玉溪市2020年中考数学试卷D卷
云南省2020年中考数学试卷D卷
云南省2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2020七上·包河期末) -9的绝对值是()A . 9B . -9C . ±9D .2. (2分)(2020·龙湾模拟) 如图所示的支架是由两个长方体构成的组合体,则它的俯视图是()A .B .C .D .3. (2分)(2020·衡水模拟) 下列用科学记数法能表示成3.14×104的数是()A . 0.0314B . 3140000C . 31400D . 31404. (2分) (2018八上·灌云月考) 一只小虫从点出发,先向右跳4个单位长度,再向下跳3个单位长度,到达点处,则点的坐标是()A .B .C .D .5. (2分) (2018七下·潮安期末) 不等式2x+5>4x﹣1的正整数解是()A . 0、1、2B . 1、2C . 1、2、3D . x<36. (2分) (2020八上·奉化期末) 下面四个垃圾分类的图标中的图案,是轴对称图形的是()A .B .C .D .7. (2分)(2020·扬州模拟) 下列计算正确的是()A . m2+m2=m4B . (m2)3=m5C . m+2=2mD . (mn)3=m3n38. (2分)甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是()A .B .C .D .9. (2分) (2019九上·湖南开学考) 如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC ,其中结论正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共7分)10. (1分) (2017七下·梁子湖期中) 已知线段MN平行于y轴,点M的坐标是(﹣1,3),若MN=4,则N的坐标是________.11. (1分) (2019七下·吉林期中) 如图,∥ ∥ ,当,时,________.12. (1分)(2018·南京模拟) 为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:月用水量(m3)45689户数46541(1)则这20户家庭的月用水量的众数是________m3 ,中位数是________m3 .13. (1分) (2016·眉山) 如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是________14. (1分) (2019七下·北京期末) 我国古代的数学著作《孙子算经》中有这样一道题“鸡兔同笼”:今有鸡兔同笼,上有35头,下有94只脚,问鸡兔各有几何?译文:鸡和兔子圈在一个笼子中,共有头35个,脚94只,问鸡、兔各有多少只?今天我们可以利用二元一次方程组的有关知识解决这个问题.设笼子里有鸡x只,兔y只,则可列二元一次方程组________.15. (1分)(2020·杭州模拟) 如图,航模小组用无人机来测量建筑物BC的高度,无人机从A处测得建筑物顶部B的仰角为45°,测得底部C的俯角为60°,若此时无人机与该建筑物的水平距离AD为30m,则该建筑物的高度BC为________m.(结果保留根号)16. (1分) (2020八上·太原期末) 如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择()题.A.的面积是________,B.图2中的值是________.三、解答题 (共10题;共88分)17. (5分) (2017八下·高密期中) 计算:(1)﹣( + )÷ ×(2)(﹣4 )﹣(3 ﹣2 )(3)(3+ )(3﹣)﹣(﹣1)2(4)(﹣ +1)(﹣1)﹣ + .18. (5分) (2019七上·杨浦月考) 先化简,再求值:已知x=8,求:的值.19. (5分)如图所示,在平行四边形ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?20. (7分) (2018九下·游仙模拟) 为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21. (10分) (2017九上·孝义期末) 近年来,随着百姓生活水平不断攀升,某市家庭轿车拥有量大幅增长,据统计,2013年该市家庭轿车拥有量为48万辆,2015年该市家庭轿车拥有量为69.12万辆.(1)求2013年至2015年该市汽车拥有量的年平均增长率;(2)由于我国汽车购置税减半优惠政策于2016年12月31日结束,因而2016年底该市迎来一轮购车热潮,据权威部门估计,2016年该市家庭轿车拥有量的年增长率比前两年的年平均增长率提高了10个百分点,求2016年该市家庭轿车的拥有量.22. (10分) (2020九上·滨海月考) 如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C________、D________;②⊙D的半径=________(结果保留根号);③∠ADC的度数为________.④网格图中是否存在过点B的直线BE是⊙D的切线?如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式.________23. (10分)(2020·镇江模拟) 如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13 ,直接写出AP的长.24. (10分) (2019九上·德清期末) 如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E·(1)求m的值及抛物线的解析式;(2)∠DBC= ,∠CBE= ,求sin( - )的值;(3)探究:在坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25. (15分)(2019·南山模拟) 如图1,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y= x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数图象上.(1)求此二次函数的表达式;(2)如图1,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图2,过点P作PM⊥BC于点M,是否存在点P,使得△CPM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点P的横坐标;若不存在,请说明理由.26. (11分)(2017·东胜模拟) 如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共9题;共18分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:二、填空题 (共7题;共7分)答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共10题;共88分)答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:。
2020年玉溪市中考数学试题附答案
2020年玉溪市中考数学试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .23 5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+B .21x x -C .211x - D .x 2﹣16.不等式x+1≥2的解集在数轴上表示正确的是( ) A .B .C .D .7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .869.下面的几何体中,主视图为圆的是( )A .B .C .D .10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,311.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11%12.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.正六边形的边长为8cm,则它的面积为____cm2.19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:2+=(),善于思考的小明进行了以下探索:32212设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 25.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC . (1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由; (3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键. 5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.7.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k 的非负整数值为1,故选A .11.C解析:C【解析】【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.36°或37°【解析】分析:先过E 作EG ∥AB 根据平行线的性质可得∠AEF=∠BA E+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE <15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.。
云南省玉溪市中考2020年数学试卷
云南省玉溪市中考2020年数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算中,正确的一个是()A . (-2)3=-6B . -(-3)2=-9C . 23×23=29D . 23÷(-2)=42. (2分)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A . 3.6×107B . 3.6×106C . 36×106D . 0.36×1083. (2分) (2019八上·黄石港期中) 如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A . 25°B . 45°C . 30°D . 20°4. (2分) (2020七上·莲湖期末) 在下列几何体中,从正面看到的平面图形为三角形的是()A .B .C .D .5. (2分)如图已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 315°B . 270°C . 180°D . 135°6. (2分)今年,我国部分地区“登革热”流行,党和政府采取果断措施,防治结合,防止病情继续扩散.如图是某同学记载的9月1日至30日每天某地的“登革热”新增确诊病例数据日.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为146;③第四组的众数为28.其中正确的有()A . 0个B . 1个C . 2个D . 3个7. (2分)当x=2时,代数式x2(2x)3-x(x+8x4)的值是()A . 4B . -4C . 0D . 18. (2分)(2018·吉林模拟) 如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是()A .B .C .D .9. (2分)下列说法正确的是()A . 圆的对称轴是圆的直径B . 相等的圆周角所对的弧相等C . 平分弦的直径垂直于弦,并且平分弦所对的两条弧D . 经过半径的外端并且垂直于这条半径的直线是圆的切线10. (2分) (2015九上·平邑期末) 如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共6题;共6分)11. (1分) (2017七下·东营期末) 分解因式:a2b-b3=________.12. (1分) (2016七上·孝义期末) 已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=________cm.13. (1分)(2019·襄州模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 4039 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.分组频数频率4.5﹣22.520.05022.5﹣30.5330.5﹣38.5100.25038.5﹣46.51946.5﹣54.550.12554.5﹣62.510.025合计40 1.000(2)填空:在这个问题中,总体是________,样本是________.由统计结果分析的,这组数据的平均数是38.35(分),众数是________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?14. (1分)(2018·潘集模拟) 如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是________.15. (1分)一个圆的周长是37.68dm,这个圆的半径是________dm,面积是________16. (1分)(2018·河南模拟) 如图所示,一次函数y=k1x+3(k1<0)的图象与反比例函数y= (k2>0)的图象交于M、N两点,过点M作MC⊥y轴于点C,已知CM=1,则k1﹣k2=________.三、解答题 (共9题;共75分)17. (5分)解下列方程组:(1);(2);(3);(4).18. (5分) (2017八下·汶上期末) 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.19. (5分) (2019九上·尚志期末) 先化简,再求代数式()÷ 的值,其中a=2sin45°+tan45°.20. (10分) (2018九上·苏州月考) 如图,⊙ 是的外接圆,,,交的延长线于点,交于点 .(1)求证:是⊙ 的切线;(2)若, .求⊙ 的半径和线段的长.21. (10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1 ,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.22. (10分) (2018八上·沈河期末) 我国边防局接到情报,近海处有一可疑船只正向公海方向航行,边防部迅速派出快艇追赶如图1,图2中分别表示两船相对海岸的距离 (海里)与追赶时间 (分)之间的关系.根据图象回答问题:(1)哪条线表示到海岸的距离与追赶时间之间的关系?(2)哪个速度快?(3) 15分钟内能否追上?为什么?(4)如果一直追下去,那么能否追上?(5)当逃离海岸12海里时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?(6)与对应的两个一次函数与中,的实际意义各是什么?可疑船只与快艇的速度各是多少?23. (10分) (2018八上·焦作期末) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中,的值:组别平均分中位数方差合格率优秀率甲组6.8 3.7690%30%乙组7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.24. (10分) (2019八下·芜湖期中) 如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,ΔPDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)若AM=a,四边形BEFC的面积为S,求S与a之间的函数表达式.25. (10分) (2018九上·北京月考) 如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11、答案:略12-1、13-1、13-2、13-3、13-4、14-1、15-1、16-1、三、解答题 (共9题;共75分) 17-1、17-2、17-3、17-4、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
云南省玉溪市2020中考数学检测试题
7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵
8.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()
A.9 cm B.12 cm C.9 cm或12 cm D.14 cm
本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
20.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
16.关于 的方程 有两个不相等的实数根,那么 的取值范围是__________.
17.如图,点A是反比例函数y=﹣ (x<0)图象上的点,分别过点A向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.
18.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
A.当 时,方程无解
B.当 时,方程有一个实数解
C.当 时,方程有两个相等的实数解
D.当 时,方程总有两个不相等的实数解
4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()
云南省玉溪市2020年中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体2.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°3.关于x的一元二次方程x2﹣3有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥34.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.45.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.22C.(1,3) D.(126.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩7.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .48.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( ) A .3 B .23 C .332D .2339.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .3410.下列一元二次方程中,有两个不相等实数根的是( ) A .x 2+6x+9=0B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=0二、填空题(本题包括8个小题) 11.分解因式:a 3-12a 2+36a=______. 12.分解因式:32a 4ab -= .13.如图所示,在△ABC 中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB,AC 于点E,F;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G;③作射线AG 交BC 边于点D .则∠ADC 的度数为 .14.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.15.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长度为_____16.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n+= . 17.如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O ,那么AODO等于( )A .25; B .13; C .23; D .12. 18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与CD 水平,BC 与水平面的夹角为60°,其中AB=60cm ,CD=40cm ,BC=40cm ,那么该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线长为____cm .三、解答题(本题包括8个小题)19.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?20.(6分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.21.(6分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)22.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.23.(8分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校2000 名学生所捐图书的数量.24.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率 5 a0.2 6 18 0.367 14 b8 80.16 合计c1(1)统计表中的a =________,b =________,c =________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.25.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.26.(12分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的? 指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天清理道路的米数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.2.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.3.A【解析】分析:根据关于x的一元二次方程x2有两个不相等的实数根可得△=(2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2有两个不相等的实数根,∴△=()2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴.即2m n-的算术平方根为1.故选C.5.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)<2,因此点在圆内,B选项) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) >2,因此点在圆外D选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系. 6.C【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.7.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.8.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=33.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.9.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴=+=+=,∴正方形ABCD的面积是343434=,故选D.10.B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根; D 、(x-1)2+1=0. (x-1)2=-1, 则方程无实根; 故选B .点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.二、填空题(本题包括8个小题) 11.a(a-6)2 【解析】 【分析】原式提取a ,再利用完全平方公式分解即可. 【详解】原式=a(a 2-12a+36)=a(a-6)2, 故答案为a(a-6)2 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 12.()()a a 2b a 2b +- 【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4b a a 2b a 2b -=-=+-.13.65° 【解析】 【分析】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,根据角平分线的性质解答即可. 【详解】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB=50°, ∴∠CAD=25°;在△ADC 中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余); 故答案是:65°.14.22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.18 5【解析】【分析】分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式1122AB BE AE BH⨯⨯=⨯⨯可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE 2=AB 2+BE 2代入数据求得AE=5 根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=125即可得BF=245由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC 2-BF 2=CF 2代入数据求得CF=185 故答案为185【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质16.225-. 【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.17.D【解析】【分析】利用△DAO 与△DEA 相似,对应边成比例即可求解.【详解】∠DOA=90°,∠DAE=90°,∠ADE 是公共角,∠DAO=∠DEA∴△DAO ∽△DEA ∴AO DO AE DA=即AO AF DO DA= ∵AE=12AD ∴12AO DO = 故选D .18.20310(140)3cm π-+ 【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO 1,线段O 1O 2,圆弧23O O ,线段O 3O 4四部分构成. 其中O 1E ⊥AB ,O 1F ⊥BC ,O 2C ⊥BC ,O 3C ⊥CD ,O 4D ⊥CD .∵BC 与AB 延长线的夹角为60°,O 1是圆盘在AB 上滚动到与BC 相切时的圆心位置,∴此时⊙O 1与AB 和BC 都相切.则∠O 1BE=∠O 1BF=60度.此时Rt △O 1BE 和Rt △O 1BF 全等,在Rt △O 1BE 中,103cm . ∴OO 1=AB-BE=(103)cm . ∵103cm , ∴O 1O 2=BC-BF=(40-1033)cm . ∵AB ∥CD ,BC 与水平夹角为60°,∴∠BCD=120度.又∵∠O 2CB=∠O 3CD=90°,∴∠O 2CO 3=60度.则圆盘在C 点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm 的圆弧23O O .∴23O O 的长=60360×2π×10=103πcm .∵四边形O 3O 4DC 是矩形,∴O 3O 4=CD=40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是:()+()+103π+40=(+103π)cm . 三、解答题(本题包括8个小题)19.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.20.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.21.通信塔CD 的高度约为15.9cm .【解析】【分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒xcm , 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm ,DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , ∴)3663373x x tan +=+︒, 解得:x=3337tan ︒+3, ∴33(cm ), 答:通信塔CD 的高度约为15.9cm .【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键.22.(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.考点:1.折线统计图;2.条形统计图.23.(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解析】【分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【详解】(1)∵捐2 本的人数是15 人,占30%,∴该班学生人数为15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为360°×550=36°.(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=157 50,∴全校2000 名学生共捐2000×15750=6280(本),答:全校2000 名学生共捐6280 册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.24.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.25.(1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=12x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y 1=kx+b,将(8,18),(9,20),代入y 1=kx+b,得:818,920.k b k b +=⎧⎨+=⎩解得2,2.k b =⎧⎨=⎩所以y 1关于x 的函数解析式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y 1+y 2=2x+2+12x 2-11x+78=12x 2-9x+80=12(x-9)2+39.5. 所以当x=9时,y 取得最小值,最小值为39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x 的取值范围.26.1米.【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.试题解析:解:设原来每天清理道路x 米,根据题意得:600480060092x x-+= 解得,x=1.检验:当x=1时,2x≠0,∴x=1是原方程的解.答:该地驻军原来每天清理道路1米.点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.4-的相反数是()A.4 B.4-C.14-D.142.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°3.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.144.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.35.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.56.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.7.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.88.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.329.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c10.9的值是()A.±3 B.3 C.9 D.81二、填空题(本题包括8个小题)11.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.12.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB 的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.13.-3的倒数是___________ 14.计算:﹣1﹣2=_____.15.如图,数轴上点A 所表示的实数是________________.16.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.17.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.18.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁. 三、解答题(本题包括8个小题)19.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.20.(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.求证:MD=MC ;若⊙O 的半径为5,AC=45,求MC 的长.24.(10分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD 的面积.25.(10分)化简求值:212(1)211x x x x -÷-+++,其中31x =-. 26.(12分)如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2π,则图中阴影部分的面积为_____.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】直接利用相反数的定义结合绝对值的定义分析得出答案. 【详解】-1的相反数为1,则1的绝对值是1. 故选A .【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.2.D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.4.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,可整理得242y ay+⎧⎨<-⎩∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.5.B【解析】。
云南省玉溪市2020年(春秋版)数学中考一模试卷D卷
云南省玉溪市2020年(春秋版)数学中考一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题4分,共40分.) (共10题;共40分)1. (4分) (2017七下·江津期末) 2016的相反数是()A .B .C .D .2. (4分) (2016七上·临洮期中) 地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A . 0.149×106B . 1.49×107C . 1.49×108D . 14.9×1073. (4分)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有()个A . 2个B . 3个C . 4个D . 6个4. (4分)﹣ xay与﹣3x2yb﹣2是同类项,则a+b=()A . 6B . 3C . 5D . 45. (4分) (2018九上·黄冈月考) 用配方法解一元二次方程 -6x-4=0,下列变形正确的是()A . =-4+36B . =4+36C . =-4+9D . =4+96. (4分)(2018·威海) 如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A .B . 5C .D . 57. (4分) (2019八上·兴仁期末) 某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树 x 棵,那么下面所列方程中,正确的是().A .B .C .D .8. (4分) (2019九上·哈尔滨月考) 如图,在▱ABCD中,点E在AD边上,BE交对角线AC于点F ,则下列各式错误的是()A .B .C .D .9. (4分)去年11月份我市某一天的最高气温是10℃,最低气温是-1℃,那么这一天的最高气温比最低气温高()A . -9℃B . -11℃C . 9℃D . 11℃10. (4分) (2019八下·灌云月考) 如图,若反比例函数的图象与直线y=3x+m相交于点A,B,结合图象求不等式的解集()A . 0<x<1B . ﹣1<x<0C . x<﹣1或0<x<1D . ﹣1<x<0或x>1二、填空题(本题有6小题,每小题5分,共30分) (共6题;共27分)11. (2分) (2020八下·东台月考) 已知,且,则的值是________.12. (5分)已知二次函数的图象顶点在x轴上,则k=________13. (5分)(2019·瑞安模拟) 一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中3个红球,且从布袋中随机摸出1个球,摸出的球是红球的概率是,则白球的个数是________14. (5分) (2016九下·邵阳开学考) 一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为________.15. (5分) (2020七下·哈尔滨期中) 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有________本.16. (5分)(2018·吉林模拟) 如图,在 ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2 ,S△BQC=25cm2 ,则图中阴影部分的面积为________cm2 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分 (共8题;共80分)17. (8分)解下列方程组:(1)(2).18. (8分)(2017·兰州模拟) 先化简,再求代数式的值.( + )÷ ,其中a=tan60°﹣sin30°.19. (8分) (2019九下·揭西月考) 如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出∠ABC的平分线BE,BE交CD的延长线于点E,交AD于点F;(保留作图痕迹,不写作法)(2)若AB=2cm,BC=3cm,BE=5cm,求BF的长.20. (8分) (2016九上·金华期末) 如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)21. (10.0分)(2016·南京模拟) 某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h)进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左至右前5个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第2小组的频数为4.(每组只含最小值,不含最大值)(1)该课外活动小组抽取的样本容量是多少?请补全图中的频数分布直方图;(2)样本中,睡眠时间在哪个范围内的人数最多?这个范围的人数是多少?(3)设该校九年级学生900名,若合理的睡眠时间范围为7≤h<9,你对该校九年级学生的睡眠时间做怎样的分析、推断?22. (12分) (2019八下·许昌期中)(1)如图,正方形中,点,分别在边,上,,延长到点,使,连结, .求证: .(2)如图,等腰直角三角形中,,,点,在边上,且,若,,求的长.23. (12分) (2019九下·富阳期中) 如图,在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积。
云南省玉溪市2020版九年级上学期数学期中考试试卷D卷
云南省玉溪市2020版九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019九上·泊头期中) 一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A . ﹣1B . ﹣2C . 1D . 02. (2分)(2019·银川模拟) 如果关于x的一元二次方程x2﹣kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为()A .B .C .D .3. (2分) (2017八下·临沂开学考) 已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A . 15B . 16C . 17D . 15或174. (2分) (2018九上·西峡期中) 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的顶点B的坐标为()A . (0,-2 )B . (2 ,0)C . (2,﹣2)D . (﹣2,﹣2)5. (2分)(2020·昆山模拟) 下列关于x的方程中一定有实数根的是()A . x2﹣x+2=0B . x2+x﹣2=0C . x2+x+2=0D . x2+1=06. (2分)如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A .B .C .D .7. (2分)如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A .B .C .D .8. (2分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A . 24B . 16C . 4D . 2二、填空题 (共8题;共10分)9. (1分) (2019九上·太原期中) 如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为________.10. (1分)已知实数a,b,c满足a+b+c=10,且++=,则++的值是________11. (1分) (2015八下·嵊州期中) 三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是________.12. (1分)在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是________13. (2分)(2019·河南模拟) 如图,在矩形ABCD中,AB=4,BC=5,E,F分别是线段CD和线段BA延长线上的动点,沿直线EF折叠使点D的对应点D′落在BC上,连接AD′,DD′,当△ADD′是以DD′为腰的等腰三角形时,DE的长为________.14. (1分)在▱ABCD中,两邻边的差为4cm,周长为32cm,则两邻边长分别为________15. (1分) (2019九上·普陀期末) 如图,在梯形ABCD中,AD//BC,AB BC,BD DC,,BC=5,那么DC的长等于________.16. (2分)(2018·随州) 如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为________.三、解答题 (共10题;共89分)17. (10分)(2017·霍邱模拟) 解方程:3y2+4y﹣4=0.18. (10分) (2016九上·温州期末) 在一个不透明的盒子中,共有“一红二白”三个球,它们除颜色外其余都相同.(1)从盒子中摸出1个球,是白球的概率是多少?(2)从盒子中摸出1个球,不放回再摸出1个球,请用画树状图或列表的方式表示出所有可能的结果,并求出摸出的恰好是“一红一白”的概率.19. (2分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17)cm,正六边形的边长为(x2+2x)cm(其中x>0).求这两段铁丝的总长.20. (10分) (2020八下·江苏月考) 如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.(1)求证:HE=HG;(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PQ与PB的数量关系,并说明理由.21. (5分) (2019九上·定边期中) 如图,△ABC与△A´B´C´是位似图形,且相似比为 .(1)在图中画出位似中心;(2)若,求的长.22. (2分)(2012·南通) 如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a= ,求PQ的长;②是否存在实数a,使得点P在∠A CB的平分线上?若存在,请求出a的值;若不存在,请说明理由.23. (10分) (2017九上·定州期末) 如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为________;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.24. (15分)(2020·永嘉模拟) 某校组织七年级学生参加冬令营活动,本次冬令营活动分为甲、乙、丙三组进行.如图,条形统计图和扇形统计图反映了学生参加冬令营活动的报名情况,请你根据图中的信息回答下列问题:(1)七年级报名参加本次活动的总人数为________,扇形统计图中,表示甲组部分的扇形的圆心角是________度;(2)补全条形统计图;(3)根据实际需要,将从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,则应从甲组抽调多少名学生到丙组?25. (10分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为________(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是________,请用类似的方法在图2数轴上画出表示数的B点________(保留作图痕迹).26. (15分) (2019九上·保定期中) 矩形中,点分别在边上,点分别在边上,与交于点,记.(1)如图1,当时,若,求的值;(2)如图2,当时,求的最大值和最小值;(3)若的值为3,当与重合且为直角三角形时,直接写出的值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共89分)17-1、18-1、18-2、19-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
玉溪市2020年(春秋版)中考数学试卷D卷
玉溪市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七上·仙游期末) 的相反数是()A .B . -C .D . -2. (2分)(2014·深圳) 支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A . 4.73×108B . 4.73×109C . 4.73×1010D . 4.73×10113. (2分) (2015七下·绍兴期中) 下列运算中,结果正确的是()A . x3•x3=x6B . 3x2+2x2=5x4C . (x2)3=x5D . (x+y)2=x2+y24. (2分)点P(4,5)关于y轴对称点的坐标是()A . (-4,-5)B . (-4,5)C . (4,-5)D . (4,5)5. (2分) (2016九下·重庆期中) 下列二次根式中,最简二次根式是()A .B .C .D .6. (2分)(2019·海珠模拟) 在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是()A . 平均数是2B . 中位数是2C . 众数是2D . 方差是27. (2分)如图是一个三棱柱的展开图,若AD=10,CD=2,则AB的长度可以是()A . 2B . 3C . 4D . 58. (2分)(2018·台湾) 如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6 ,BC=13,∠BEA=60°,则图3中AF的长度为何?()A . 2B . 4C . 2D . 4二、填空题 (共10题;共10分)9. (1分)(2016·北京) 如图中的四边形均为矩形,根据图形,写出一个正确的等式________.10. (1分) (2016七上·太康期末) 化简:﹣(3y2﹣xy)+2(3xy﹣5y2)的结果为________.11. (1分) (2018九上·和平期末) 已知A(﹣1,2)是反比例函数图象上的一个点,则k的值为________.12. (1分)(2019·镇海模拟) 方程的解是________.13. (1分) (2019七下·北区期末) 随机投掷一枚质地均匀的股子,朝上的点是3的概率是________.14. (1分) (2019九上·凤翔期中) 关于x的一元二次方程有实数根,则k的取值范围为________.15. (1分)(2018·平南模拟) 如图,已知,李明把三角板的直角顶点放在直线上.若∠1=42°,则∠2的度数为________.16. (1分)(2017·昌平模拟) 如图,四边形ABCD的顶点均在⊙O上,∠A=70°,则∠C=________°.17. (1分)(2014·福州) 如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC 到点F,使CF= BC.若AB=10,则EF的长是________.18. (1分) (2018七上·江都期中) 一列数,按如下规律排列:,,,,,则第个数为________.三、解答题 (共10题;共97分)19. (5分)(2020·温岭模拟)20. (5分) (2020八下·龙岗期中) 解不等式组:,并写出它的整数解.21. (5分) (2020八下·武川期中) 如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.22. (8分)(2016·攀枝花) 中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为________度;条形统计图中,喜欢“豆沙”月饼的学生有________人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有________人.(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.23. (13分)(2017·南关模拟) 网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,为了解市民对售后评价的关注情况,随机采访部分市民,对采访情况制作了如下统计图表:关注情况频数频率A.高度关注50bB.一般关注1200.6C.不关注a0.1D.不知道100.05(1)根据上述统计图可得此次采访的人数为________人,a=________,b=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在6400名市民中,高度关注售后评价的市民约有多少人?24. (5分)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数。
玉溪市2020年八年级下学期数学期中考试试卷D卷
玉溪市2020年八年级下学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下表所列为某商店薄利多销的情况,某商品原价为560元,随着不同幅度的降价,日销量(单位为件)发生相应的变化.如果售价为500元时,日销量为()件.降价(元)5101520253035日销量(件)780810840870900930960A . 1200B . 750C . 1110D . 11402. (2分) (2018八上·互助期末) 直线 y=kx+b 与直线交点的纵坐标为 5,而与直线 y=3x﹣9 的交点的横坐标也是 5,则直线 y=kx+b 与两坐标轴围成的三角形面积为()A .B .C . 1D .3. (2分)如图,在□ABCD中,AB=4,AD=7,∠ABC平分线交AD于点E,交CD的延长线于点F,则DF的长是()A . 2B . 3C . 4D . 54. (2分)一直角三角形的两直角边长为12和16,则斜边上中线长为()A . 8B . 10C . 15D . 255. (2分) (2019八下·中山期末) 下图为正比例函数的图像,则一次函数的大致图像是()A .B .C .D .6. (2分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A . 四边形AEDF是平行四边形B . 如果∠BAC=90°,那么四边形AEDF是矩形C . 如果AD平分∠BAC,那么四边形AEDF是矩形D . 如果AD⊥B C且AB=AC,那么四边形AEDF是菱形7. (2分) (2017八下·高阳期末) 下列函数经过一、二、四象限的是()A .B .C .D .8. (2分)要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,则需直径为4厘米的圆钢柱长()A . 10厘米B . 20厘米C . 30厘米D . 40厘米二、填空题 (共12题;共18分)9. (1分) (2017八下·宜兴期中) 如果成立,那么应满足关系式________.10. (1分) (2017八下·海安期中) 已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.11. (1分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,分别以AB,AC,BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1 , S2 , S3 , S4 ,则S1+S2+S3+S4=________.12. (1分)(2011·宁波) 如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________度.13. (2分)(2017·新野模拟) 如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为________.14. (1分)(2020·杭州模拟) 如图,将一张长方形纸片ABCD沿AC折起,重叠部分为△ACE,若AB=6,BC =4,则重叠部分△ACE的面积为________.15. (5分)小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.16. (1分)(2019·河南模拟) 如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D是AB的中点,E是直线BC 上一点,把△BDE沿直线ED翻折后,点B落在点F处,当FD⊥BC时,线段BE的长为________.17. (1分)(2017·宝应模拟) 一次函数y=kx+b与正比例函数y=3x的图象平行且经过点(1,﹣1),则b 的值为________.18. (2分) (2019九上·镇江期末) 在平面直角坐标系中,点A、B、C的坐标分别为、、,点E是的外接圆上一点,BE交线段AC于点D,若,则点D的坐标为________.19. (1分)一次函数y=kx+b的图象与正比例函数y=3x的图象平行且与直线y=﹣ x+3交于y轴上的同一点,则这个一次函数关系式为________.20. (1分) (2016八下·鄄城期中) 如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E.若点Q是OC上与O、P不重合的另一点,则以下结论中,一定成立的是________(填序号)①PD=PE;②OC垂直平分DE;③QO平分∠DQE;④△DEQ是等边三角形.三、解答题 (共9题;共72分)21. (15分) (2019八下·朝阳期末) 已知是的函数,自变量的取值范围为,下表是与的几组对应值0123 3.54 4.5…1234321…小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象.(2)根据画出的函数图象填空.该函数图象与轴的交点坐标为________.(3)直接写出该函数的一条性质.22. (5分) (2019八上·下陆月考) 如图,已知 ,点分别在轴正半轴和轴正半轴上,,试求的值.23. (7分)(2017·深圳模拟) 四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的⊙O过点E.(1)求证:四边形ABCD的是菱形;(2)若CD的延长线与圆相切于点F,已知直径AB=4,求阴影部分的面积.24. (5分) (2019八上·长兴月考) 已知:如图,在△ABC中,AB=AC,AD是BC边上的中线.求证:AD⊥BC。
云南省玉溪市2020年(春秋版)九年级上学期数学期末考试试卷D卷
云南省玉溪市2020年(春秋版)九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共7分)1. (1分)一元二次方程x(x﹣2)=x﹣2的根是()A . 0B . 1C . 1,2D . 0,22. (1分)下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3. (1分)(2016·陕西) 如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A . 3B . 4C . 5D . 64. (1分)在下列事件中,随机事件是()A . 通常温度降到0℃以下,纯净的水会结冰B . 随意翻到一本书的某页,这页的页码是奇数C . 明天的太阳从东方升起D . 在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球5. (1分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1 ,其中正确的个数是()A . 0B . 1C . 2D . 36. (1分)如图,在△ABC中,点D、E分AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于()A . 3B . 4C . 6D . 87. (1分) (2016九上·乐昌期中) 抛物线y=﹣2x2先向左平移1个单位,再向下平移3个单位,所得抛物线是()A . y=﹣2 (x+1)2+3B . y=﹣2 (x+1)2﹣3C . y=﹣2 (x﹣1)2﹣3D . y=﹣2 (x﹣1)2+38. (1分) (2018九上·青浦期末) 抛物线的对称轴是________.9. (1分) (2018九上·天台月考) 在平面直角坐标系中,点P(-2,3)关于原点的对称的点P1坐标是________.10. (1分)(2017·威海模拟) 若3a2﹣a﹣3=0,则5+2a﹣6a2=________.11. (1分)(2018·十堰) 如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6 ,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为________.12. (1分) (2018九下·绍兴模拟) 如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为________.13. (1分)有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是________14. (1分)在平面直角坐标系中,点P是反比例函数(x<0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B,若四边形PAOB的面积为6,M是PB的中点,M与N关于y轴对称,反比例函数的图象过点N,则k+m的值是________.15. (1分) (2018九上·建昌期末) 如图,在直角△OAB中,∠AOB=30 ,将△OAB绕点O逆时针旋转90得到△OA1B1 ,若AB=2,则点B走过的路径长为________.16. (1分)解下列方程:(1) 2x2﹣4x﹣5=0(2) x2﹣4x=1(3) x2﹣3x﹣4=0.17. (2分)(2017·滨海模拟) 设a,b是方程x2+2x﹣2019=0的两个不相等的实数根.(1) a+b=________;ab=________;2a2+4a=________;(2)求代数式a2+3a+b的值.18. (2分) (2018九上·新乡期末) 已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.19. (2分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.20. (2分)(2017·岱岳模拟) 如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF= BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.21. (2分) (2019九上·东莞期末) 受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019 年的利润为2.88亿元.(1)求该企业从2017年到2019年年利润的平均增长率?(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?22. (3分)(2016·泰安) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y= 的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.23. (2分) (2018九上·荆州期末) 湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为,销售单价为元.根据以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润销售总额-总成本)24. (2分)(2018·番禺模拟) 已知:二次函数,当时,函数有最大值5.(1)求此二次函数图象与坐标轴的交点;(2)将函数图象x轴下方部分沿x轴向上翻折,得到的新图象与直线恒有四个交点,从左到右,四个交点依次记为,当以为直径的圆与轴相切时,求的值.(3)若点是(2)中翻折得到的抛物线弧部分上任意一点,若关于m的一元二次方程恒有实数根时,求实数k的最大值.参考答案一、单选题 (共7题;共7分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、填空题 (共8题;共8分)8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共18分)16-1、16-2、16-3、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-3、。
玉溪市2020年中考数学试卷D卷
玉溪市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在3.14,,−,,π这五个数中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020八上·大东期末) 下列命题中的假命题是()A . 两直线平行,内错角相等B . 同位角相等,两直线平行C . 两直线平行,同旁内角相等D . 平行于同一条直线的两直线平行3. (2分)(2019·道外模拟) 下列几何体的主视图与左视图不相同的是()A .B .C .D .4. (2分)(2018·黄冈模拟) 下列运算正确的是()A . m6÷m2=m3B . (x+1)2=x2+1C . (3m2)3=9m6D . 2a3•a4=2a75. (2分)如图,在矩形ABCD中,对角线AC和BD交于点O,若OB=4,则BD的长为()A . 4B . 6C . 8D . 106. (2分)(2019·河南模拟) 在第37届中国洛阳文化节期间,某手工刺绣服装店老板某天销售了10件同款的女装上衣,销售尺码统计如下表:尺码/cm155160165170175销量/件14221则这10件上衣尺码的平均数和众数分别为()A . 160,164B . 160,4C . 164,160D . 164,47. (2分) (2019八上·威海期末) 某项工作,甲单独完成需要40分钟;若甲、乙共同做20分钟后,乙需再单独做20分钟才能完成,则乙单独完成需要()A . 40分钟B . 60分钟C . 80分钟D . 100分钟8. (2分)(2012·梧州) 如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A . 5B . 6C . 7D . 89. (2分) (2017七上·常州期中) 观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A . 3n﹣2B . 3n﹣1C . 4n+1D . 4n﹣310. (2分)(2015·宁波模拟) 如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线上,边AD与y轴相交于点E,=10,则k的值是()A . -16B . -9C . -8D . -12二、填空题 (共6题;共6分)11. (1分)(2018·宜宾模拟) 分解因式:2xy2+4xy+2x=________.12. (1分)如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则= ________ .13. (1分)用在高速公路上行驶的汽车耗油1L所行走的路程来估计1L汽油能使汽车行走多少路程的试验中,样本的选取________.(填“可靠”或“不可靠”)14. (1分) (2019七下·简阳期中) 若规定符号的意义是: = ,,则当m2﹣2m﹣3=0时,的值为__.15. (1分) (2019九上·南阳月考) 如图,在矩形ABCD中,AB=3,AD=7,点E是AD边上的一点,连接BE,将BE绕点E顺时针旋转90°至B′E,连接B′D,当△B′ED是直角三角形时,线段AE的长为________.16. (1分)(2018·苏州模拟) 如图,矩形的顶点在坐标原点,顶点、分别在轴、轴的正半轴上,顶点在反比例函数( 为常数, )的图像上,将矩形绕点按逆时针方向旋转90°得到矩形,若点的对应点恰好落在此反比例函数的图像上,则的值是________.三、计算题 (共9题;共78分)17. (5分)计算:20150+18. (5分)(2017·绿园模拟) 先化简,再求值:÷ ﹣a,其中a=2.19. (5分) (2017·洛宁模拟) “蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)20. (6分)(2016·安徽模拟) 在刚刚闭幕的2016全国“两会”,民生话题依然是社会焦点,某市记者为了了解百姓对“两会民生话题”的聚焦点,随机调查了部分市民,并对调查结果进行整理.绘制了如图所示的统计图表(不完整).頻数分布表组别焦点话题频数(人数)A医疗卫生100B食品安全mC教育住房40D社会保障80E生态环境nF其他60请根据图表中提供的信息解答下列问题:(1)填空:m=________,n=________.扇形统计图中E组,F组所占的百分比分别为________、________(2)该市现有人口大约800万,请你估计其中关注B组话题的人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注A组话题的概率是多少?21. (10分)(2018·随州) 己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1 , x2 .(1)求k的取值范围;(2)若 =﹣1,求k的值.22. (10分)(2018·东莞模拟) 如图,四边形ABCD内接于⊙O,AB=AD,对角线BD为⊙O的直径,AC与BD 交于点E.点F为CD延长线上,且DF=BC.(1)证明:AC=AF;(2)若AD=2,AF= ,求AE的长;(3)若EG∥CF交AF于点G,连接DG.证明:DG为⊙O的切线.23. (11分)(2016·武汉) 某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.24. (11分)(2019·抚顺模拟) 已知△ABC是等边三角形,点P在射线AC上(点P与点A、点C不重合),点D在线段BC的延长线上,且AP=CD,△PCD′与△PCD关于直线AC对称.(1)如图1,当点P在线段AC上时,①求证:PB=PD;②请求出∠BPD′的度数;(2)当点P在射线AC上运动时,请直接回答:①PB=PD是否仍然成立?②∠BPD′的度数是否发生变化?(3)将△PCD′绕点P顺时针旋转,在旋转的过程中,PD′与PB能否重合?若能重合,请直接写出旋转的角度;若不能重合,请说明理由;(4)若AB=4,当点P为AC边的中点时,请直接写出PD'的长25. (15分) (2020九上·新乡期末) 如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共9题;共78分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-3、24-4、25-1、25-2、25-3、。
玉溪市2020年(春秋版)中考数学试卷D卷
玉溪市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)(2011·海南) ﹣3的绝对值是()A . ﹣3B . 3C . -D .2. (2分) (2018七上·黄陂月考) 从左面看物体W得到的平面图形是()A .B .C .D .3. (2分) (2019九下·南宁月考) 2017年,我国网络购物市场交易规模达61000亿元,较2016年增长29.6%.61000亿用科学记数法表示为()A . 6.1×1012B . 6.1×1011C . 6.1×108D . 6.1×1044. (2分) (2019八下·锦江期中) 将点A(2,1)向左平移2个单位长度得到点,则点的坐标是()A . (0,1)B . (2,-1)C . (4,1)D . (2,3)5. (2分)(2017·新泰模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分)(2018·盐城) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .7. (2分) (2017八上·南宁期末) 下列计算中,正确的是()A . (2a)3=2a3B . a3+a2=a5C . (a2)3=a6D . a8÷a4=a28. (2分) (2019九上·新兴期中) 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A .B .C . 1D .9. (2分) (2015八上·番禺期末) 如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A . 70°B . 65°C . 50°D . 25°二、填空题 (共7题;共7分)10. (1分)已知A(﹣1,2),B(3,1),点P在x轴上,则AP+BP的最小值为________.11. (1分)(2018·平南模拟) 如图,已知,李明把三角板的直角顶点放在直线上.若∠1=42°,则∠2的度数为________.12. (1分)(2018·通城模拟) 一组数据1、3、4、5、x、9的众数和中位数相同,那么x的值是________13. (1分)在△ABC中,∠A+∠B=150°,∠C=2∠A,则∠A=________14. (1分)(2016·宜宾) 今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组________.15. (1分)(2017·陕西模拟) 请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个正n边形(n>4)的内角和是外角和的3倍,则n=________;B.小明站在教学楼前50米处,测得教学楼顶部的仰角为20°,测角仪的高度为1.5米,则此教学楼的高度为________米.(用科学计算器计算,结果精确到0.1米)16. (1分)(2019·大渡口模拟) 松松和东东骑自行车分别从迎宾大道上相距9500米的A、B两地同时出发,相向而行,行驶一段时间后松松的自行车坏了,立刻停车并马上打电话通知东东,东东接到电话后立刻提速至原来的倍,碰到松松后用了5分钟修好了松松的自行车,修好车后东东立刻骑车以提速后的速度继续向终点A地前行,松松则留在原地整理工具,2分钟以后松松以原速向B走了3分钟后,发现东东的包在自己身上,马上掉头以原速的倍的速度回A地;在整个行驶过程中,松松和东东均保持匀速行驶(东东停车和打电话的时间忽略不计),两人相距的路程S(米)与松松出发的时间t(分钟)之间的关系如图所示,则东东到达A地时,松松与A地的距离为________米.三、解答题 (共10题;共88分)17. (5分)计算下列各式.(1)÷(× )(2)﹣﹣2(3) |﹣ |﹣ +(1﹣)0+(4)( +2)(﹣2)﹣(2 ﹣1)2.18. (5分)计算:(1) 2(x+y)2﹣(2x+y)(x﹣2y)(2).19. (5分) (2020八上·襄城期末) 如图,D是AB上一点,DF交AC于点E, 试判断AE 与CE有怎样的数量关系?并证明你的结论.20. (7分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单频数百分比位:t)2≤x<324%3≤x<41224%4≤x<515 30%5≤x<61020%6≤x<7 6 12%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.21. (10分) (2018九上·黄石期中) 为打造“文化太湖,书香圣地”,太湖中学的学生积极开展“图书飘扬”活动,让全体师生创美好,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.22. (10分) (2011七下·广东竞赛) 如图(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。
玉溪市2020版数学中考一模试卷D卷
玉溪市2020版数学中考一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果,那么、、之间的大小关系是()。
A .B .C .D .2. (2分) (2020九下·郑州月考) 某种冠状病毒的直径是120纳米,1纳米=米,则这种冠状病毒的直径是()厘米.A .B .C .D .3. (2分) (2018九上·梁子湖期末) 某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,如果平均每月增长率为x,则由题意可列方程()A . 100(1+x)2=500B . 100+100•2x=500C . 100+100•3x=500D . 100[1+(1+x)+(1+x)2]=5004. (2分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A . (3,2)B . (3,﹣2)C . (﹣3,2)D . (﹣3,﹣2)5. (2分) (2020九上·鄞州期末) 抛物线y=2x2的开口方向是()A . 向下B . 向上C . 向左D . 向右6. (2分)下图中的两个三角形是位似图形,它们的位似中心是A . 点PB . 点OC . 点MD . 点N7. (2分)(2020·云南模拟) 数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是()A . 6,6,9B . 6,5,9C . 5,6,6D . 5,5,98. (2分)(2017·黔东南模拟) 如图,点A是反比例函数y1= (x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2= (x>0)的图象于点B,连接OA,OB,若△OAB的面积为2,则k2﹣k1的值为()A . ﹣2B . 2C . ﹣4D . 49. (2分)(2017·平谷模拟) 如图是某几何体从不同角度看到的图形,这个几何体是()A . 圆锥B . 圆柱C . 正三棱柱D . 三棱锥10. (2分)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A . 160B . 161C . 162D . 163二、填空题 (共5题;共5分)11. (1分) (2018九上·达孜期末) 函数的自变量的取值范围是________12. (1分) (2019八下·泰兴期中) 六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为________.13. (1分)(2017·山东模拟) 如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是________.14. (1分)(2017·沂源模拟) 如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是________.15. (1分) (2015八下·临河期中) 已知直角三角形三边长分别为3,4,m,则m=________三、解答题 (共8题;共59分)16. (5分)(2017·冠县模拟) 化简:(1﹣)÷ .17. (2分)(2017·陕西模拟) 某学校欲举办“校园运动挑战赛”,为此该校在三个年级中随机抽取一个班级进行了一次“你最喜欢的挑战项目”的问卷调查,每名学生都只选了一项.已知被调查的三个年级的学生人数均为50人,根据收集到的数据,绘制成如下统计图表(不完整):项目跳绳踢毽子乒乓球羽毛球其他人数(人)141086根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,七年级抽查班级中喜欢“跳绳”项目的学生有________人,九年级抽查班级中喜欢“乒乓球”项目的学生人数占本班人数的百分比为________;(2)请将条形统计图补充完整;(3)若该校共有3000名学生(三个年级的学生人数都相等),请估计该校喜欢“羽毛球”项目的学生总人数.18. (10分) (2019九上·孝昌期末) 如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB 于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:BF=EF;19. (5分)(2018·遵义模拟) 数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算广告牌的高度GH的长.( ≈1.73,要求结果精确到0.1m)20. (10分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B 种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.21. (10分)(2016·襄阳) 如图,直线y=ax+b与反比例函数y= (x>0)的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.(1)m=________,n=________;若M(x1,y1),N(x2,y2)是反比例函数图象上两点,且0<x1<x2,则y1________y2(填“<”或“=”或“>”);(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.22. (2分) (2018九上·瑞安期末) 如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.(1)求∠BAC的度数;(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;(3)在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD, DE,直接写出△BDE的面积.23. (15分)(2017·临沂模拟) 已知两直线l1 , l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2 ,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.(1)求点C的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共59分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
云南省玉溪市2020年八年级下学期数学期中考试试卷D卷
云南省玉溪市2020年八年级下学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若函数y=(m-2)xn-1+n是一次函数,则m,n应满足的条件是()A . m2且n=0B . m=2且n=2C . m2且n=2D . m=2且n=02. (2分)(2017·扬州) 下列统计量中,反映一组数据波动情况的是()A . 平均数B . 众数C . 频率D . 方差3. (2分)关于函数y=3x+1,下列结论正确的是()A . 图象必经过点(-2,5)B . y随x的增大而减小C . 当x>-时,y>0D . 图象经过第一、二、三象限4. (2分) (2019八下·北京期中) 如图,在一次实践活动课上,小刚为了测量池塘、两点间的距离,他先在池塘的一侧选定一点,然后测量出、的中点、,且,于是可以计算出池塘、两点间的距离是().A .B .C .D .5. (2分) (2020·百色模拟) 如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD 边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A .B .C . 2D . 26. (2分)下列说法正确的是()A . 对角线相等且互相垂直的四边形是菱形B . 对角线互相垂直平分的四边形是正方形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形7. (2分)(2019·宝鸡模拟) 已知正比例函数y=(a﹣2)x的图象上一点(x1 , y1),且x1y1<0,则a 的值可能是()A . 0B . 2C . 3D . 48. (2分) (2015九下·武平期中) 如图,抛物线y=ax2+bx+c,OA=OC,下列关系中正确的是()A . ac+1=bB . ab+1=cC . bc+1=aD . +1=c9. (2分)(2016·防城) 关于直线l:y=kx+k(k≠0),下列说法不正确的是()A . 点(0,k)在l上B . l经过定点(﹣1,0)C . 当k>0时,y随x的增大而增大D . l经过第一、二、三象限10. (2分)(2017·西固模拟) 菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A . 4:1B . 5:1C . 6:1D . 7:1二、填空题 (共8题;共8分)11. (1分) (2019八下·萝北期末) 直线y=2x+1经过点(a,0),则a=________.12. (1分)(2013·湖州) 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是________吨.用水量(吨)4568户数384513. (1分) (2019八上·玄武期末) 在平面直角坐标系xOy中,一次函数y=k1x+b(k1 , b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为________.14. (1分)(2019·长沙模拟) 如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD=________.15. (1分)(2014·徐州) 如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=________°.16. (1分)(2019·秀洲模拟) 如图,在直角坐标系中,O为坐标原点,点A(1,2),过点A分别作x轴、y 轴的平行线交反比例函数y= (x>0)的图象于点B,C,延长OA交BC于点D.若△ABD的面积为2,则k的值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玉溪市2020年中考数学试卷D卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共15题;共30分)
1. (2分)(2019·鄞州模拟) 实数-2019的绝对值是()
A . -2019
B . 2019
C .
D .
2. (2分) (2020八上·南宁期末) 下列图形是轴对称图形的是()
A .
B .
C .
D .
3. (2分)神舟八号与天宫一号为顺利进行二次交会对接,天宫/神八组合体于2011年12月13日22时37分在距地面高度约343公里的近圆轨道上偏航180度,建立倒飞姿态。
请将343公里保留两个有效数字可表示为()
A . 3.43公里
B . 3.43×102公里
C . 0.34×103公里
D . 3.4×102公里
4. (2分)(2020·瑶海模拟) 下列计算正确的是()
A . 2×32=36
B . (﹣2a2b3)3 =﹣6a6b9
C . ﹣5a5b3c÷15a4b=﹣3ab2c
D . (a﹣2b)2 =a2﹣4ab+4b2
5. (2分) (2018九下·滨湖模拟) 下列说法中,正确的是()
A . 为检测我市正在销售的酸奶质量,应该采用普查的方式
B . 若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定
C . 抛掷一个正方体骰子,朝上的面的点数为奇数的概率是
D . “打开电视,正在播放广告”是必然事件
6. (2分)(2020·深圳模拟) 图中所示的几何体的左视图为()
A .
B .
C .
D .
7. (2分) (2017七上·乐昌期末) 若6x3my4与﹣x9y2n是同类项,则m,n的值分别是()
A . m=2,n=3
B . m=3,n=2
C . m=﹣3,n=2
D . m=﹣2,n=3
8. (2分)为确保信息安全,信息需要加密传输,发送方由明文→密文(解密).接收方由密文→明文(解密)。
已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文2,8,18。
如果接收方收到密文7,18,15,则解密得到的明文为()
A . 4,5,6
B . 6,7,2
C . 2,6,7
D . 7,2,6
9. (2分) (2020八下·丽水期中) 若一个正方形的面积是18,则它的边长是()
A . 9
B . 4.5
C . 3
D . 2
10. (2分)在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5,1.0,则下列说法正确的是()
A . 乙同学的成绩更稳定
B . 甲同学的成绩更稳定
C . 甲、乙两位同学的成绩一样稳定
D . 不能确定哪位同学的成绩更稳定
11. (2分)如图,Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连结CC′,则∠CC′B′的度数是()
A . 45°
B . 30°
C . 25°
D . 15°
12. (2分) (2018九上·镇海期末) 如图,已知点、、都在上,,则
的度数是()
A .
B .
C .
D .
13. (2分) (2018八上·萧山月考) 如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA =PB.下确定P点的方法正确的是()
A . P为∠A,∠B两角平分线的交点
B . P为AC,AB两边上的高的交点
C . P为∠A的角平分线与AB的垂直平分线的交点
D . P为AC,AB两边的垂直平分线的交点
14. (2分)(2020·亳州模拟) 在Rt△ABC中,∠C=90°,如果∠A=α,BC=a,那么AC等于()
A . a•tanα
B . a•cotα
C . a•sinα
D . a•cosα
15. (2分) (2017八下·江苏期中) 对于函数,下列说法错误的是()
A . 它的图像分布在一、三象限
B . 它的图像关于原点对称
C . 当x>0时,y的值随x的增大而增大
D . 当x<0时,y的值随x的增大而减小
二、解答题 (共9题;共81分)
16. (5分) (2016七下·萧山开学考) 化简求值:3a+ (a﹣2b)﹣(3a﹣6b),其中a=2,b=﹣3.
17. (5分) (2020七下·防城港期末) 解不等式组:,并把解集表示在数轴上.
18. (6分)如图,已知△ABC.
(1)若AB=4,AC=5,则BC边的取值范围是________;
(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B 的度数.
19. (5分)(2019·白银) 小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?
20. (15分)(2018·沧州模拟) 某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.
(1)求出被调查的学生人数;
(2)把折线统计图补充完整;
(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?
21. (10分)(2019·荆门模拟) 如图,半圆O的直径AB=20,弦CD∥AB,动点M在半径OD上,射线BM与弦CD相交于点E(点E与点C、D不重合),设OM=m.
(1)求DE的长(用含m的代数式表示);
(2)令弦CD所对的圆心角为α,且sin .
①若△DEM的面积为S,求S关于m的函数关系式,并求出m的取值范围;
②若动点N在CD上,且CN=OM,射线BM与射线ON相交于点F,当∠OMF=90° 时,求DE的长.
22. (10分)(2020·大东模拟) 某村组织村民种植香菇,2017年的人均收入为40000元,由于此项种植技术得到很好指导,2019年的人均收入为48400元.
(1)求2017年到2019年该村人均收入的年平均增长率;
(2)假设2020年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2020年该村的人均收入是多少元?
23. (10分)已知,如图,在△ABC中,AB=9,BC=12,点D是BC的中点,联结AD,AD=9,点E在AD边上,且,联结BE.
(1)求证:△BED∽△ABD;
(2)联结CE,求∠CED的正切值.
24. (15分) (2016九上·萧山期中) 已知抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(﹣1,0)、B(3,0),与y 轴的交点为点D,顶点为C,
(1)写出该抛物线的对称轴方程;
(2)当点C变化,使60°≤∠ACB≤90°时,求出a的取值范围;
(3)作直线CD交x轴于点E,问:在y轴上是否存在点F,使得△CEF是一个等腰直角三角形?若存在,请
求出a的值;若不存在,请说明理由.
参考答案一、选择题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、解答题 (共9题;共81分)
16-1、
17-1、
18-1、
18-2、
19-1、
20-1、
20-2、
20-3、
21-1、
22-1、22-2、
23-1、23-2、
24-1、24-2、
24-3、。