概率论与数理统计:泊松分布
概率论与数理统计答案 第二章1-2节

关键词: 随机变量 离散型随机变量、分布律 连续型随机变量、概率密度 概率分布函数 重伯努利实验、二项分布、泊松分布 均匀分布、正态分布、指数分布 随机变量的函数的分布
1
§1 随机变量
定义
2 3
例1: 将一枚硬币抛掷3次. 关心3次抛掷中, 出现 H的总次数 以X记三次抛掷中出现H的总数, 则对样本空间 S={e}中的每一个样本点e, X都有一个值与之对 应, 即有
1) P { X = k} = C3k p k (1 − p )3− k , k = 0,1, 2,3 (
( 2)
P { X = 2} = C32 p 2 (1 − p)
21
泊松分布(Poisson分布)
若随机变量X的概率分布律为 e− λ λ k
P { X = k} = k! , = 0,1, 2, ⋅⋅⋅, λ > 0 k
互不影响
例如: 1.独立重复地抛n次硬币,每次只有两个可能的结果: 正面,反面, P (出现正面 ) = 1 2 2.将一颗骰子抛n次,设A={得到1点},则每次试验 只有两个结果:A , A , P ( A ) = 1 6
12
定义随机变量X表示n重伯努利试验中事件A发生的次 数, 我们来求它的分布律. X所有可能取的值为0,1,2,...,n. 由于各次试验是相互独立的, 因此事件A在指定的 k(0≤k≤n)次试验中发生, 在其它n−k次试验中A不发生 的概率为
13
设A在n重伯努利试验中发生X次,则
k P பைடு நூலகம் X = k} = Cn p k (1 − p ) n − k , = 0,⋅⋅⋅,n k 1,
⎛n⎞ k Cn = ⎜ ⎟ 表示n中 ⎜k ⎟ ⎝ ⎠ 任选k的组合数目
《概率论与数理统计》(第三版)课后习题答案

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计-随机变量及其分布

解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
概率论与数理统计第二章课后习题答案

概率论与数理统计课后习题答案第二章1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最 大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分 布律;(2) X 的分 布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2) 当x <0时, F (x )=P (X ≤x )=0当0≤x <1时 ,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时 ,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函 数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)3.射手向目标独立 地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函 数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的 分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 e a λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1)(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降 落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【 解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.7.有 一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.000 1,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊 松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0 001)8.已知在五重贝努里试验中成功的次数X 满足P {X = 1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率; ( 2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1 )32(0)eP X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P { X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mm m p p --44)1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -= 即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑ 即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑ 即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||01e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰11e 2x -=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰33128[(150)]()327p P X =>==(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1)求P{2<X≤5},P{-4<X≤10},P{|X|>2},P{X>3}; (2)确定c使P{X>c}=P{X≤c}.【解】(1)23353(25)222XP X P---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222XP X P----⎛⎫-<≤=<≤⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X>=>+<-323323222215151122220.691510.99380.6977X XP PΦΦΦΦ-----⎛⎫⎛⎫=>+<⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522XP X PΦ->=>=-=-(2) c=322.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06XP X P⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少?【解】120160160200160 (120200)XP X Pσσσ---⎛⎫<≤=<≤⎪⎝⎭404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故4031.251.29σ≤=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩ (1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d x F x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e -|x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d x xF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-=即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即 /2()0.9985z αΦ= 查表得 /2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤≤ ⎪ ⎝⎭⎝()d X f x x =故 d ()()d Y Y XX f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+- 2/2,0y y -=> 31.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数; (2) Z =-2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )XY F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1XY F y P y =≤=即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥ /21/2ed 1e z z x --==-⎰即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x xx x -=+⎰⎰ 222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为221,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。
概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。
因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。
关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。
(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。
例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。
在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。
为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。
2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。
(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。
定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。
概率论与数理统计:泊松分布

泊松分布教学目标:1. 了解泊松分布与二项分布的关系。
.2. 理解二项分布模型,并能应用泊松分布解决实际问题。
教学重难点:理解泊松分布宦理,并能应用泊松分布解决实际问题。
一、类比关联:贝努利试验(伯努利试验):一个试验E只有两个可能结果:每次试验成功的概率都是P,失败的概率都是q=l-p.则称E为贝努利(伯努利)试验或贝努利(伯努利)槪型。
(Ovp V1)而人们所关心的问题是:事件A恰好发生k次的概率是多少?若在n重贝努利试验中,事件A发生的次数为X,则X的可能的取值为0,1,.... n oP{X“} = C:”(l-P)z,・二项分布、两点分布(0-1分布)如果离散型随机变量X可能取的值为0, L2, -,no且其分布律为P{X =k} = C k..P k则称离散型随机变量X服从二项分布,记为X〜b(n^p).特别地,当”=1时,b(n,p) = b(l,p).即为(0-1)分布。
二、新知导入引例:某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率。
解:将一次射击看成是一次试验(贝努利试验),设击中的次数为X,则X-*(400,0.02).X的分布律为P{X =k} =0 02* O.98400" k = 0,1,2, ,40O・所以所求概率为P{X>2}=1-P{X =0}-P{X =1}=1-C 爲 O ・O2° 0.98-^ Cioo 0-021 °・92" = 0.9972计算不方便,于是有如下左理解决了这类计算问题。
定理(泊松定理):对二项分布B (up ),当"充分大,卩又很小时,对任意固左的非负整数匕有 近似公式(泊松分布)设随机变量X 所有可能取的值为:0・1.2,…,概率分布为:P{X=k} = e^ — . 1, 2,…. k\其中入>0为常数,则称随机变量X 服从参数为入的泊松分布,记为X~P (入)。
概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论与数理统计 泊松分布

练习1
设随机变量 X 服从参数为λ的Poisson分布,且已知
PX 1 PX 2 试求 PX 4.
练习1解答
设随机变量 X 服从参数为λ的Poisson分布,且已知
PX 1 PX 2 试求 PX 4.
解: 随机变量 X 的分布律为
PX k k e k 0, 1, 2,
进行600次射击可看作是一个600重Bernoulli试验.
X:600次射击命中目标的次数.
则 X ~ B600, 0.012.
用 Poisson分布近似计算,
取 600 0.012 7.2.
练习3解答(续)
所以,
PB PX 3 1 PX 3
1 PX 0 PX 1 PX 2
P{X N} 0.01.
P{X N} 0.01.
用泊松分布近似计算二项分布
P{X N} N 3k e3 0.99. k0 k!
查表可知,满足上式的最小的 N 是 8 , 因此至少需配 备 8 个工人。
泊松分布的分布律 (PDF)
二项分布的分布律 (PDF)
泊松分布的CDF 二项分布的CDF
• Poisson分布是概率论中重要的分布之一.
• 自然界及工程技术中的许多随机指标都服从 Poisson分布.
• 例如,可以证明,电话总机在某一时间间隔 内收到的呼叫次数,放射物在某一时间间隔 内发射的粒子数,容器在某一时间间隔内产 生的细菌数,某一时间间隔内来到某服务台 要求服务的人数,等等,在一定条件下,都 是服从Poisson分布的.
k e 0
k!
⑵ 又由幂级数的展开式,可知
所以
k e e k e e 1
《概率论与数理统计》第三版--课后习题答案.-

习题一:1.1 写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2);解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:;(7)在单位圆内任取两点, 观察这两点的距离;解:;(8)在长为的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:;1.2(1)A 与B 都发生, 但C 不发生; ;(2)A 发生, 且B 与C 至少有一个发生;;(3)A,B,C 中至少有一个发生; ;(4)A,B,C 中恰有一个发生;;(5)A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生;;(7) A;B;C 中至多有两个发生;(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。
1.3 设样本空间, 事件=,具体写出下列各事件:(1); (2) ; (3) ; (4)(1);(2) =;(3) =;(4) =1.6 按从小到大次序排列, 并说明理由.解:由于故,而由加法公式,有:1.7解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8解:(1) 由于,故显然当时P(AB) 取到最大值。
概率论与数理统计泊松分布

k!k e
Poisson定理的应用
由 Poisson 定理,可知
若随机变量 X ~ Bn, p,
则当n比较大,p比较小时,
令:
np
则有 PX k Cnk pk 1 p nk
k e
k!
练习3
设每次射击命中目标的概率为0.012,现射击600次, 求至少命中3次目标的概率(用Poisson分布近似计 算).
解:按第一种方法. 以 X 记 “第 1 人负责的 20 台
中同一时刻发生故障的台数”,则 X ~ b (20,0.01).
以 Ai 表示事件 “第 i 人负责的台中发生故障不能及 时维修”, 则 80 台中发生故障而不能及时维修的概
率为:
P(A1 A2 A3 A4 ) P(A1) P{X 2}.
k 1
k
1, k 1, k 1, k
如果 是整数,则 k 或 1时,
P(X k)达到最大;
如果 若 不是整数,则 k 时,
P(X k)达到最大;
练习4
为了保证设备正常工作,需配备适量的维修工人,现 有同类型设备 300 台,各台工作是相互独立的,发生 故障的概率都是 0.01. 在通常情况下,一台设备的故障 可有一人来处理. 问至少需配备多少工人,才能保 证当设备发生故障但不能及时维修的概率小于 0.01 ?
n
nk
lim 1
n
n
n
nk n
n
n n
n n
Poisson定理的证明(续2)
所以,
lim
n
Cnk
pnk
1 pn
nk
lim
k n
1
1
1
2
1
概率论与数理统计2.2.4 泊松分布

课程名称
《概率论与数理统计》
教师姓名
陈洁
授课章节
§2.2.4泊松分布
授课对象
机械设计制造及自动化、材料科学与工程专业等
教学目标
掌握泊松分布、泊松定理的描述及用法,能运用泊松分布和定理解决实际问题。
教学方式
启发式
教学内容
泊松分布、泊松定理的描述及用法。
教学重点
泊松分布、泊松定理的描述及用法
教学难点
注:上式计算是非常麻烦的,我们寻求简单的计算方法.
2、二项分布的泊松近似(泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法.
注当n很大且p很小时,可用泊松分布近似计算二项分布.布.
例2利用泊松近似计算得:
显然利用近似计算来得方便.
补充说明
强调泊松分布是用来描述稀有事件出现次数的分布
课程资源
参考书目,网上教学视频,网络微课教学
教学过程:
1、泊松分布
(2)泊松分布主要用来描述大量试验中稀有事件出现次数的分布。
例如:a.某天医院看急诊的人数;
b.某路口一天的交通事故数;
c.某本书中的印刷错误数;
d.放射性物质放射的粒子数.
例1一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布,求
对泊松定理进行深入讲解,其应用性很广泛。
(1)某一分钟恰有8次呼唤的概率;
(2)某一分钟的呼唤次数大于3的概率.
例2计算机硬件公司制造某种特殊型号的微型芯片,次品率次品率达0.1%,各芯片成为次品相互独立.求在1000只产品中至少有2只次品的概率.以X记产品中的次品数,X~b(1000,0.001) ,X=0,1,2,...1000.
所求概率为
概率论与数理统计几种重要的分布

二、二项分布
例1、一批产品的合格率为0.9,重复抽取三次, 每次一件, 连续3次,求3次中取到的合格品件数 X的分布.
如果在一次试验中,事件A成功的概率为 p(0 p 1), 则在n重贝努里试验中事件 A成功的次数 X的分布为 :
P(X
k)
C
k n
pkqnk .
1、定义 X ~ B(n, p)
P(X
k)
C
k 3
C 4 17
k
C
4 20
(k 0,1,2,3)
1、定义 X ~ H (n, M , N )
设N个元素分为两类,
其中N
1个属于第一类,
N
个属于
2
第二类, 从中不放回抽取n个, 令X表示这n个中第一类
元素的个数,则称X的分布为超几何分布 :
P(X
m)
C C m nm N1 N N1
若X的分布为P( X
k)
C
k n
pkqnk , k
0,1,, n
其中0 p 1, q 1 p,则称X ~ B(n, p)。
2、数字特征
EX
n
kC
k n
k 0
pkqnk
n
k
k0
n! k!(n k)!
pk q nk
n
n (n 1)!
p p q k 1 (n1)(k 1)
k1 (k 1)! (n 1) (k 1) !
kkekxpk01只有两个互逆结果的n次独立重复试验n1pmin10nmllkccckxpnnknnmkm10211kppkxpk无穷次伯努利试验中a首次发生的试验次数对含有两类元素的有限总体进行不放回抽样时某类元素个数的概率分布在一定时间内出现在给定区域的随机质点的个数一均匀分布1定义
概率论与数理统计 --- 第二章{一维随机变量及其分布} 第二节:离散型随机变量

第二节 离散型随机变量
离散型随机变量及其分布律 离散型随机变量表示方法 三种常见分布
一、离散型随机变量及其分布律
例1 从中任取3 个球 取到的白球数X是一个随机变量 . (1) X 可能取的值是0,1,2 ; (2) 取每个值的概率为:
3 P { X 0} 3 5 1 3 10 5 6 3 10 5 3 3 10
2) 二项分布的泊松近似
定理(泊松定理):在n重伯努利试验中,
概率论
事件A在每次试验中发生的概率为p, 如果n 时,np ( 0为常数 ), 则对任意给定的非负整数k,有: n k n k lim p 1 p = e n k k!
k 3 k
3 k
, k 0,1,2,3
=0.104
3. 泊松分布(Poisson Distribution)
1) 设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P( X k )
概率论
k
e
,
k 0,1,2,,
k!
其中 λ>0 是常数, 则称 X 服从参数为 λ 的泊松分布,记作X~π(λ).
概率论
随机变量 X 只可能取 0 与 1 两个值,其分布律为:
PX k p 1 p
k 1 k
,
k 0,1
0
p 1
或
X
0
q
1
p
pk
称 X 服从(0-1)分布或两点分布 或
X ~ b(1, p)
概率论
对于一个随机试验,如果它的样本空间只包含两个元 素,即 W {1 , 2 },我们总能在W上定义一个服从 (0-1)分布的随机变量.
《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。
如何理解泊松分布(Poisson Distribution)

如何理解泊松分布(PoissonDistribution)【泊松分布是以其发表者Poisson命名的】随机变量X服从参数为λ的泊松分布,记作 X ∼ π ( λ )X\sim\pi(\lambda) X∼π(λ)其分布律为P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , …P\{X=k\}=\frac{\lambda^k e^{-\lambda}}{k!}, k=0,1,2,… P{X=k}=k!λke−λ,k=0,1,2,…其中λ>0注意k取值哟,k是从0到∞!!证明分布律对于上式,我们需要证明其满足分布律的条件,即各值概率求和为1, 即:∑ k = 0 ∞ P { X = k } = 1\sum_{k=0}^{\infty}P\{X=k\}=1 k=0∑∞P{X=k}=1证明如下:∑ k = 0 ∞ P { X = k } = ∑ k = 0 ∞ λ k e −λ k ! = e − λ ∑ k = 0 ∞ λ k k ! = e − λ × e λ = 1\sum_{k=0}^{\infty}P\{X=k\}=\sum_{k=0}^{\infty}\frac{\ lambda^k e^{-\lambda}}{k!}=e^{-\lambda}\sum_{k=0}^\infty\frac{\lambda^k}{k!}=e^{-\lambda}\times e^{\lambda}=1 k=0∑∞P{X=k}=k=0∑∞k!λke−λ=e−λk=0∑∞k!λk=e−λ×eλ=1这个求和用到了函数f(x)=e^x的带有拉格朗日余项的n阶麦克劳林公式哈哈,其实这里只是推导一下就好,更严谨,以后使用公式时候用不到泊松定理这是一种用泊松分布逼近二项分布的定理,可以看作泊松分布分布律从二项分布律的推导,具体内容如下:n为任意正整数,np=λ,λ>0,对任意非负整数k,都有 lim x → ∞ C n k p n k ( 1 − p ) n − k = λ k e −λ k ! \lim_{x \to \infty}C_n^k p_n^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} x→∞limCnkpnk(1−p)n−k=k!λke−λ证明思路:让式子只剩下λ,消去n,p1.消去n:使n趋近于∞2.消去p:p=λ/n证明如下: C n k p n k ( 1 − p ) n − k = n ( n −1 ) . . . ( n − k + 1 ) k ! ( λ n ) k ( 1 − λ n ) n − k C_n^k p_n^k (1-p)^{n-k}=\frac{n(n-1)...(n-k+1)}{k!}{(\frac \lambda n)}^k (1-\frac \lambda n)^{n-k} Cnkpnk(1−p)n−k=k!n(n−1)...(n−k+1)(nλ)k(1−nλ)n−k观察右项,尽量配出来原式= λ k k ! [ 1 × ( 1 − 1 n ) × … × ( 1 − k − 1 n ) ] ( 1 − λ n ) n ( 1 − λ n ) − k 原式=\frac {\lambda^k}{k!}[1\times(1-\frac1n)\times…\times(1-\frac {k-1}n)](1-\frac \lambdan)^n(1-\frac \lambda n)^{-k} 原式=k!λk[1×(1−n1)×…×(1−nk−1)](1−nλ)n(1−nλ)−k令n趋近于正无穷,则[ 1 × ( 1 − 1 n ) × … × ( 1 − k − 1 n ) ] → 1 [1\times(1-\frac 1n)\times…\times(1-\frac {k-1}n)] \to 1 [1×(1−n1)×…×(1−nk−1)]→1 ( 1 − λ n ) n → e − λ (1-\frac \lambda n)^n\to e^{-\lambda} (1−nλ)n→e−λ上式为对自然常数e的定义的代换,实质上用到了复合函数的极限运算法则 ( 1 − λ n ) − k → 1 (1-\frac \lambda n)^{-k}\to 1 (1−nλ)−k→1因此,得证 lim x → ∞ C n k p n k ( 1 − p ) n − k = λ k e − λ k ! \lim_{x \to \infty}C_n^k p_n^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} x→∞limCnkpnk(1−p)n−k=k!λke−λnp=λ,n很大,p很小时,有近似式: C n k p n k ( 1 − p ) n − k ≈ λ k e − λ k ! C_n^k p_n^k (1-p)^{n-k}\approx \frac{\lambda^k e^{-\lambda}}{k!} Cnkpnk(1−p)n−k≈k!λke−λ即用泊松分布概率值作二项分布概率值的近似一般来说,n>=20,p<=0.0.5,近似效果不错λ的意义从二项分布可知,E(X)=np,而在泊松定理中λ=np,所以λ是否是数学期望呢?已知一个分布,可以求其数学期望(用定义求),我们求出泊松分布的数学期望,看它是否是我们预测的λ即可。
波松分布是一种可以用来描述和分析随机地发生在单位空间或

❖问题2.1 2005年全国新生婴儿大约 19,000,000,如何描述他们的体重?
❖x轴表示体重(单位:500g),y轴表示单位长度上的频率。
P / x
P / x
p(x)
密度函数
O 4 5 6 7 8 9 10 x O 4 5 6 7 8 9 10 x O 4 5 6 7 8 9 10 x
❖ 3)右连续性:即
lim
x x0
F
(x)
F
(
x0
).
概率论与数理统计
❖例7 问A为何值时,
A ex , 0 x ;
F(x)
0,
x 0.
F(x)是一随机变量X的分布函数?
概率论与数理统计
❖例8 服从柯西分布的随机变量的分布函数是
F(x) A B arctan x.
求(1)常数A,B; (2)X的密度函数。
概率论与数理统计
❖例6 设连续型随机变量X的密度函数为
1 | x |, 1 x 1;
f (x)
0,
其他。
求X的分布函数。
概率论与数理统计
❖1)单调非减性: x1 x2 F (x1) F (x2 ).
❖ 2)有界性:
F() lim F(x) 0, x
F() lim F(x) 1. x
二项分布与Poisson近似的比较
二项分布
按 Cnk pk 1 p nk 计算
n 20
n 40
p 0.05
p 0.025
0.358
0.363
0.377
0.372
0.189
0.186
0.060
0.060
0.013
0.014
概率论与数理统计2.2.4 泊松分布

0.2642411
二、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
离散型随机变量X b(n, p). 又设np ( 0), 则有
lim
n
Cnk
pk (1
p )nk
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
C
k 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
e4
4 1!
e4
42 2!
e4
43 e4 0.5665. 3!
例2 计算机硬件公司制造某种特殊型号的微型芯片,次品率 次品率达0.1%, 各芯片成为次品相互独立. 求在1000只产品中 至少有2只次品的概率. 以X记产品中的次品数,
X~b(1000,0.001) ,X=0,1,2,...1000.
例:a.某天医院看急诊的人数; b. 某路口一天的交通事故数 c.某本书中的印刷错误数; d. 放射性物质放射的粒子数
例1 一电话总机每分钟收到呼唤的次数服从参数为4
的泊松分布,求
(1) 某一分钟恰有8次呼唤的概率;
(2) 某一分钟的呼唤次数大于3的概率.
解 由X ~ (),P{X k} k e , k 0,1,2, ,
泊松分布的应用概要

泊松分布的应用泊松分布的应用摘要泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。
它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。
作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。
服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。
在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。
并且在某些函数关系起着一种重要作用。
例如线性的、指数的、三角函数的等等。
本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。
关键词:泊松过程;泊松分布;定义;定理;应用;一、 计数过程为广义的泊松过程1.计数过程设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。
将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤∆=,它表示时间间隔 t), t [ 0内出现的质点数。
“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。
2.泊松过程计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件:(1)在不相重叠的区间上的增量具有独立性;(2)0 (0) N =;(3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1∆+∆==∆+=∆+λ其中常数0>λ,称为过程)(t N 的强度。
泊松分布及其在实际中的应用

1.泊松分布的定义及基本知识
1.2有关泊松分布的一些性质
(1)满足分布列的两个性质:
P(X=k) 0(k=0,1,2,…),
且有 . P( X k) ke e k e e 1
k 0
ko k!
k0 k!
(2)若随机变量X服从参数为 的泊松分布,则X的
期望和方差分别为:E(X)= ;D(X)= .
讨论一天内有顾客买东西的概率:
设 =“商场一天内来k 个顾客”(0,1,…r,…),
B=“商场一天内有r个顾客购买商品”,
则
P( Ak )
P(Ak |
k
e
(k=0,1,…,r,…);
B)
k! Ckr
pr
(1
p) k r(k=r,…)
则
P(B) P( Ak )P(B | Ak )
k 0
k r
——张晓东、郑茂元、刘文涛、
1.泊松分布的定义及基本知识
1.1定义: (1)若随机变量X的分布列为 则称X服从参数为 的 泊松分布,并用记号X~P( )表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构 成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点 流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落 的飞机数; 一个售货员接待的顾客数等这些事件都可 以看作泊松流。
1.泊松分布的定义及基本知识
(3)以n,p为参数的二项分布,当n ,p 0
时,使得np= 保持为正常数,则
Cnk
pk (1
p)nk
k
k!
e 对于k=0,1,2,…一致成立。
由如上定理的条件 np 知,当n很大时,p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泊松分布
教学目标:
1.了解泊松分布与二项分布的关系。
.
2. 理解二项分布模型,并能应用泊松分布解决实际问题。
教学重难点:理解泊松分布定理,并能应用泊松分布解决实际问题。
一、类比关联:
贝努利试验(伯努利试验) :一个试验E 只有两个可能结果:每次试验成功的概率都是p ,失败的概率都是q=1-p .
则称E 为贝努利(伯努利)试验或贝努利(伯努利)概型。
而人们所关心的问题是:事件A 恰好发生k 次的概率是多少?若在n 重贝努利试验中,事件A 发生的次数为X ,则X 的可能的取值为0, 1, …, n 。
二项分布、两点分布(0—1分布)
如果离散型随机变量X 可能取的值为0, 1, 2, …, n 。
且其分布律为
则称离散型随机变量X 服从二项分布,记为
特别地,当n =1时, 即为 (0--1)分布。
二、新知导入
引例:某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率。
解:将一次射击看成是一次试验(贝努利试验),设击中的次数为X ,则
X 的分布律为
所以所求概率为
).02.0,400(~b X )10(<<p ).0(,)1(}{n k p p k X P k n k k
n C ≤≤-==-).0(,)1(}{n k p p k X P k n k k
n C ≤≤-==-).
,(~p n b X ).,1(),(p b p n b =.
400,,2,1,098.002.0}{400400 ===-k k X P k k k C
计算不方便,于是有如下定理解决了这类计算问题。
定理(泊松定理): 对二项分布 B (n ,p ), 当 n 充分大, p 又很小时,对任意固定的非负整数 k ,有近似公式
,2,1,0,
!)1(lim ==---∞→k k e p p C k
k n k k n n λλ
(泊松分布)设随机变量 X 所有可能取的值为: 0, 1, 2,…, 概率分布为:
其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为 X~P (λ)。
说明:二项分布的逼近分布就是泊松分布)(λP , 其中np ≈λ。
泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布,如下图所示的就是在10重贝努力试验中,红色折线表示的二项分布和对应的蓝色折线表示泊松分布的概率分布图像,大家会发现两者近似程度很高。
三、实际应用
例1.某一无线寻呼台,每分钟收到寻呼的次数X 服从参数 λ=3 的泊松分布。
求:
(1) 一分钟内恰好收到3次寻呼的概率;
9972
.0=3991140098.002.0C -4000040098.002.01C -=}1{}0{1=-=-=X P X P }2{≥X P {}, 0, 1, 2, .
!k
P X k e k k λλ-===
(2)一分钟内收到2至5次寻呼的概率。
解:(1)P {X =3} = P (3; 3) = (33/3!)e -3 ≈ 0.2240;
(2) P {2≤X ≤5}= P {X =2} + P {X =3} + P {X =4} + P {X =5}
= [ (32/2!) + (33/3!) + (34/4!) + (35/5!) ]e -3≈ 0.7169.
例2. 某出租汽车公司共有出租车400辆,设每天每辆出租车出现故障的概率为0.02,求:一天内没有出租车出现故障的概率。
解:设 X 表示一天内出现故障的出租车数, 则 X ∼ b (400, 0.02)。
令 λ = np = 400×0.02 = 8 ,于是,
P {一天内没有出租车出现故障} = P {X=0} = b (0;400,0.02) = 0.98400 =0.000309 ≈(80/0!)e -8 = 0.0003355.
例3.考察通过某交叉路口的汽车流。
若在一分钟内没有汽车通过的概率为0.2,求在2分钟内有多于一辆汽车通过的概率。
记X 为一分钟内通过的车辆数,假设X ~)(λP 。
记η为两分钟内通过的车辆数,则η~)2(λP 。
又)0(=X P =λ-e = 0.2, 故5ln =λ, 所求为
∑∞=----==-=-===>2
2221)1()0(1)()1(k e e P P k P P λ
λληηηη 831.05ln )252(2524≈-=
练习1:设某保险公司的某人寿保险险种有1000人投保,每个人在一年内死亡的概率为0.005,且每个人在一年内是否死亡是相互独立的,试求在未来一年内这1000个投保人中死亡人数不超过10人的概率。
解: 记X 为未来一年中死亡的人数,对每个人来说,在未来一年内是否死亡相当于做一次贝努里试验,则X ~ B (1000,0.005),而这1000个投保人中死亡人数不超过10人的概率为:
()k k k k X P -=∑⎪⎪⎭⎫ ⎝⎛=≤100010
0)995.0(005.01000)10( 二项分布的逼近:设),(~p n B X ,当n 很大,p 很小,且np =λ适中时,有 (),,10000.0055!k
P X k e k λλλ-===⨯=因此有
≈
≤)10(X P 986.0!100≈-=∑λλe k k k
练习2:某人进行射击, 每次命中率为0.02, 独立射击400次, 求命中次数X ≥ 2的概率. 解: 显然, X ~ B(400, 0.02), 则
P{X ≥2} = 1 - P{X = 0} - P{X = 1}
9970.091)98.0()02.0()98.0()02.0(183991140040000400
≈-≈--=-e C C
课程小结
1.伯努利试验:一次伯努利试验就是0-1分布,n 次伯努利试验就是二项分布。
2.二项分布的近似分布是泊松分布,注意满足条件方可近似计算。