P4=(v1e1 v2e2 v3e3 v4e8 v2e6 v5)判断路径类型,并求其长度.81)判断下图G1中的路径类型, 并求其长度. P1=(v3e5v4e7v1e4v3e3v2e1v1e4v3)P2=(v3e3v2e2v2e1v1e4v3)P3=(v3e3v2e1v1e4v3).2)判断下图G2中的路径类型, 并求其长度. P1=(v1e1v2e6v5e7v3e2v2e6v5e8v4)P2=(v1e5v5e7v3e2v2e6v5e8v4)P3=(v1e1v2e6v5e7v3e3v4).v1e1e5v2e65e7e4 e2e8v3 4e3v e v1 设图G 有12条边,G 中有1度结点2个,2度结点2个,4度结点3个,其余结点度数不超过3.求G 中至少有多少个结点? 至少9个2 设有向简单图G 的度数序列为(2,2,3,3), 入度序列为(0,0,2,3),求G 得出度序列 (2,2,5,6) .3 设D 是n 阶有向简单完全图,则图D 的边数为 )1(−n n .4 设G 是n 阶无向简单完全图K n ,则图G 的边数为 m =n (n -1)/2 .5 仅有一个孤立结点组成的图称为( B ) (A) 零图 (B)平凡图 (C)补图 (D)子图6设n 阶图G 中有m 条边,每个结点的度数不是k 的是k+1,若G 中有N k 个k 度顶点,N k+1个k+1度顶点,则N k = N k =(k+1)n-2m . 7设图G 如右图.已知路径 (1) P 1=(v 1e 5 v 5e 7 v 2e 2 v 3 ) (2) P 2=(v 5e 6 v 2e 2 v 3e 3 v 4e 8 v 2e 7 v 5) (3) P 3=(v 2e 7 v 5e 6 v 2)(4) P 4=(v 1e 1 v 2e 2 v 3e 3 v 4e 8 v 2e 6 v 5)判断路径类型,并求其长度. (1) 初级通路;3 (2) 简单回路;5 (3) 初级回路;2 (4) 简单通路. 5 81)判断下图G1中的路径类型, 并求其长度. P 1=(v 3e 5v 4e 7v 1e 4v 3e 3v 2e 1v 1e 4v 3) P 2=(v 3e 3v 2e 2v 2e 1v 1e 4v 3) P 3=(v 3e 3v 2e 1v 1e 4v 3).2)判断下图G2中的路径类型, 并求其长度. P 1=(v 1e 1v 2e 6v 5e 7v 3e 2v 2e 6v 5e 8v 4) P 2=(v 1e 5v 5e 7v 3e 2v 2e 6v 5e 8v 4) P 3=(v 1e 1v 2e 6v 5e 7v 3e 3v 4).解:在图G 1中,v 3e 5v 4e 7v 1e 4v 3e 3v 2e 1v 1e 4v 3是一条长度为6的回路,但既不是简单回路,也不是初级回路; v 3e 3v 2e 2v 2e 1v 1e 4v 3是一条长度为4的简单回路,但不是初级回路; v 3e 3v 2e 1v 1e 4v 3是一条长度为3的初级回路。

图论习题

图论习题
4 n
2 2 1 4 A 4 1 1 2 3 9 B 8

6
2
.已知在传输中,a、b、c、d、e、f 、g、h 出现的频率分别为 25%、15%、15%、10%、10%、9%、6%、10%, 编一个传输它们的最佳前缀码。
3
.有向图 D 如下图所示,用邻接矩阵法求 D 中长度为 3 的通路数和长度为 3 的回路数。
5. D=<V,E>
1 2 3 4 + 1 4 2 4 n n,m n
设图
三.判断题 1. 任一图 G 的△(G)必小于其结点数。 ( ) 2. 在 n 个结点的简单图 G 中,若 n 为奇数,则 G 与 G 的度为奇数的结点数相同。 ( ) 3. K 有 10 个生成子图。 ( ) 4. 图 G 和 G’同构当且仅当 G 和 G’的结点和边分别存在一一对应关系。 ( ) 5. 具有 3 个结点的有向完全图,含 4 条边的不同构的子图有 4 个。 ( ) 6. 3 个(4,2)无向简单图中,至少有 2 个同构。 ( ) 7. 若无向图中恰有 2 个度为奇数的结点,则这两个结点必连通。 ( ) 8. 在有向图中,结点间的可达关系是等价的。 ( ) ( ) 9. 若图 G 不连通,则 G 必连通。 10. 若图 G 的边 e 不包含在图 G 的某简单回路中,则 e 是 G 的割边。 ( ) 11. 若无向连通图中无回路,则其每条边均为割边。 ( ) 12. 若有向图 D 强连通,则 D 必为欧拉图。 ( ) 13. 若有向图 D 是欧拉图,则 D 必为强连通图。 ( ) 14. K 是哈密尔顿图。 ( ) 15. 任一(n,m)平面图,若 n≥3,则 m≤3n-6。 ( ) 16. 设 G=<V,E>,|V|≥11,则 G 或 G 是非平面图。 ( ) 17. 极大平面图必连通。 ( ) 18. 设 G=<V,E>为连通的简单平面图,若|V|≥3,则所有结点 v,有 deg(v) ≤5。 ( ) 19. 任何树都至少有两片树叶。 ( ) 20. 任何图 G=<V,E>都至少有一颗生成树。 ( ) 21. 图 G 是(m,n)连通图,要求 G 的一颗生成树,则要删去 G 中的 m-n 条边。 ( ) 22. 一个有向图 G 若仅有一个节点入度为 0,其余节点的入度全为 1,则 G 一定是有向树。 ( 23.{000,001,01,10,11}是一个前缀码。 ( ) ( ) 24.T 为完全 m 元树,有 t 片树叶,i 个分支点,则有关系式(m-1)i=t-1。 四.综合题 1. 求下面带权图中从 A 到 B 的最短路径,要求用图示给出求解过程,并计算它们的权值。

课前练习-图论

课前练习-图论

课前练习一、填空题1、图G 是简单图当且仅当 。

2、简单图G 是二部图当且仅当 。

3、若简单图G 满足(G)δ≥3,则G 中存在长度至少为 的圈。

4、连通图G 具有欧拉通路,而无欧拉回路的充要条件为 。

5、一颗树有两个2度分支点,一个3度分支点,三个4度分支点,则该树有 片树叶。

6、设T 为高为k 的二叉树,则T 最多有 个顶点。

7、设图G 是具有6条边、4个顶点的平面图,则图G 的面数为 。

8、一个图为非平面图当且仅当 。

9、S V ⊂,S 是图G 的极大独立集,则()V G S -是图G 的 。

10、带权为1,3,5,7,8,11,13的最优二叉树T 的权W(T)= 。

二、解答题1、求下图G 1的色多项式,并指出其色数、点连通度和边连通度。

图G 12、(1)证明自补图的阶数n 4k =或者n 4k 1=+,k 为某个自然数。

(2)找出所有4阶的自补图。

3、(1)证明:设G 是有v 个顶点ε条边,且G 是自对偶平面图,则2v 2ε=-。

(2)已知一颗无向树T 有三个3度结点,一个二度结点,其余都是1度结点。

①T 有几个1度结点?②试画出两棵满足上述度数要求的非同构的无向树。

4、通过布尔变量的运算,求下图3的全部极小支配集。

V 16 图3图G 25、用破圈法求下图G 3中的一颗最小生成树,写出具体过程,并计算生成树的权。

图G 36、设简单图,, |V|=n, |E|=m,G V E =<> 若有212n m C -≥+,则G 是哈密尔顿图。

7、证明:5K 不是平面图.8、证明:若,(,1)m n K m n ≥是哈密顿图,则必有.m n = 9、若,m n K 是树,求,m n 应满足的条件.132411253e 6e 1e 2e 3e 4e 5e 7e 8e 9。

图论复习题

图论复习题

图论复习题(二)图论复习题一、选择题1.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .E v Vv =∑∈)deg(定理1 图G=(V ,E )中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以若存在欧拉回路则n -1必为偶数。

n 必为奇数。

4.欧拉回路是( B )A. 路径B. 简单回路[PPT 40]C. 既是基本回路也是简单回路D.既非基本回路也非简单回路5.哈密尔顿回路是( C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。

6.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是( C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边7.下列哪一种图不一定是树(C )。

A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数(B )A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.下列图为树的是(C )。

A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是(C )。

图论习题及答案

图论习题及答案

图论习题及答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业解答练习题2 利用matlab编程FFD算法完成下题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。

解答一:function [num,s] = BinPackingFFD(w,capacity)%一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序, %然后按FF算法对物体装箱%输入参数w为物品体积,capacity为箱子容量%输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装%物品体积数组%例w = [60,45,35,20,20,20]; capacity = 100;% num=3,s={[1,3],[2,4,5],6};w = sort(w,'descend');n = length(w);s = cell(1,n);bin = capacity * ones(1,n);num = 1;for i = 1:nfor j = 1:num + 1if w(i) < bin(j)bin(j) = bin(j) - w(i);s{j} = [s{j},i];if j == num + 1num = num + 1;endbreak;endendends = s(1:num);解答二:clear;clc;V=100;v=[60 45 35 20 20 20];n=length(v);v=fliplr(sort(v));box_count=1;x=zeros(n,n);V_Left=100;for i=1:nif v(i)>=max(V_Left)box_count=box_count+1;x(i,box_count)=1;V_Left=[V_Left V-v(i)];elsej=1;while(v(i)>V_Left(j))j=j+1;endx(i,j)=1;V_Left(j)=V_Left(j)-v(i);endtemp=find(x(i,:)==1);fprintf('第%d个物品放在第%d个容器\n',i,temp) endoutput:第1个物品放在第1个容器第2个物品放在第2个容器第3个物品放在第1个容器第4个物品放在第2个容器第5个物品放在第2个容器第6个物品放在第3个容器解答三:function box_count=FFD(x)%降序首次适应算法v=100;x=fliplr(sort(x));%v=input('请输入箱子的容积:');n=length(x);I=ones(n);E=zeros(1,n);box=v*I;box_count=0;for i=1:nj=1;while(j<=box_count)if x(i)>box(j)j=j+1;continue;elsebox(j)=box(j)-x(i);E(i)=j;break;endendif j>box_countbox_count=box_count+1;box(box_count)=box(box_count)-x(i);E(i)=j;endenddisp(E);在命令窗口输入:>> x=[60,45,35,20,20,20];>> FFD(x)1 2 1 2 2 3ans =3练习题5 “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3, 奖品i占用的空间为w i dm3,价值为v i元, 具体的数据如下:v= { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, i122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}w= {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32,i22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。

图论考试试题

图论考试试题

图论考试试题图论考试试题在计算机科学领域中,图论是一门重要的学科。

它研究的是图的性质和图上的算法。

图由节点和边组成,节点表示对象,边表示对象之间的关系。

图论可以应用于网络分析、社交网络、路径规划等领域。

图论的考试试题可以帮助学生加深对图论的理解和应用能力。

一、基本概念题1. 什么是图?答:图是由节点和边组成的数据结构。

节点表示对象,边表示对象之间的关系。

2. 图的分类有哪些?答:图可以分为有向图和无向图。

有向图的边有方向,无向图的边没有方向。

另外,图还可以分为加权图和非加权图。

加权图的边具有权重,非加权图的边没有权重。

3. 什么是路径?答:路径是图中连接两个节点的边的序列。

4. 什么是连通图?答:连通图是指图中的任意两个节点之间都存在路径。

二、算法题1. 广度优先搜索算法(BFS)是如何工作的?答:广度优先搜索算法从起始节点开始,逐层遍历图中的节点。

它首先访问起始节点的所有邻居节点,然后依次访问邻居节点的邻居节点,直到遍历完所有可达节点。

2. 深度优先搜索算法(DFS)是如何工作的?答:深度优先搜索算法从起始节点开始,沿着一条路径一直向下访问直到无法继续为止,然后回溯到上一个节点,选择另一条路径继续访问,直到遍历完所有可达节点。

3. 如何判断一个图是否是二分图?答:二分图是指可以将图中的节点分为两个独立的集合,使得同一集合中的节点之间没有边相连。

判断一个图是否是二分图可以使用染色法。

从任意一个节点开始,将其染成红色,然后将其邻居节点染成蓝色,再将邻居节点的邻居节点染成红色,以此类推。

如果在染色过程中发现相邻节点颜色相同,则该图不是二分图。

三、应用题1. 在社交网络中,如何找到两个人之间的最短路径?答:可以使用广度优先搜索算法来找到两个人之间的最短路径。

从一个人开始,逐层遍历其朋友圈中的人,直到找到目标人。

在遍历过程中,可以记录路径,最后得到最短路径。

2. 在电信网络中,如何找到两个城市之间的最短路径?答:可以使用迪杰斯特拉算法来找到两个城市之间的最短路径。

09年研究生试卷(图论)[1]1

09年研究生试卷(图论)[1]1

第 1 页 共 5 页1图论研究生试卷(考试时间: 至 ,共__2_小时)课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期 2009 年___月____日 成绩 考核方式: (学生填写)一.填空题(填表题每空1分,其余每空2分,共22分)1. 已知图G 有21条边,有3个4度顶点,其余顶点的度均为3,则G 有 个顶点。

2.若自补图G 的顶点数是n ,则G 的边数()m G = ;3.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点数=_____;边数= ;4.具有4个顶点的不同构树的棵数为 ;5. 对下列图,试填下表(是⨯⨯类图的打〝√〞,否则打〝×〞)。

G 1能否一笔画 G 1是否偶图G 2是否哈密尔顿图 G 2是否可平面图学 号 姓 名 学 院…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………G 2G 1第 2 页 共 5 页26. K 2n+1的2因子分解的数目是______;7. 3阶以上的极大平面图的面数ф和顶点数n 的关系为 ;8. 下图的点色数为_______;边色数为_______。

二、单项选择(每题3分,共12分)1.下面给出的序列中,不能构成图的度序列的是( )(A) (1,2,3,4,5); (B) (2,2,2,2,2); (C) (1,3,3,3).; (D) (3,3,3,3)2.下列有向图中是强连通图的是( )3. 关于非平凡n 阶树T ,下面说法不正确的是( )(A)T 是偶图; (B) T 是可平面图; (C)T 中存在完美匹配; (D) T 中任意两点间有唯一路相连接。

4. 关于平面图G 和其几何对偶图G *的关系,下列说法中不正确的是( )(A) 平面图G 的面数等于其对偶图的顶点数; (B) 平面图G 的边数等于其对偶图的边数;(C) 平面图(*)*G G ,其中*G 表示G 的对偶图;(A)(B)(C)(D)(D) 平面图的对偶图是连通平面图。

图论习题

图论习题

习 题 11. 证明在n 阶连通图中(1) 至少有n -1条边。

(2) 如果边数大于n -1,则至少有一条闭通道。

(3) 如恰有n -1条边,则至少有一个奇度点。

证明(1) 若对∀v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ⇒ m ≥n >n-1,矛盾! 若G 中有1度顶点,对顶点数n 作数学归纳。

当n=2时,G 显然至少有一条边,结论成立。

设当n=k 时,结论成立,当n=k+1时,设d(v)=1,则G-v 是k 阶连通图,因此至少有k-1条边,所以G 至少有k 条边。

(2) 考虑v 1→v 2→⋯→v n 的途径,若该途径是一条路,则长为n-1,但图G 的边数大于n-1,因此存在v i ,v j ,使得v i adgv j ,这样,v i →v i+1→⋯→v j 并上v i v j 构成一条闭通道;若该途径是一条非路,易知,图G 有闭通道。

(3) 若不然,对∀v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ⇒ m ≥n >n-1,与已知矛盾! 2. 设G 是n 阶完全图,试问(1) 有多少条闭通道?(2) 包含G 中某边e 的闭通道有多少? (3) 任意两点间有多少条路?答 (1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n -2)…1.3. 证明图1-27中的两图不同构:证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。

4. 证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图图1-27 图1-28作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图论练习题
一、基本题
1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。

A.6 B.5 C.8 D.4
2、下面哪几种图不一定是树()。

A.无回路的连通图
B.有n个结点,n-1条边的连通图
C.对每对结点间都有通路的图
D.连通但删去任意一条边则不连通的图。

3、5阶无向完全图的边数为()。

A.5 B.10 C.15 D.20
4、把平面分成x个区域,每两个区域都相邻,问x最大为()
A.6 B.4 C.5 D.3
5、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()
A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、设G=<V,E>为有向图,则有()。

A.E⊆V x V B.E⊄V x V C.V x V⊂E D.V x V=E
7、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。

A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件8、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。

A.强连通图B.单向连通图C.弱连通图D.不连通图
9、无向图G中的边e是G的割边(桥)的充分必要条件是()。

A.e是重边B.e不是重边
C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中
10、在有n个结点的连通图中,其边数()
A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条
11.设无向简单图的顶点个数为n,则该图最多有()条边。

A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n2
12.要连通具有n个顶点的有向图,至少需要()条边。

A.n-l B.n C.n+l D.2n
13.n个结点的完全有向图含有边的数目()。

A.n*n B.n(n+1) C.n/2 D.n*(n-l)
14.一个有n个结点的图,最少有()个连通分量。

A.0 B.1 C.n-1 D.n
15.一个有n个结点的图,最多有()个连通分量。

A.0 B.1 C.n-1 D.n
16.在一个无向图中,所有顶点的度数之和等于所有边数()倍。

A.1/2 B.2 C.1 D.4
17.在一个有向图中,所有顶点的入度之和等于所有顶点出度之和的()倍。

A.1/2 B.2 C.1 D.4
18、连通图G是一棵树,当且仅当G中()
A.有些边不是割边B.所有边都是割边
C.无割边集D.每条边都不是割边
19.4个顶点的完全图G,其生成树个数是()。

A.4 B.8 C.16 D.64
20、设有33盏灯,拟公用一个电源,则至少需有5插头的接线板数()。

A.7 B.8 C.9 D.14
二、应用题
题1:(1996年全国数学联赛)
有n(n 6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。

证明这n个人中必有3个人互相认识。

注:[n/2]表示不超过n/2的最大整数。

题2:已知图的结点集V={a,b,c,d}以及图G和图D的边集合分别为:
E(G)={(a,a), (a,b), (b,c), (a,c)}
E(D)={<a,b>, <a,c>, <c,d>, <c,a>, <c,b>}
试作图G和图D,写出各结点的度数,回答图G、图D是简单图还是多重图?
题3:设简单连通无向图G有12条边,G中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求G中有多少个结点.试作一个满足该条件的简单无向图.
题4:设简单连通无向图G有9条边,G中有4个3度结点,2个1度结点,其余结点度数为2.求G中有多少个结点.
题5:两个图同构有下列必要条件:
(1)结点数相同;
(2)边数相同;
(3)度数相同的结点数相同.
但它们不是两个图同构的充分条件,下图中(a)和(b)满足上述三个条件,但这两个图并不同构,请说明理由。

题6:三名商人各带一随从乘船过河,一只小船只能容纳2人,由他们自己划行。

随从们密约,在河的任一案,一旦随从的人数比商人多,就杀人越货。

但是如何乘船渡河的大权掌握在商人手中,商人们怎样安排每次乘船方案才能安全渡河?
题7 在平面上有n 个点S ={x 1,x 2,……,x n },其中任两个点之间的距离至少是1,证明在这n 个点中距离为1的点对数不超过3n 。

题8 n 个点由若干线段连接着。

已知每一点与另外任何一点都有道路相连通。

而任何两点都没有两种不同的道路。

证明:线段总数为n -1。

题9:设无向图G 有12条边,已知G 中度数为3的节点个数为6个,其余结点的度数均小于3,问G 中至少有多少边?
题10:若图G 是不连通的,则G 的补图G 是连通的。

题11:当且仅当G 的一条边e 不包含在G 的回路中,e 才是G 的割边(桥)。

题12:n 个城市由k 条公路网络连接(一条公路定义为两个城市间的一条道路,它们之间不能通过任何中间城市),证明:如果有 k>2
1(n-1)(n-2) 则人们总能通过连接城市的公路在任何城市间旅行。

题13:判断下图是否能一笔画出,并说明理由。

图(a ) 图(b )
题14:构造一个欧拉图,其结点数n 与边数m 满足下列条件
(1)、n ,m 的奇偶性一样的简单图。

(2)、n ,m 的奇偶性相反的简单图。

如果不可能,请说明原因。

题15:设G 是一个具有n 个结点的简单无向图,n 3,设G 的结点表示n 个人,G 的边表示他们间的友好关系,若两个结点杯一条边连接,当且仅当对应的人是朋友。

(1)、结点的度数能做怎样的解释?
(2)、G 是连通图能做怎样的解释?
(3)、假定任意两个人合起来认识所留下的n-2个人,证明n 个人能站成一排,使得中间每个人两旁站着自己的朋友,而两端的两个人,他们每个人旁边只站着他的一个朋友。

(4)、证明对于n 4,(3)中保证n个人能站成一圈,使每个人的两旁站着自己的朋友。

题16:设G是有11个或更多结点的图,证明G或G(补图)是非平面图。

题17:一棵树有n2个结点度数为2,n3个结点度数为3,…,n k个结点度数为k,问它有几个度数为1的结点。

题18:证明在完全二叉树中,边的总数m等于2(n t-1),n t是树叶总数。

题19:给设d=(d1,d2,…,d n),其中d i为正数,i=1,2,…,n。

若存在n个结点的简单图,使得结点v i的度数为d i,则称d是可图解的。

下面给出的各序列中哪些是可图解的,哪些不是,为什么?
(1)、(1,1,1,2,3)(2)、(0,1,1,2,3,3)(3)、(3,3,3,3)(4)、(2,3,3,4,4,5)(5)、(2,3,4,4,5)(6)、(2,3,3,3)(7)、(2,3,3,4,5,6)(8)、(1,3,3,4,5,6,6)(9)、(2,2,4)(10)、(1,2,2,3,4,5)
题20:给无向完全图K n(n≥7)的各边随意涂上红色或绿色,若已知从某个结点v0引出的n-1条边中至少有六条边涂红色,则存在红色的K4或绿色的K3。

题21:证明:在任何两个或两个以上人的组内,存在两个人在组内有相同个数的朋友。

题22、设G为n个结点的简单无向图。

(1)、若G的边数m=(1/2)(n-1)(n-2)+2,证明G是哈密尔顿图。

(2)、若G的边数m=(1/2)(n-1)(n-2)+1,那么图G是否一定为哈密尔顿图?请阐述你的理由。

题23、把平面分成x个区域,每两个区域都相邻,问x最大为几?
题24、设图G有n个结点,m条边,其中有n k个结点的度数为k,其余结点的度数均为k+1,试证明:n k=(k+1)n-2m。

题25、用Kruskal算法求下图的的最小生成树,并计算其权。

题26、求出下图中以v1为起点的一条中国邮路。

题27、利用Dijkstra算法,求解下图中从顶点1到其余各点的最短路径
题28、求下面PERT图的关键路径。

题29、利用Huffman算法,求权为20,30,50,70,80的最优二叉树T,并求出其W(T)。

W(T)=550。

题30:给定权1,4,9,16,25,36,49,64,81,100,利用Huffman算法构造一棵最优二叉树,并求出其W(T)。

题31、用Dinic算法求下图最大流。

题32、用2F标号算法求下图的最大流。

题33、用匈牙利算法求下图的最大匹配。

题34、对下图顶点进行着色。

题35:、利用Dijkstra算法,求下图从1出发到其余各点的最短路径。

题36、现有4名教师:张、王、李、赵,要求他们去教四门课程:数学、物理、电工和计算机科学。

已知张老师能教数学和计算机科学,王老师能教物理和电工,李老师能教数学、物理和电工,而赵老师只能教电工。

如何安排才能使4位教师都能教课,并且每门课都有人教,共有几种方案?。

相关文档
最新文档