2019-2020年高三10月月考数学理试卷缺答案
湖北省金太阳百校联考高三上学期数学10月月考试卷及答案
高三上学期数学10月月考试卷一、单选题1.已知集合,,则()A. B. C. D.2.如图所示的复古时钟显示的时刻为10:10,将时针与分针视为两条线段,则该时刻的时针与分针所夹的钝角为()A. B. C. D.3.若函数的定义域为,且,,,,则的解析式可能为()A. B. C. D.4.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A. 5B.C. 4D.5.已知命题:,,,则为()A.,, B. ,,C.,, D. ,,6.函数在上的部分图象大致为()A. B. C. D.7.已知,,,则()A. B. C. D.8.已知点为角终边上一点,,且,则()A. 2B. 2±C. 1D. ±1二、多选题9.关于充分必要条件,下列判断正确的有()A. “ ”是“ ”的充分不必要条件B. “ ”是“ ,,成等比数列”的充分不必要条件C. “ 的图象经过点”是“ 是幂函数”的必要不充分条件D. “直线与平行”是“直线与的倾斜角相等”的充要条件10.血压(bloodpressure,BP)是指血液在血管内流动时作用于单位面积血管壁的侧压力,它是推动血液在血管内流动的动力,血压的最大值、最小值分别称为收缩压和舒张压.未使用抗高血压药的前提下,18岁以上成人收缩压或舒张压,则说明这位成人有高血压,设从未使用抗高血压药的李华今年40岁,从某天早晨6点开始计算(即早晨6点时,),他的血压()与经过的时间()满足关系式,则()A. 函数的最小正周期为6B. 当天早晨7点时李华的血压为C. 当天李华有高血压D. 当天李华的收缩压与舒张压之差为11.已知函数的定义域为,,,当时,,则()A. B. 的图象关于直线对称C.当时, D. 函数有4个零点12.若存在,则称为二元函数在点处对的偏导数,记为;若存在,则称为一元函数在点处对的偏导数,记为,已知二元函数(,),则()A. B.C. 的最小值为D. 的最小值为三、填空题13.函数的图象在点处的切线方程为 .14.设集合,或,若,则的取值范围是 .15.设函数关于的方程有四个实根,,,,则的最小值为 .16.已知函数,则的最小值为,图象的一条对称轴方程可以是 .四、解答题17.已知.(1).求的值;(2).求值.18.如图,在三棱锥中,平面,,与的长度之和为6米,,现要给三棱锥的侧面刷油漆,每平方米需要0.5升油漆,油漆价格为60元/升.(1).设米,三棱锥的侧面共需要油漆升,试写出关于的函数表达式;(2).刷油漆需要请油漆工来完成,工费按照每平方米10元计算,若油漆工工费及油漆费用的总预算为400元,试问最后油漆工工费及油漆费用是否有可能会超预算?说明你的理由.19.已知函数的部分图象如图所示.(1).求的解析式;(2).把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,证明:在上有最大值的充要条件是.20.已知函数.(1).讨论在上的单调性;(2).若曲线的一条切线的斜率为,证明:这条切线与曲线只有一个公共点.21.已知函数(且)经过定点,函数(且)的图象经过点.(1).求函数的定义域与值域;(2).若函数在上有两个零点,求的取值范围.22.已知函数.(1).若,求的取值范围;(2).若,证明:.答案解析部分一、单选题1.【答案】D【解析】【解答】,,.故答案为:D.【分析】首先由一元二次不等式的解法求解出不等式的解集,由此得出集合M,再由并集的定义结合不等式的性质即可得出答案。
2020届天津市南开中学高三10月月考数学试题(解析版)
2020届天津市南开中学高三10月月考数学试题一、单选题1.已知集合{}124x A x -=≥,{}2230B x x x =--<,则()R AB ð等于( )A.{}3x x ≥B.{}3x x >C.{}13x x -<< D.{}31x x x ≥≤-或【答案】A【解析】解出集合A 、B ,再利用交集和补集的定义求出集合()R A B ð.【详解】解不等式124x -≥,即12x -≥,得3x ≥,{}3A x x ∴=≥. 解不等式2230x x --<,解得13x -<<,{}13B x x ∴=-<<, 则{}13R B x x x =≤-≥或ð,因此,(){}3R A B x x ⋂=≥ð,故选:A. 【点睛】本题考查集合的交集与补集的混合运算,同时也考查了指数不等式和一元二次不等式的解法,解题的关键就是解出问题中所涉及的集合,考查运算求解能力,属于基础题. 2.“成立”是“成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】试题分析:由|x-1|<2得-1<x <3,由x (x-3)<0得0<x <3,所以“|x -1|<2成立”是“x (x-3)<0成立”的必要不充分条件 【考点】1.解不等式;2.充分条件与必要条件3.已知()sin f x x x =-+,命题:0,2p x π⎛⎫∀∈ ⎪⎝⎭,()0f x <,则( ) A .p 是假命题,:0,,()02p x f x π⎛⎫⌝∀∈≥ ⎪⎝⎭B .p 是假命题,00:0,,()02p x f x π⎛⎫⌝∃∈≥ ⎪⎝⎭C .p 是真命题,:0,,()02p x f x π⎛⎫⌝∀∈≥ ⎪⎝⎭D .p 是真命题,00:0,,()02p x f x π⎛⎫⌝∃∈≥ ⎪⎝⎭【答案】D【解析】试题分析:'()1cos f x x =-+,当(0,)2x π∈,'()0f x <,因此()f x 是减函数,所以(0,)2x π∈,()(0)0f x f <=,命题p 是真命题,p ⌝是:000,,()02x f x π⎛⎫∃∈≥ ⎪⎝⎭,故选D .【考点】命题的真假,命题的否定. 4.已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << 【答案】D【解析】1ln >=πx ,215log 12log 25<==y ,e e z 121==-,1121<<e ,所以x z y <<,选D.5.已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,若对于任意x R ∈, ()()2222f log a f x x ≤-+恒成立,则a 的取值范围是( )A .(]0,1 B .1,22⎡⎤⎢⎥⎣⎦C .(]0,2D .[)2,+∞【答案】B【解析】因为()f x 是偶函数,所以不等式()()22log 22f a f x x ≤-+可化为()()22log 22f a f x x ≤-+,又()f x 在[)0,+∞上单调递增,所以22log 22a x x ≤-+,而()222211x x x -+=-+的最小值为1,所以2log 1a ≤,21log 1a -≤≤,解得122a ≤≤. 6.若函数在区间上单调递减,则实数的取值范围是( )A .B .C .D .【答案】C 【解析】因为函数在区间上单调递减,所以函数在区间上恒成立,即在恒成立,而在递减,在递增,且,即;故选C.7.设函数()144x f x ex -=+-,()1ln g x x x=-,若()()120f x g x ==,则( )A.()()120g x f x <<B.()()120g x f x <<C.()()210f x g x <<D.()()210f x g x <<【答案】B【解析】分析函数()y f x =和()y g x =的单调性,利用零点存在定理求出函数零点的取值范围,再由函数的单调性来得出()2f x 与()1g x 的正负. 【详解】()144x f x e x -=+-Q ,()140x f x e -'∴=+>,则函数()y f x =为增函数, ()00f <Q ,()10f >,且()10f x =,由零点存在定理知101x <<.()1ln g x x x =-Q ,则()221110x g x x x x+'=+=>,所以,函数()y g x =为增函数, 且()10g <,()12ln 202g =->,又()20g x =,由零点存在定理可知212x <<.()()210f x f ∴>>,()()110g x g <<,因此,()()120g x f x <<,故选:B.【点睛】本题考查函数值符号的判断,同时也考查了函数单调性与零点存在定理的应用,解题的关键就是利用函数的单调性与零点存在定理求出零点的取值范围,考查分析问题的和解决问题的能力,属于中等题.8.设实数,,a b c 分别满足322,a a +=2log 1b b =,5log 1,c c =则,,a b c 的大小关系为( ) A.a b c >> B.b a c >> C.c b a >> D.a c b >>【答案】C【解析】令3()22f x x x =+-,则3()22f x x x =+-在R 上单调递增,且(0)(1)2110f f ⋅=-⨯=-<,即(0,1)a ∈,在同一坐标系中作出251,log ,log y y x y x x===的图象,由图象,得1b c <<,即c b a >>;故选C.点睛:在涉及超越方程的求解问题,往往将其分离成两个基本函数图象的公共点问题,如本题中判定5log 1c c =的根的取值范围,就转化为1y x=和5log y x =的图象交点问题. 9.已知函数()21,2114,15x x f x x x x ⎧+-≤≤⎪=⎨+-<≤⎪⎩,若关于x 的方程()0f x ax -=有两个解,则实数a 的取值范围是( ) A.650,2252⎛⎤⎡⎫⋃-- ⎪⎥⎢⎝⎦⎣⎭,B.650,2252⎛⎫⎡⎤⋃-- ⎪⎢⎥⎝⎭⎣⎦, C.{}56,,0,2225⎛⎫⎡⎫-∞-⋃+∞⋃- ⎪⎪⎢⎝⎭⎣⎭D.56,,225⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【答案】A【解析】关于x 的方程()0f x ax -=有两个解,等价于()y f x =和y ax =有两个交点,如图所示:作出函数()21,2114,15x x f x x x x ⎧+-≤≤⎪=⎨+-<≤⎪⎩的图象,()2,5A -,()1,2B ,65,5C ⎛⎫ ⎪⎝⎭,625OC k =,由图可得60,25k ⎛⎤∈ ⎥⎝⎦时,直线与曲线有两个交点,由图可得过原点的直线与21y x =+有两个交点的临界位置为两者相切时,联立两者方程21y kxy x =⎧⎨=+⎩得:210x kx -+=,由240k =-=解得2k =±,切点坐标为()1,2-和()1,2且52OA k =-,要使直线与抛物线有两个交点,直线的斜率应满足5,22k ⎡⎫∈--⎪⎢⎣⎭,综上可得650,,2252k ⎛⎤⎡⎫∈⋃-- ⎪⎥⎢⎝⎦⎣⎭,故选A.二、填空题10.设复数z 满足)3i z i ⋅=,则z =__________.【答案】1+【解析】分析:根据条件先将z 的表达式求出,再结合复数的四则运算即可.详解:3)13i i z ===+点睛:考查复数的计算,属于基础题.11.6⎛⎝展开式的常数项为 .(用数字作答)【答案】-160【解析】试题分析:由6662166(1)(2)rrr r r r rr T C C ---+⎛==- ⎝,令620r -=得3r =,所以6⎛ ⎝展开式的常数项为33636(1)(2)160C --=-.【考点】二项式定理.12.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 【答案】(e, 1).【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e . 【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 13.已知函数是定义在上的奇函数,且当时,,则不等式的解集是 .【答案】【解析】试题分析:由图知,当时,,由得即所以不等式解集为【考点】利用函数性质解不等式14.已知函数32,(),x x m f x x x m ⎧≤=⎨>⎩,,若存在实数a ,使函数g(x)=f(x)-a 有两个零点,则实数m 的取值范围是________. 【答案】()(),01,-∞⋃+∞【解析】由题意得直线y a =和函数()y f x =的图象有两个交点,故函数()y f x =在定义域内不能是单调函数.在同一坐标系内画出函数3y x =和2y x =的图象,结合图象可得所求的结果. 【详解】∵()()g x f x a =-有两个零点, ∴()f x a =有两个零点,即()y f x =与y a =的图象有两个交点, 由32x x =可得,0x =或1x =.①当1m >时,函数()f x 的图象如图所示,此时存在a 满足题意,故1m >满足题意.②当1m =时,由于函数()f x 在定义域R 上单调递增,故不符合题意. ③当01m <<时,函数()f x 单调递增,故不符合题意.④0m =时,()f x 单调递增,故不符合题意. ⑤当0m <时,函数()y f x =的图象如图所示,此时存在a 使得()y f x =与y a =有两个交点.综上可得0m <或1m >.所以实数m 的取值范围是()(),01,-∞⋃+∞. 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,运用图象进行求解.对于含有参数的问题,要注意分类讨论的方法在解题中的应用,同时还要注意数形结合在解题中的应用.15.函数()()4ln (1)f x kx x x x =+->,若()0f x >的解集为(),s t ,且(),s t 中只有一个整数,则实数k 的取值范围为___________。
2023-2024学年山东省滨州市新高考大联考高三上学期10月月考数学试题及答案
试卷类型:A山东新高考联合质量测评10月联考试题高三数学考试用时120分钟,满分150分注意事项:1.答题前,考生先将自己的学校、班级、姓名、考号、座号填涂在相应位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2,1,0,1,2M =--,{}2280N x x x =+-≥,则M N ⋂=()A .{}2,2-B .{}2-C .{}2D .22.合题“a ∃∈R ,()2f x x ax =-是偶函数”的否定是( )A .a ∀∈R ,()2f x x ax =-不是偶函数B .a ∀∈R ,()2f x x ax =-是奇函数C .a ∃∈R ,()2f x x ax =-不是偶函数D .a ∃∈R ,()2f x x ax =-是奇函数3.我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,是过去官员或私人签署文件时代表身份的信物。
图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且正四棱锥的底面边长为4,侧棱长为,则该几何体的体积是( )A .32B .643C .1283D .644.已知cos 6πθ⎛⎫+=⎪⎝⎭,则sin 3πθ⎛⎫- ⎪⎝⎭的值是( )A B C .D .5.已知实数,a b 满足()()lg 3lg lg 2a b a b +=+,则2a b +的最小值是( )A .9B .3C .2D .66.已知()2x xe af x e+=满足()()0f x f x -+=,且()f x 在()(),b f b 处的切线方程为2y x =,则2a b +=( )A .0B .1C .-1D .-27.已知正方体1111ABCD A B C D -的棱长为3,点P 在1AB C 内运动,且满足PB =2,则点P 的轨迹长度为( )A .2πB .πC .2πD 8.设数列{}n a 的前n 项和为n S ,23a =,且()()()112n n n n S S n a ++-=+,若存在n N +∈,使得214n n S ka +≤成立,则k 的最小值是( )A .1B .425C .152D .8二、多项选择题:本题共4小题,每小题5分,共20分。
黑龙江省哈尔滨市第六中学2019届高三10月月考地理试卷(有答案)
哈尔滨市第六中学2019届10月阶段性总结高三地理试题一、单项选择题(本大题共有40小题,1--20每小题2分,21--40每小题1分,共计60分)木糖醇是可以从白桦树、橡树、玉米芯、甘蔗渣等植物中提取出来的一种天然植物甜味剂。
据此回答1-2题。
1.木糖醇生产厂应当接近( )A.消费市场B.原料产地C.廉价劳动力地区D.研发基地2.材料所述木糖醇工业原料中的糖料作物,在我国分布广泛的省区是( )A.四川、吉林B.宁夏、新疆C.江苏、河北D.广东、台湾地坑院也叫地窖,在我国已有约四千年历史了。
地坑院就是在平整的地面上挖一个正方形或长方形的深坑,深约6-7米,然后在坑的四壁挖若干孔洞,其中一孔洞内有一条斜坡通道拐个弧形直角通向地面,是人们出行的门洞。
结合下图,回答3-5题。
3.地坑院反映的当地环境是( )A.土层深厚B.冬暖夏凉C.降水稀少D.木材短缺4.下图中地坑院出入通道周围的砖墙主要作用是( )A.挡风B.防水C.阻沙D.遮阳5.该地可能位于( )A.河南B.黑龙江C.新疆D.福建一棵10米高的树长成可能需要50年,而这样高的竹子却只需约50天,不到5年便可以利用;因此,竹子产业被称作“黄金绿色产业”。
中国的成片竹林面积、年产竹材、年产竹笋数量分别为世界总量的1/3、1/3、1/2,位居全球之首,完成下列6-7小题。
6. 要发挥竹子的经济效益,应着眼于()A.发挥优势,扩大竹子的种植面积B.加大科技投入,进行深加工C.扩大竹笋食品的出口D.加强管理,提高竹子产量7. 竹子产业被称作“黄金绿色产业”,是因为()A.常年绿色,多用作园林绿化B.能帮助农民快速脱贫致富C.适应性强,在我国东部季风区都可推广种植D.分布广,能产生巨大的经济效益和环境效益下图为我国某月降水地区分布图(阴影部分)。
据此完成8-9问题。
8.图示的月份,华北地区哪个职能部门工作压力最大()A.电力部门B.水力部门 C.交通部门 D.通讯部门9.此时长江中下游的天气状况与下面诗句描述相对应的是()A.一年三季东风雨,独有夏季东风晴 B.忽如一夜春风来,千树万树梨花开C.黄梅时节家家雨,青草池塘处处蛙 D.三月东风吹雪消,湖南山色翠如浇快捷支付是一种全新的支付理念,具有方便、快速的特点,是未来消费的发展趋势,其特点体现在“快”。
黑龙江省哈尔滨市德强高级中学2024-2025学年度高三上学期10月数学学科(I)试卷 答案
15.【详解】(1)因为,当时,,当时,,所以.显然当时,依然成立,∴数列的通项公式为.(2)由(1)知,则,,所以,所以.16.【详解】(1),则;(2)令,得,所以函数的单调增区间为;(3)由,得,所以,所以函数的值域为.17.【详解】(1,2n S n n =+1n =11112a S ==+=2n ≥()2111n S n n -=-+-()221(1)12n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦1n =1212a =⨯={}n a 2n a n =122n n n n b a n -==⋅212222n n T n =⨯+⨯++⋅ 231212222n n T n +=⨯+⨯++⋅ ()1221112222222212212n n n n n n T n n n ++++--=++++-⋅=-⋅=---L ()1122n n T n +=-+()π23cos 26sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭2ππ2T ==πππ2π22π262k x k -+≤+≤+ππππ,Z 36k x k k -+≤≤+∈()y f x =πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦π,02x ⎛⎫∈- ⎪⎝⎭π2ππ2,636x ⎛⎫+∈- ⎪⎝⎭π1sin 21,62x ⎛⎫⎡⎫+∈- ⎪⎪⎢⎝⎭⎣⎭()y f x =[)6,3-22sin 12B B -=()1cos 1B B --=,故,可得,因为,,所以,可得.(2)若选①:由平分得:,即,即,在中,由余弦定理得,即,两式联立可得,所以的周长为;若选②:为线段的中点,故,,因为,,故,整理可得,在中,由余弦定理得,所以,两式联立可得,所以,从而的周长为.18.【详解】(1)由已知当,,,,又,,,所以数列为等差数列,公差为,,cos 2B B +=π2sin 26B ⎛⎫+= ⎪⎝⎭πsin 16B ⎛⎫+= ⎪⎝⎭()0,πB ∈ππ7π,666B ⎛⎫+∈ ⎪⎝⎭ππ62B +=π3B =BD ABC ∠ABC ABD BCD S S S =+△△△1π1π1πsin 3sin 3sin 232626ac a c =⨯+⨯)ac a c =+ABC V 222π2cos 3b ac ac =+-2212a c ac +-=a c +=ABC V a b c ++=+=D AC ()12BD BA BC =+ ()()222211244BD BA BC BA BA BC BC =+=+⋅+ π3B =3BD =221πs 2943co c c a a ⎛⎫+⋅+= ⎪⎝⎭2236a c ac ++=ABC V 222π2cos 3b ac ac =+-2212a c ac +-=12ac =a c +=ABC V a b c ++=+=2n ≥N n *∈n a =0n a ≠0≠1n n n a S S -=-1n n S S -=-=1=11==n =所以当,时,,又,所以,,设等比数列的公比为,因为,,所以,,所以,所以(2)由(1),所以,所以数列的前项和,所以.(3)由(1)知,当时,,则当时,,即对任意的,都有,所以19.【详解】(1)(i )由,令,则,所以F (x )在(0,+∞)上单调递增,2n ≥N n *∈121n a n n n =+=+-=-11211a ==⨯-21n a n =-N n *∈{}n b q 110a b +=2233443a b a b a b ==++-111b a =-=-323357q q q -=-+=1q =-()1n n b =-()()()()1111212142121n nn n c n n n n --⎛⎫==+ ⎪-⋅+-+⎝⎭()()111142121n n n c n n +⎛⎫--=- ⎪ ⎪-+⎝⎭{}n c n ()()11111111111114343545742121n n n T n n +⎛⎫--⎛⎫⎛⎫⎛⎫=--+++--+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭()11484n nT n -=-++222111(21)441n a n n n ==--+2n ≥22111114441n a n n n n ⎛⎫<=- ⎪--⎝⎭22212111111111111151111412231444n a a a n n n ⎛⎫⎛⎫+++<+-+-++-=+-<+= ⎪ ⎪-⎝⎭⎝⎭ 1n =211514a =<*n ∈N 22221121111514n a a a a =≤+++< 222121111n a a a ⎡⎤+++=⎢⎣⎦ ()e e sh 2x xx --=()()()e e sh ,02x xF x x x x x --=-=->()e e 102x xF x -'+=->所以,所以当时,成立;(ii )令,则,令,则,因此φ(x )在(0,+∞)上单调递增;所以,故,即,所以在(0,+∞)上单调递增,即,所以当时,成立;(2)由时,成立,令,且, 则,即 ,由题意,令且,可得,因为,所以,由①当时,,()()()()sh 0=sh 000F x x x F =->-=0x >()sh x x >()()21cos 1,02H x x x x =-+>()sin H x x x -'=+()sin x x x ϕ=-()1cos 0x x ϕ'=-≥()()sin 00x x x ϕϕ=-≥=sin x x >()sin 0H x x x '=-+>()H x ()()21cos 1002H x x x H =-+>=0x >21cos 12x x >-0x >21cos 12x x >-1,1x n n =≥*N n ∈211cos 12n n>-222112211cos 111124412121n n n n n n ⎛⎫>-=->-=-- ⎪--+⎝⎭()()()sh 22sh ch x x x =⋅1,1x n n =≥*N n ∈211sh 2sh ch n n n ⎛⎫⎛⎫⎛⎫=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()e e ch 12x xx -+=>2111sh 2sh ch 2sh n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=⋅> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭0x >()sh x x >所以令且,可得,所以,由前面解答过程得,对任意成立,令且,可得 ,所以,又且,所以,所以 所以可得 ,即可得.1,1x n n =≥*N n ∈11sh n n⎛⎫> ⎪⎝⎭21112sh 2sh ch 2sh n n n n n⎛⎫⎛⎫⎛⎫⎛⎫=⋅>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭0,sin x x x >>1,1x n n =≥*N n ∈11sin n n>21112111sh 2sh ch 2sh 2sin 2cos tan n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅>>>=⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1n ≥*N n ∈101n<≤2sh 1112cos 2112121tan n n n n n ⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎝⎭>>-- ⎪ ⎪⎢⎥-+⎛⎫⎝⎭⎝⎭⎣⎦ ⎪⎝⎭()()22sh sh sh 2sh 11111132111111tan13352121tan tan tan 23n n n n⎛⎫⎛⎫ ⎪ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭++++>--+-++-- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 242222121n n n n n =-+=-++()()()*22sh sh sh 2sh 1432N 111tan121tan tan tan 23n n n n n n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++++>-∈+。
重庆市2023-2024学年高三上学期10月月考数学试题含答案
重庆高2024届高三上10月质量监测数学试题(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共计40分.1.定义集合,A B 的一种运算:2{|,,}A B x x b a a A b B ⊗==-∈∈,若{1,4},{1,2}A B ==-,则A B ⊗中的元素个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】计算可求得{}0,3,3A B ⊗=-,可得结论.【详解】因为{1,4},{1,2}A B ==-,当1,1a b ==-时,20x b a =-=,当1,2a b ==时,23x b a =-=,当4,1a b ==-时,23x b a =-=-,当4,2a b ==时,20x b a =-=,所以{}0,3,3A B ⊗=-,故A B ⊗中的元素个数为3.故选:C.2.直线10ax y +-=被圆22(1)(4)4x y -+-=所截得的弦长为a =()A.43-B.34-C.3D.2【答案】A 【解析】【分析】先求出圆心到直线10ax y +-=的距离,结合点到直线的距离公式,即可得出a 的值.【详解】圆22(1)(4)4x y -+-=的圆心为(1,4),半径为2r =,1=,根据点到直线距离公式,知圆心(1,4)到直线10ax y +-=的距离1d ==,化简可得22(3)1a a +=+,解得43a =-.故选:A.3.已知:p x a ≥,:||6q x a +<,且p 是q 的必要不充分条件,则a 的取值范围为()A.(−∞,−3]B.(−∞,−3)C.[3,+∞)D.(3,+∞)【答案】A 【解析】【分析】由题意可得6a a ≤--,求解即可.【详解】由||6x a +<,解得66a x a --<<-,由p 是q 的必要不充分条件,所以6a a ≤--,解得3a ≤-,所以a 的取值范围为(,3]-∞-.故选:A.4.下列说法中,正确的是()A.设一组样本数据12,,,n x x x 的方差为0.1,则数据1210,10,,10n x x x 的方差为1B.已知数据2,3,5,7,8,9,10,11,则该组数据的上四分位数为9C.一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数近似相等D.频率分布直方图中各小长方形的面积等于相应各组的频数【答案】C 【解析】【分析】依据方差的性质计算可判断选项A ;求得四分位数可判断选项B ;依据中位数定义和平均数定义去判断选项C ;由频率直方图的意义可判断D.【详解】对于A ,设一组样本数据12,,,n x x x 的方差为0.1,则数据1210,10,,10n x x x 的方差为2100.110⨯=,故A 错误;对于B ,因为80.756⨯=,所以该组数据的上四分位数为9109.52+=,故B 错误;对于C ,一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数近似相等,故C 正确;对于D ,频率分布直方图中各小长方形的面积等于相应各组的频率,故D 错误.故选:C.5.已知3a log 6=,5log 10b =,7log 14c =,则()A.b a c << B.c b a<< C.a b c<< D.a c b<<【答案】B 【解析】【分析】根据对数的运算和对数函数的性质即可求解.【详解】因为3321log 61log 21,log 3a ==+=+5521log 101log 21log 5b ==+=+,7721log 141log 21log 7c ==+=+且222log 7>log 5log 3>0>;所以a b c >>.故选:B.6.已知2F 是椭圆()222210+=>>x y a b a b的右焦点,点P 在椭圆上,()220OP OF PF +⋅= ,且22OP OF b +=,则椭圆的离心率为()A.3B.5C.4D.5【答案】A 【解析】【分析】设2PF 的中点为Q ,根据向量的线性运算法则及数量积的定义可得2OQ PF ⊥,从而得到12PF PF ⊥,根据22OP OF b +=得到1||2PF b =,再根据椭圆的定义得到2||PF ,在直角三角形中利用勾股定理得到23b a =,最后根据离心率公式计算可得;【详解】解:设2PF 的中点为Q ,则22OP OF OQ += 由22()0OP OF PF +⋅= ,即220OQ PF ⋅=所以2OQ PF ⊥,连接1PF 可得1//OQ PF ,所以12PF PF ⊥,因为22OP OF b += ,即22OQ b =,即1||2PF b=所以21||2||22PF a PF a b =-=-,在12R t PF F 中,2221212||||||PF PF F F +=,即()()2222224c b a b -+=,又222c a b =-,所以222222b a b ab a b +=+--,所以232b ab =,即23b a =解得22222513c a b b e a a a -===-,故选:A7.设函数f(x)是定义在R 上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=212x⎛⎫- ⎪ ⎪⎝⎭,则在区间(-2,6)上关于x 的方程f(x)-log 8(x+2)=0的解的个数为A.4 B.3C.2D.1【答案】B 【解析】【分析】把原方程转化为()y f x =与8log (2)y x =+的图象的交点个数问题,由(2)(2)f x f x +=-,可知()f x 的图象关于2x =对称,再在同一坐标系下,画出两函数的图象,结合图象,即可求解.【详解】由题意,原方程等价于()y f x =与8log (2)y x =+的图象的交点个数问题,由(2)(2)f x f x +=-,可知()f x 的图象关于2x =对称,作出()f x 在(0,2)上的图象,再根据()f x 是偶函数,图象关于y 轴对称,结合对称性,可得作出()f x 在()2,6-上的图象,如图所示.再在同一坐标系下,画出8log (2)y x =+的图象,同时注意其图象过点(6,1),由图可知,两图象在区间()2,6-内有三个交点,从而原方程有三个根,故选B.【点睛】本题主要考查了对数函数的图象,以及函数的奇偶性的应用,其中解答中熟记对数函数的性质,合理应用函数的奇偶性,在同一坐标系内作出两函数的图象,结合图象求解是解答的关键,着重考查了数形结合思想,以及转化思想的应用,属于中档试题.8.已知函数() )2023f x x =-+,,a b 满足 (2)(4)4046(,f a f b a b +-=为正实数),则242b a a ab b ++的最小值为()A.1B.2C.4D.658【答案】B 【解析】【分析】由已知构造函数()()2023g x f x =-,探讨函数()g x 的单调性、奇偶性,进而求得24a b +=,再利用基本不等式求解即得.【详解】令()()2023)g x f x x =-=-||x x >≥,得()g x 定义域为R ,()()))ln10g x g x x x -+=+==,即函数()g x 是奇函数,而())g x x -=-,当0x ≥时,函数u x =+是增函数,又ln y u =是增函数,于是函数()g x 在[0,)+∞上单调递减,由奇函数的性质知,函数()g x 在(,0]-∞上单调递减,因此函数()g x 在R 上单调递减,由(2)(4)4046f a f b +-=,得(2)2023(4)20230f a f b -+--=,即(2)(4)0g a g b +-=,所以(2)(4)(4)g a g b g b =--=-,则24a b =-,即24a b +=,又0,0a b >>,所以244422(2)4b b b a ab b a b a a a a a b b +=+=+≥++,当且仅当164,99a b ==时取等号,所以242b a a ab b ++的最小值为2.故选:B.二、多项选择题:本大题共4小题,每小题5分,共计20分.9.已知1,0a b c >><,则()A.c a <cbB.()ac ->()bc -C.a cb a +⎛⎫< ⎪⎝⎭b cb a +⎛⎫ ⎪⎝⎭D.()log b a c ->()log a b c -【答案】CD 【解析】【分析】对于A,B ,取特殊值判断即可;对于C,利用指数函数的单调性判断即可;对于D,利用对数函数的单调性判断即可.【详解】对于A,不妨取4,2,c 1a b ===-,则c 1c 1,42a b =-=-,此时c ca b>,故A 错误;对于B,不妨取4,2,c 1a b ===-,则42()11,()11a b c c -==-==,此时()()a b c c -=-,故B 错误;对于C,因为1a b >>,所以01b a <<,所以指数函数xb y a ⎛⎫= ⎪⎝⎭在R 上单调递减,因为0c <,所以a c b c +>+,所以a cb cb b a a ++⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 正确;对于D,因为1a b >>,所以对数函数log b y x =和log a y x =在()0,∞+上单调递增,因为0c <,所以1a c b c ->->,所以()()log log 0b b ac b c ->->又()()log log 0b a b c b c ->->,所以()()log log b a a c b c ->-,故D 正确.故选:CD.10.第19届亚运会于2023年9月23日至10月8日在杭州举行.现安排小明、小红、小兵3名志愿者到甲、乙、丙、丁四个场馆进行服务.每名志愿者只能选择一个场馆,且允许多人选择同一个场馆,下列说法中正确的有()A.所有可能的方法有43种B.若场馆甲必须有志愿者去,则不同的安排方法有37种C.若志愿者小明必须去场馆甲,则不同的安排方法有16种D.若三名志愿者所选场馆各不相同,则不同的安排方法有24种【答案】BCD 【解析】【分析】利用分步乘法计数原理判断AC 选项的正确性,利用分类加法计数原理以及组合数计算判断B 选项的正确性,利用排列数计算判断D 选项的正确性.【详解】对于A ,所有可能的方法有34种,故A 错误.对于B ,分三种情况:第一种:若有1名志愿者去场馆甲,则去场馆甲的志愿者情况为13C ,另外两名同学的安排方法有339⨯=种,此种情况共有13C 927⨯=种,第二种:若有两名志愿者去场馆甲,则志愿者选派情况有23C ,另外一名志愿者的排法有3种,此种情况共有23C 39⨯=种,第三种情况,若三名志愿者都去场馆甲,此种情况唯一,则共有279137++=种安排方法,B 正确.对于C ,若小明必去甲场馆,则小红,小兵两名志愿者各有4种安排,共有4416⨯=种安排,C 正确.对于D ,若三名志愿者所选场馆各不同,则共有34A 24=种安排,D 正确.故选:BCD.11.已知双曲线22:1(01)91x y C k k k +=<<--,则()A.双曲线C 的焦点在x 轴上B.双曲线C 的焦距等于C.双曲线CD.双曲线C的离心率的取值范围为1,3⎛⎫⎪ ⎪⎝⎭【答案】ACD 【解析】【分析】根据双曲线的简单几何性质,对各选项逐一分析即可得答案.【详解】解:对A :因为01k <<,所以90k ->,10k -<,所以双曲线22:1(01)91x y C k k k-=<<--表示焦点在x 轴上的双曲线,故选项A 正确;对B :由A 知229,1a k b k =-=-,所以222102c a b k =+=-,所以c =所以双曲线C的焦距等于)21c k <<=,故选项B 错误;对C :设焦点在x 轴上的双曲线C 的方程为()222210,0x ya b a b-=>>,焦点坐标为(),0c ±,则渐近线方程为by x a=±,即0bx ay ±=,所以焦点到渐近线的距离d b ==,所以双曲线22:1(01)91x y C k k k -=<<--C 正确;对D :双曲线C的离心率e ===,因为01k <<,所以8101299k <-<-,所以13,e ⎛⎫ ⎪ ⎪⎝=⎭,故选项D 正确.故选:ACD.12.信息熵常被用来作为一个系统的信息含量的量化指标,从而可以进一步用来作为系统方程优化的目标或者参数选择的判据.在决策树的生成过程中,就使用了熵来作为样本最优属性划分的判据.信息论之父克劳德·香农给出的信息熵的三个性质:①单调性,发生概率越高的事件,其携带的信息量越低;②非负性,信息熵可以看作为一种广度量,非负性是一种合理的必然;③累加性,即多随机事件同时发生存在的总不确定性的量度是可以表示为各事件不确定性的量度的和.克劳德⋅香农从数学上严格证明了满足上述三个条件的随机变量不确定性度量函数具有唯一形式21()log1nii i H X CP P ==-=∑,令1=C ,设随机变量X 所有取值为1,2,3,⋯,n ,且()()01,2,3,,i P X i P i n ==>= ,11nii P ==∑,则下列说法正确的有()A.1n =时,()0H X =B.n =2时,若1P ∈10,2⎛⎫⎪⎝⎭,则()H X 的值随着1P的增大而增大C.若1P =2P =112n -,1k P +=2kP (2,N k k ≥∈),则()2122n H X -=-D.若2n m =,随机变量Y 的所有可能取值为12m ,,,,且()()()()2112P Y j P X j P X m j j m ===+=+-= ,,,,,则()()H X H Y ≤【答案】ABC 【解析】【分析】A 直接利用公式求解;B 先求出()2log H X n =,再判断单调性即可求解;CD 分别求出()H X 和()H Y ,结合对数函数单调性放缩即可求解.【详解】对于A :若1n =,则11,1i P ==,因此()()21log 10,A H x =-⨯=正确;对于B :当2n =时,()()()112112110,,log 1l 12P H x PP P og P ⎛⎫∈=---- ⎪⎝⎭,令()()()221log 1log 1,0,2f t t t t t t ⎛⎫=----∈ ⎪⎝⎭,则()()2221log log 1log 10f t t t t ⎛⎫=-+-=-> ⎪⎝⎭',即函数()f t 在10,2⎛⎫⎪⎝⎭上单调递增,所以()H x 的值随着1P的增大而增大,B 正确;对于C :()12111,22,N 2k k n P P P P k k +-===≥∈,则22211212,222k k k n n k P P k ----+=⨯==≥,22111111log log 222k k n k n k n k n k P P -+-+-+-+==-,,而1212111111log log 222n n n n P P ----==-,于是()2111222111221log ...222222n k k n n n n k n n n n H x P P ----=----=+=+++++∑1122112212222222n n n n n n n n n n ------=-++++++ 令231123122222n n n n nS --=+++++ ,则234112312221222n n n S n n +-=+++++ ,两式相减得2311111111111222112222222212n n n n n n n n n S +++⎛⎫- ⎪+⎝⎭=++++-=-=-- ,因此222n n n S +=-,()112112122222222nn n n n n n n n n n n H x S -----+=-+=-+-=-,C 正确;对于D ,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()()()()21,1,2,,P Y j P X j P X m j j m ===+=+-=⋯,222211()l 1og log m mi i i i i iH x P P P P ===-=∑∑122221222122121111log log log log m m m m P P P P P P P P --=++++ ()()()()122221212122211111log log log m m m m mm m m H Y P P P P P P P P P P P P -+-+=+++++++++ 12222122212221221121111log log log log m m m m m mP P P P P P P P P P P P ---=++++++++ 由于()01,2,,2i P i m >= ,即有2111i i m i P P P +->+,则222111log log i i m iP P P +->+,因此222111log log i i i i m iP P P P P +->+,所以()()H X H Y >,D 错误.故选:ABC .三、填空题:本大题共4小题,每小题5分,共20分.13.已知P 为椭圆221123x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,1260F PF ∠︒=,则12F PF 的面积为_______.【解析】【分析】结合椭圆定义与余弦定理、面积公式计算即可得.【详解】由已知得a =,b =,所以3c ===,从而1226F F c ==,在12F PF 中,2221212122cos 60F F PF PF PF PF ⋅︒=+-,即22121236PF PF PF PF ⋅=+-①,由椭圆的定义得12PF PF +=,即221212482PF PF PF PF ⋅=++②,由①②得124PF PF ⋅=,所以12121sin 602F PF S PF PF ⋅⋅=︒= .14.若a ,0b >,且3ab a b =++,则ab 的最小值是____________.【答案】9【解析】【分析】利用基本不等式得3a b ab +=-≥,再解不等式可得结果.【详解】因为3a b ab +=-≥(当且仅当a b =时,等号成立),所以230--≥,所以1)0-+≥3≥,所以9ab ≥,所以ab 的最小值为9.故答案为:915.设关于x 的不等式220(0)x ax a a -+<<的解集为A ,若集合A 中恰有两个整数解,则实数a 的取值范围为___________.【答案】1[1,3--【解析】【分析】令2()2f x x ax a =-+,根据不等式220(0)x ax a a -+<<解集A 中恰有两个整数解,结合二次函数性质判断整数解为0,1-,从而列出不等式,求得答案.【详解】由题意可得当a<0时,280a a ∆=->,令2()2f x x ax a =-+,则其图象对称轴为02ax =<,且(0)20f a =<,故关于x 的不等式220(0)x ax a a -+<<解集A 中恰有两个的整数解为0,1-,则(1)130f a -=+<且(2)440f a -=+≥,解得113a -≤<-,故答案为:1[1,3--.16.已知函数()12e 0ƒ210x x x x x x -⎧>⎪=⎨--+≤⎪⎩,,,若方程()2f x ⎡⎤⎣⎦−()bf x +4=0有6个相异的实数根,则实数b 的取值范围是__________.【答案】44e eb <<+【解析】【分析】根据题意,作出函数()1|2e ,021,0x x f x x x x -⎧>=⎨--+≤⎩∣的图象,进而数形结合,将问题转化为方程240t bt -+=有两个不相等的实数根12,t t ,再结合二次函数零点分布求解即可.【详解】根据题意,作出函数()1|2e ,021,0x x f x x x x -⎧>=⎨--+≤⎩∣的图象,如图:令()t f x =,因为方程()()240fx bf x -+=有6个相异的实数根,所以方程240t bt -+=有两个不等的实根,所以2160b ∆=->,解得4b <-或4b >,不妨设这两根12t t <,则1212t t =⎧⎨=⎩或12122e t t <<⎧⎨<<⎩,当1212t t =⎧⎨=⎩时,123t t b +==,且1224t t ==,所以无解;当12122e t t <<⎧⎨<<⎩时,令()24g t t bt =-+,只需()()()1020e 0g g g ⎧>⎪<⎨⎪>⎩,即21404240e e 40b b b -+>⎧⎪-+<⎨⎪-+>⎩,解得44e e b <<+,终上所述:44e eb <<+.故答案为:44e eb <<+.四、解答题:本大题共6小题,共70分.17.已知函数() 938xf x a x =-⋅+.(1)当2a =时,求不等式() 16f x ≥的解集;(2)若函数() f x 在()0,∞+有零点,求实数a .【答案】(1)[)3log 4,+∞(2))⎡+∞⎣【解析】【分析】(1)令()30xt t =>,则()()280g t t at t =-+>,再由()16f x ≥,解不等式即可;(2)函数()f x 在0,+∞有零点等价于函数()g t 在1,+∞上有零点,即8a t t=+在1,+∞上有解,由基本不等式求出a 的取值范围.【小问1详解】因为()938xf x a x =-⋅+,令()30xt t =>,则()()280g t t at t =-+>,当2a =时,()()2280g t t t t =-+>,()16f x ≥即()16g t ≥,即2280t t --≥,由0t >,解得4t ≥,即34x ≥,解得3log 4x ≥,所以原不等式的解集为[)3log 4,∞+.【小问2详解】因为函数3x t =在R 上单调递增,所以函数()f x 在0,+∞有零点等价于函数()g t 在1,+∞上有零点,280t at -+=由大于1的解,即8a t t=+在1,+∞上有解,因为8t t +≥=8t t =,即t =时等号成立,得a ≥所以实数a 的取值范围为)∞⎡+⎣.18.已知双曲线的中心在原点,焦点在x 轴上,离心率为2,且过点(4,P .(1)求双曲线的方程;(2)直线l y kx =+:C 的左支交于A ,B 两点,求k 的取值范围.【答案】(1)22166x y -=(2)13k <<【解析】【分析】(1)根据题意求解双曲线方程即可;(2)联立直线和双曲线方程,通过判别式大于0,及12120,0x x x x +求解即可.【小问1详解】双曲线的中心在原点,焦点在x 轴上,设双曲线的方程为22221(0,0)x ya b a b-=>>由c e a ===,可得a b =,由双曲线过点(4,,可得2216101a b-=,解得6a b ==,则双曲线的标准方程为22166x y -=;【小问2详解】联立直线与双曲线方程22166x y y kx ⎧-=⎪⎨⎪=⎩,化简得()22180kx---=,则210k -≠,假设1122()A x y B x y ,,(,),则()222122122Δ)3213224001801k k x x k x x k ⎧=+-=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎩,解得13k <<.19.已知()x f x e ex =-+(e 为自然对数的底数)(Ⅰ)求函数()f x 的最大值;(Ⅱ)设21()ln 2g x x x ax =++,若对任意1(0,2]x ∈,总存在2(0,2]x ∈.使得()()12g x f x <,求实数a 的取值范围.【答案】(Ⅰ)0;(Ⅱ)1,ln 212⎛⎫-∞-- ⎪⎝⎭【解析】【分析】(Ⅰ)求出函数导数,判断出单调性,即可求出最值;(Ⅱ)问题转化为()()12max g x f x <,即()0g x <在(]0,2恒成立,分离参数可得ln 12x a x x ->+,构造函数()(]ln 1,0,22x h x x x x =+∈,利用导数求出函数的最大值即可.【详解】(Ⅰ) ()x f x e ex =-+,()xf x e e '∴=-+,令()0f x '>,解得1x <;令()0f x '<,解得1x >,()f x \在−∞,0单调递增,在()1,+∞单调递减,()()max 10f x f ∴==;(Ⅱ)对任意1(0,2]x ∈,总存在2(0,2]x ∈.使得()()12g x f x <等价于()()12max g x f x <,由(Ⅰ)()()2max 10f x f ==,则问题转化为()0g x <在(]0,2恒成立,化得21ln ln 122x xx a x x x +->=+,令()(]ln 1,0,22x h x x x x =+∈,则()21ln 12x h x x -'=+,当(]0,2x ∈时,1ln 0x ->,得()0h x '>,()h x ∴在(]0,2单调递增,()()max 12ln 212h x h ∴==+,则1ln 212a ->+,即1ln 212a <--,故a 的取值范围为1,ln 212⎛⎫-∞-- ⎪⎝⎭【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是将问题转化为()()12max g x f x <,即()0g x <在(]0,2恒成立.20.图,在直三棱柱111ABC A B C -中,,,O M N 分别为线段11,,BC AA BB 的中点,P 为线段1AC 上的动点,11,3,4,82AO BC AB AC AA ====.(1)求三棱锥1C C MN -的体积;(2)试确定动点P 的位置,使直线MP 与平面11BB C C 所成角的正弦值最大.【答案】(1)16(2)P 为1AC 的中点【解析】【分析】(1)由题意可得BA ⊥平面11AA C C ,进而可证MN ⊥平面11AA C C ,利用等体积法可求三棱锥1C C MN -的体积;(2)以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,发现为的中点时所成角的正弦值最大.【小问1详解】在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,因为AB ⊂平面ABC ,所以1CC AB ⊥,由12AO BC =,O 是BC 的中点,则BA AC ⊥,因为1AC CC C = ,1,AC CC ⊂平面11AA C C ,所以BA ⊥平面11AA C C ,因为,M N 分别为线段11,AA BB 的中点,所以//MN AB ,所以MN ⊥平面11AA C C ,因为13,4,8AB AC AA ===,所以N 平面1CC M 的距离为3,因为四边形11AA C C 为矩形,M 为线段1AA 的中点,所以116CC M S = ,所以111163163C C MN N CC M V V --==⨯⨯=.【小问2详解】在ABC V 中,因为O 是BC 的中点,12AO BC =,所以BA AC ⊥,因为1AA ⊥平面ABC ,,AB AC ⊂平面ABC ,所以11,,AA AB AA AC ⊥⊥以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,由题设可得11(0,0,0),(3,0,0),(0,4,0),(0,4,8),(0,0,4),(3,0,8),(3,0,4)A B C C M B N ,1(3,4,0),(0,0,8)BC BB =-=,设平面11BB C C 的法向量为(,,)n x y z =,则1·340·80BC n x y BB n z ⎧=-+=⎪⎨==⎪⎩ ,令4x =,得3,0y z ==,所以平面11BB C C 的法向量为(4,3,0)n =,设(,,)P a b c ,1(01)AP mAC m =≤≤,则(,,)(0,4,8)a b c m =,所以(0,4,8)P m m ,(0,4,84)MP m m =-,设直线MP 与平面11BB C C 所成的角为θ,则222||sin ||||516(84)5541n MP n MP m m m m θ===+--+,若0m =,sin 0θ=此时,点P 与A 重合;若0m ≠,令11t m=≥,则2233355545(2)1sin t t t θ=≤-+-+=,当2t =,即12m =,P 为1AC 的中点时,sin θ取得最大值35.21.树德中学为了调查中学生周末回家使用智能手机玩耍网络游戏情况,学校德育处随机选取高一年级中的100名男同学和100名女同学进行无记名问卷调查.问卷调查中设置了两个问题:①你是否为男生?②你是否使用智能手机玩耍网络游戏?调查分两个环节:第一个环节:先确定回答哪一个问题,让被调查的200名同学从装有3个白球,3个黑球(除颜色外完全相同)的袋子中随机摸取两个球,摸到同色两球的学生如实回答第一个问题,摸到异色两球的学生如实回答第二个问题;第二个环节:再填写问卷(只填“是”与“否”).回收全部问卷,经统计问卷中共有70张答案为“是”.(1)根据以上的调查结果,利用你所学的知识,估计该校中学生使用智能手机玩耍网络游戏的概率;(2)据核查以上的200名学生中有30名男学生使用智能手机玩耍网络游戏,按照(1)中的概率计算,依据小概率值α=0.15的独立性检验,能否认为中学生使用智能手机玩耍网络游戏与性别有关联;若有关联,请解释所得结论的实际含义.参考公式和数据如下:()()()()()22n ad bcn a b c da b c d a c b dχ-==+++ ++++,.α0.150.100.050.0250.005 xα 2.072 2.706 3.841 5.0247.879【答案】(1)1 4(2)有关联,答案见解析【解析】【分析】(1)由题可得摸到同色两球的概率,进而可得回答第一个问题的人数及选择“是”的人数,再利用古典概型概率公式即得;(2)通过计算2χ,进而即得.【小问1详解】因为摸到同色两球的概率223326C+C2C5 p==,所以回答第一个问题的人数为2 200805⨯=人,回答第二个问题的人数为20080120-=人,因为男女人数相等,是等可能的,所以回答第一个问题,选择“是”的同学人数为180402⨯=人,则回答第二个问题,选择“是”的同学人数为704030-=人,所以估计中学生在考试中有作弊现象的概率为301 1204=.【小问2详解】由(1)可知200名学生使用智能手机玩网络游戏估计有50人,则有20名女生使用智能手机玩网络游戏男女合计使用智能手机玩游戏302050不用智能手机玩游戏7080150100100200零假设为:0H 使用智能手机玩耍游戏与性别无关,()222003080207082.67 2.072501501001003χ⨯⨯-⨯==≈>⨯⨯⨯根据小概率值0.15α=的独立性检验,推断0H 不成立,因此认为使用智能手机玩耍网络游戏与性别有关,此推断犯错误的概率不大于0.15.在男生中使用智能手机玩耍游戏和不使用智能手机玩耍游戏的概率分别为0.3,0.7,在女生中使用智能手机玩耍游戏和不使用智能手机玩耍游戏的概率分别为0.2,0.8,在被调查者中男生使用智能手机玩耍游戏是女生的1.5倍,于是根据概率稳定概率的原理,我们可以认为男士使用智能手机玩耍网络游戏的概率大于女生使用智能手机玩耍网络游戏的概率.22.在平面直角坐标系中,动点M 到()10,的距离等于到直线=−1的距离.(1)求M 的轨迹方程;(2)P 为不在x 轴上的动点,过点P 作(1)中M 的轨迹的两条切线,切点为A ,B ;直线AB 与PO 垂直(O 为坐标原点),与x 轴的交点为R ,与PO 的交点为Q ;(ⅰ)求证:R 是一个定点;(ⅱ)求PQ QR的最小值.【答案】(1)24y x=(2)(ⅰ)证明见解析;(ⅱ)【解析】【分析】(1)利用抛物线的定义求M 的轨迹方程;(2)(ⅰ)设点()()()001122,,,,,P x y A x y B x y ,由切线AP 和BP 的方程,得到直线AB 的方程为()002yy x x =+,又直线AB 与PO 垂直得02x =-,则直线AB 的方程()022yy x =-,可得所过定点.(ⅱ)联立直线AB 与直线OP 的方程得交点Q 的坐标,表示出PQ QR,结合基本不等式求最小值.【小问1详解】因为动点M 到()1,0的距离等于到直线=−1的距离,所以M 的轨迹为开口向右的抛物线,又因为焦点为()1,0,所以轨迹方程为24y x =.【小问2详解】(ⅰ)证明:设点()()()001122,,,,,P x y A x y B x y ,设以1,1为切点的切线方程为()11y y k x x -=-,联立抛物线方程,可得2114440ky y y kx -+-=,由()21Δ420ky =-=,得12k y =,所以切线AP :()112yy x x =+,同理切线BP :()222yy x x =+点P 在两条切线上,则010102022()2()y y x x y y x x =+⎧⎨=+⎩,由于()()1122,,,A x y B x y 均满足方程()002yy x x =+,故此为直线AB 的方程,由于垂直1AB OP k k ⋅=-即0021y y x ⋅=-,则02x =-,所以直线AB 的方程()022yy x =-,恒过()2,0R ;(ⅱ)解:由(ⅰ)知02x =-,则()()02,,2,0P y R -,直线()0:22AB yy x =-联立直线AB 与直线OP 的方程()00222y y x yy x ⎧=-⎪⎨⎪=-⎩得0220048,44y Q y y ⎛⎫- ⎪++⎝⎭,()()()()()()2223220000222202220000224220022222200021684824444||=416||4824444y y y y y y y y y PQ y y RQ y yyy y ++⎛⎫⎛⎫-+--+- ⎪ ++++⎝⎭⎝⎭⎛⎫⎛⎫-+-+- ⎪ ++++⎝⎭⎝⎭()()()()()22222222000004222004888441644y y y y y y y y y +++++==++422000220016641164.16844y y y y y ⎛⎫++=⋅=++≥ ⎪⎝⎭因此||||PQ QR ≥0y =±时取等号.即PQ QR的最小值是.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题,求最值经常与基本不等式相联系.。
2019-2020学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)
2019-2020学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={x|−1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2, +∞)B.[2, +∞)C.(−∞, −1)D.(−∞, −1]【答案】B【考点】集合的包含关系判断及应用【解析】由集合M={x|−1<x<2},N={x|x<a},M⊆N,由集合包含关系的定义比较两个集合的端点可直接得出结论【解答】∵集合M={x|−1<x<2},N={x|x<a},M⊆N,∴a≥2,实数a的取值范围是[2, +∞)2. 在复平面内与复数z=5i1+2i所对应的点关于虚轴对称的点为A,则A对应的复数为()A.1+2i B.1−2i C.−2+i D.2+i【答案】C【考点】复数的运算【解析】利用复数的运算法则、几何意义、对称性,即可得出.【解答】复数z=5i1+2i =5i(1−2i)(1+2i)(1−2i)=5(i+2)5=2+i所对应的点(2, 1)关于虚轴对称的点为A(−2, 1),∴A对应的复数为−2+i.3. 条件p:|x+1|>2,条件q:13−x>1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【考点】充分条件、必要条件、充要条件【解析】先求出当命题为真时x 的范围,再根据补集思想求出命题为假时的x 的范围,然后根据题意观察两个集合之间的关系由小范围推大范围是充分不必要条件,即可得到答案. 【解答】由题意得:条件p:|x +1|>2,即p:x >1或x <−3. 所以¬p:−3≤x ≤1.由题意得:条件q:13−x >1,即q:2<x <3. 所以¬q:x ≥3或x ≤2.所以¬p 是¬q 的充分不必要条件.4. 函数f(x)=√(log 2x)2−1的定义域为( )A.(0, 12)B.(2, +∞)C.(0, 12)∪(2, +∞)D.(0, 12]∪[2, +∞)【答案】 C【考点】函数的定义域及其求法 【解析】根据函数出来的条件,建立不等式即可求出函数的定义域. 【解答】解:要使函数有意义,则(log 2x)2−1>0(x >0), 即log 2x >1或log 2x <−1, 解得x >2或0<x <12,即函数的定义域为(0, 12)∪(2, +∞), 故选C.5. 设f(x)=lg(21−x +a)是奇函数,且在x =0处有意义,则该函数是( ) A.(−∞, +∞)上的减函数 B.(−∞, +∞)上的增函数 C.(−1, 1)上的减函数 D.(−1, 1)上的增函数 【答案】 D【考点】函数奇偶性的性质与判断 复合函数的单调性 【解析】由f(0)=0,求得a 的值,可得f(x)=lg(1+x1−x ),由此求得函数f(x)的定义域.再根据f(x)=lg(−1−2x−1),以及t =−1−2x−1在(−1, 1)上是增函数,可得结论. 【解答】由于f(x)=lg(21−x+a)是奇函数,且在x=0处有意义,故有f(0)=0,即lg(2+a)=0,解得a=−1.故f(x)=lg(21−x −1)=lg(1+x1−x).令1+x1−x>0,求得−1<x<1,故函数f(x)的定义域为(−1, 1).再根据f(x)=lg(1+x1−x )=lg(−1−2x−1),函数t=−1−2x−1在(−1, 1)上是增函数,可得函数f(x)在(−1, 1)上是增函数,6. 函数y=cos(sin|x|)的图象大致是()A. B.C. D.【答案】B【考点】函数的图象与图象的变换【解析】作函数y=cos(sin|x|)的图象,从而确定答案.【解答】作函数y=cos(sin|x|)的图象如下,7. 定义:若函数f(x)的图象经过变换T后所得的图象对应的函数与f(x)的值域相同,则称变换T是f(x)的同值变换,下面给出了四个函数与对应的变换:①f(x)=(x−1)2,T:将函数f(x)的图象关于y轴对称;②f(x)=2x−1−1,T:将函数f(x)的图象关于x轴对称;③f(x)=xx+1,T:将函数f(x)的图象关于点(−1, 1)对称.④f(x)=sin(x+π3),T:将函数f(x)的图象关于点(−1, 0)对称.其中T是f(x)的同值变换的有()A.①②B.①③④C.①④②D.①③【答案】B【考点】函数的图象与图象的变换 【解析】根据同值变换的定义,先求出对应的函数解析式,求出相应的值域,结合值域关系进行判断即可. 【解答】①f(x)=(x −1)2的值域为[0, +∞),T :将函数f(x)的图象关于y 轴对称得到f(x)=(−x −1)2=(x +1)2的值域为[0, +∞),值域相同是同值变换.②f(x)=2x−1−1>0−1=−1,值域为(−1, +∞),将函数f(x)的图象关于x 轴对称得到−y =2x−1−1,即y =−2x−1+1<1,两个函数的值域不相同,不是同值变换. ③f(x)=xx+1=x+1−1x+1=1−1x+1,函数关于(−1, 1)对称,函数值域为{y|y ≠1},将函数f(x)的图象关于点(−1, 1)对称后函数是自身,满足值域相同,是同值变换 ④f(x)=sin(x +π3)的值域为[−1, 1],则f(x)的图象关于点(−1, 0)对称后的值域仍然为[−1, 1],则两个函数的值域相同,是同值变换. 故T 是f(x)的同值变换的有①③④,8. 如图所示的程序框图中,若f(x)=x 2−x +1,g(x)=x +4,且ℎ(x)≥m 恒成立,则m 的最大值是( )A.4B.3C.1D.0 【答案】 B【考点】 程序框图 【解析】由已知中的程序框图可得该程序的功能是计算并输出分段函数:ℎ(x)={x 2−x +1x 2−x +1≥x +4x +4x 2−x +1≤x +4的值,数形结合求出ℎ(x)的最小值,可得答案. 【解答】由已知中的程序框图可得该程序的功能是:计算并输出分段函数:ℎ(x)={x 2−x +1x 2−x +1≥x +4x +4x 2−x +1≤x +4的值, 在同一坐标系,画出f(x)=x 2−x +1,g(x)=x +4的图象如下图所示:由图可知:当x =−1时,ℎ(x)取最小值3, 又∵ ℎ(x)≥m 恒成立, ∴ m 的最大值是3,9. 二次函数f(x)=x 2+bx +c(b, c ∈R),若c <0,且函数f(x)在[−1, 1]上有两个零点,求b +2c 的取值范围( ) A.(−2, 2) B.(−2, 1) C.[−2, 1) D.(−1, 1) 【答案】 C【考点】二次函数的性质 函数零点的判定定理 二次函数的图象 【解析】由题意函数f(x)与x 轴有两个交点,则f(−1)≥0,f(1)≥0进而求解. 【解答】由题意f(x)与x 轴有2个交点,且f(x)min <0,函数f(x)在[−1, 1]上有两个零点,则{f(−1)=1−b +c ≥0f(1)=1+b +c ≥0 即{b ≤1+cb ≥−1−c ∵ c <0,∴ b +2c ≤1+c +2c =1+3c <1, b +2c ≥−1−c +2c =−1+c ,若b +2c =−2,则b =−2−2c 即{−2−2c ≤1+c −2−2c ≥−1−c 解得{c ≥−1c ≤−1 ∴ c =−1满足题意,10. 设函数f(x)={|2x −1|,x ≤2−x +5,x >2 ,若互不相等的实数a ,b ,c 满足f(a)=f(b)=f(c),则2a +2b +2c 的取值范围是( ) A.(16, 32) B.(18, 34) C.(17, 35) D.(6, 7) 【答案】 B【考点】分段函数的应用 【解析】不妨设a <b <c ,利用f(a)=f(b)=f(c),结合图象可得a ,b ,c 的范围,即可1求出 【解答】互不相等的实数a ,b ,c满足f(a)=f(b)=f(c),可得a ∈(−∞, 0),b ∈(0, 1),c ∈(4, 5), 则0<2a <1,0<2b <1,16<2c <32,2a+2b+2c∈(18, 34)11. 函数f(x)是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有x2f(x1)−x1f(x2)x1−x2>0,记a=−log23⋅f(log132),b=f(1),c=4f(0.52),则()A.c<b<aB.b<a<cC.c<a<bD.a<b<c 【答案】C【考点】函数奇偶性的性质与判断【解析】设g(x)=f(x)x ,∵对任意两个不相等的正数x1,x2,都有x2f(x1)−x1f(x2)x1−x2>0,可得g(x)在(0, +∞)上单调递增,分别化简a,b,c,即可得出结论.【解答】设g(x)=f(x)x ,∵对任意两个不相等的正数x1,x2,都有x2f(x1)−x1f(x2)x1−x2>0,∴g(x)在(0, +∞)上单调递增,∵a=−log23⋅f(log132)=g(log132),b=f(1)=g(1),c=4f(0.52)=g(0.52),log132<0<0.52<1,∴c<a<b.故选:C.12. 函数f(x)=−x3+a+1,x∈[1e, e]与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[e, e3−3]B.[1, e2−4]C.[1, e3−3]D.[0, e3−4]【答案】D【考点】函数与方程的综合运用【解析】先求出函数g(x)关于x轴对称的函数,转化为f(x)与对称函数有交点,利用构造函数法,结合导数研究函数的最值即可.【解答】g(x)=3lnx的图象关于x轴对称的函数解析式为−y=3lnx,即y=−3lnx,若f(x)与g(x)=3lnx的图象上存在关于x轴对称的点,则等价为f(x)与y=−3lnx在x∈[1e, e]上有交点,即−x3+a+1=−3lnx,即a=x3−3lnx−1,x∈[1e, e]有解即可,设ℎ(x)=x3−3lnx−1,x∈[1e, e],则ℎ′(x)=3x2−3x =3(x3−1)x,当ℎ′(x)>0得1<x≤e,此时函数ℎ(x)为增函数,当ℎ′(x)<0得1e ≤x <1,此时函数ℎ(x)为减函数,即当x =1时,函数ℎ(x)取得极小值同时也是最小值ℎ(1)=1−3ln1−1=0, 当x =1e 时,ℎ(1e )=(1e )3−3ln 1e −1=(1e )3+2, 当x =e 时,ℎ(e)=e 3−3lne −1=e 3−4, 则ℎ(e)>ℎ(1e ),即ℎ(x)的取值范围是[0, e 3−4], 则实数a 的取值范围是[0, e 3−4], 故选:D .二、填空题:本大题共4个小题,每小题5分.已知命题p:∃x ∈R ,x 2+2ax +a ≤0,则命题p 的否定是________. 【答案】∀x ∈R ,x 2+2ax +a >0 【考点】 命题的否定 【解析】利用含逻辑连接词的否定是将存在变为任意,同时将结论否定,写出命题的否定. 【解答】命题p:∃x ∈R ,x 2+2ax +a ≤0,则命题p 的否定是:∀x ∈R ,x 2+2ax +a >0,若函数f(x)=log a (x +ax −4)的值域为R ,则实数a 的取值范围是________. 【答案】(0, 1)∪(1, 4] 【考点】函数的值域及其求法 【解析】问题转化为x +ax −4可以取所有正数,a >0且a ≠1,由分类讨论和基本不等式可得. 【解答】∵ 函数f(x)=log a (x +ax −4)的值域为R , ∴ x +ax −4>0,a >0且a ≠1, 当a >0时,x +ax −4≥2√a −4,故只需2√a −4≤0即可, 解不等式可得a ≤4,综上可得a 的取值范围为:0<a ≤4且a ≠1.若直线y =kx +b 是曲线y =lnx +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 【答案】 1−ln2【考点】利用导数研究曲线上某点切线方程 【解析】先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可 【解答】设y =kx +b 与y =lnx +2和y =ln(x +1)的切点分别为(x 1, kx 1+b)、(x 2, kx 2+b); 由导数的几何意义可得k =1x 1=1x2+1,得x 1=x 2+1再由切点也在各自的曲线上,可得{kx 1+b =lnx 1+2kx 2+b =ln(x 2+1) 联立上述式子解得{k =2x 1=12x 2=−12;从而kx 1+b =lnx 1+2得出b =1−ln2.若△ABC 的内角A ,B 满足sinB sinA=2cos(A +B),则当B 取最大值时,角C 大小为________. 【答案】2π3【考点】同角三角函数间的基本关系 基本不等式及其应用 【解析】已知等式变形后,利用同角三角函数间基本关系化简,利用基本不等式求出tanB 的最大值,进而求出B 的最大值,即可求出C 的度数. 【解答】已知等式变形得:sinB =2sinAcos(A +B), ∴ sinB =2sinAcosAcosB −2sin 2AsinB , ∴ tanB =2sinAcosA 1+2sin 2A=2tanA1+3tan 2A ,∵sinB sinA=2cos(A +B)=−2cosC >0,∴ C 为钝角,A 与B 为锐角,tanA >0, ∴ tanB =21tanA+3tanA ≤√33,当且仅当tanA=√33,即A =π6时取等号, ∴ (tanB)max =√33,即B 的最大值为π6,则C =2π3.三、解答题:解答题应写出文字说明,证明过程或演算步骤.已知△ABC 的内角A ,B ,C 的对边分别为a 、b 、c ,满足cosAcosB +ab =2c b求角B的大小;(2)若a=1,b2=ac,求△ABC的面积.【答案】(1)根据题意,△ABC中,有cosAcosB +ab=2cb,则有cosAsinB+cosBsinAcosBsinA=2sinCsinB,变形可得sin(A+B)cosBsinB =2sinCsinB,又由sin(A+B)=sinC≠0,则cosB=12,又由B∈(0, π),则B=π3;(2)根据题意,△ABC中有b2=ac,由余弦定理可得b2=a2+c2−2ac⋅cosB=a2+c2−2ac⋅cosπ3=a2+c2−ac,故ac=a2+c2−ac,变形可得(a−c)2=0,得a=c=1,故△ABC为正三角形,故SΛABC=√34.【考点】解三角形【解析】(1)根据题意,由正弦定理可得cosAsinB+cosBsinAcosBsinA =2sinCsinB,变形可得sin(A+B)cosBsinB=2sinCsinB,进而可得cosB的值,分析可得B的值;(2)根据题意,由余弦定理可得b2=a2+c2−2ac⋅cosB=a2+c2−2ac⋅cosπ3= a2+c2−ac,变形可得(a−c)2=0,得a=c=1,据此分析可得答案.【解答】(1)根据题意,△ABC中,有cosAcosB +ab=2cb,则有cosAsinB+cosBsinAcosBsinA=2sinCsinB,变形可得sin(A+B)cosBsinB =2sinCsinB,又由sin(A+B)=sinC≠0,则cosB=12,又由B∈(0, π),则B=π3;(2)根据题意,△ABC中有b2=ac,由余弦定理可得b2=a2+c2−2ac⋅cosB=a2+c2−2ac⋅cosπ3=a2+c2−ac,故ac=a2+c2−ac,变形可得(a−c)2=0,得a=c=1,故△ABC为正三角形,故SΛABC=√34.已知等比数列{a n}的前n项和为S n,公比q>0,S2=2a2−2,S3=a4−2.(1)求数列{a n}的通项公式;(2)设b n=n an,求{b n}的前n项和T n.【答案】∵等比数列{a n}的前n项和为S n,公比q>0,S2=2a2−2,S3=a4−2,∴S3−S2=a4−2a2,即a3=a4−2a2,∴q2−q−2=0,解得q=2或q=−1(舍去).又a1+a2=2a2−2,∴a2=a1+2,∴a1q=a1+2,代入q=2,解得a1=2,∴a n=2×2n−1=2n.∵b n=na n =n2n,∴{b n}的前n项和:T n=12+222+323+⋯+n2n,①1 2T n=122+223+324+⋯+n2n+1,②①-②,得:1 2T n=12+122+123+⋯+12n−n2n+1=12(1−12n)1−12=1−12n−n2n+1,∴T n=2−n+22n.【考点】数列的求和【解析】(1)先求出a3=a4−2a2,从而q2−q−2=0,解得q=2,再由a2=a1+2,得a1=2,从而求出数列{a n}的通项公式.(2)由b n=n an =n2,利用错位相减法能求出{b n}的前n项和.【解答】∵等比数列{a n}的前n项和为S n,公比q>0,S2=2a2−2,S3=a4−2,∴S3−S2=a4−2a2,即a3=a4−2a2,∴q2−q−2=0,解得q=2或q=−1(舍去).又a1+a2=2a2−2,∴a2=a1+2,∴a1q=a1+2,代入q=2,解得a1=2,∴a n=2×2n−1=2n.∵b n=na n =n2n,∴{b n}的前n项和:T n=12+222+323+⋯+n2n,①1 2T n=122+223+324+⋯+n2n+1,②①-②,得:1 2T n=12+122+123+⋯+12n−n2n+1=12(1−12n )1−12=1−12n −n2n+1,∴ T n =2−n+22n.如图,四棱锥P −ABCD 的底面ABCD 是直角梯形,AD // BC ,AD =3BC =6,PB =6√2,点M 在线段AD 上,且MD =4,AD ⊥AB ,PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P −ABCD 的体积最大时,求平面PCM 与平面PCD 所成二面角的余弦值. 【答案】由AD =6,DM =4,可得AM =2,得四边形ABCM 是矩形,∴ CM ⊥AD ,又PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴ PA ⊥CM , 又,PM ,AD ⊂平面PAD ,∴ CM ⊥平面PAD , 又CM ⊂平面PCM ,∴ 平面PCM ⊥平面PAD . 四棱锥P −ABCD 的体积为:V =13⋅12⋅(AD +BC)⋅AB ⋅PA =43⋅AB ⋅PA ,要使四棱锥P −ABCD 的体积取最大值,只需AB ⋅PA 取得最大值. 由条件可得PA 2+AB 2=PB 2=72, ∴ 72≥2PA ⋅AB ,即PA ⋅AB ≤36,当且仅当PA =AB =6时,PA ⋅AB 取得最大值36.分别以AP ,AB ,AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A −xyz . 则P(6, 0, 0),C(0, 6, 2),D(0, 0, 6),M(0, 0, 2), PC →=(−6,6,2),PD →=(−6,0,6),PM →=(−6,0,2), 设平面PCD 的一个法向量为n 1→=(x 1,y 1,z 1),由n 1→⋅PC →=0,n 1→⋅PD →=0, 可得{−6x 1+6y 1+2z 1=0−6x 1+6z 1=0 ,令y 1=2,得n 1→=(3,2,3), 同理可得平面PCM 的一个法向量为n 2→=(1,0,3), 设平面PCM 与平面PCD 所成二面角为θ, 则cosθ=|n 1→⋅n 2→|n 1→|⋅|n 2→||=√10⋅√22=6√5555.由于平面PCM 与平面PCD 所成角为锐二面角, ∴ 平面PCM 与平面PCD 所成二面角的余弦值为6√5555.【考点】平面与平面垂直二面角的平面角及求法 【解析】(1)推导出CM ⊥AD ,PA ⊥CM ,从而CM ⊥平面PAD ,由此能证明平面PCM ⊥平面PAD .(2)四棱锥P −ABCD 的体积为V =13⋅12⋅(AD +BC)⋅AB ⋅PA =43⋅AB ⋅PA ,要使四棱锥P −ABCD 的体积取最大值,只需AB ⋅PA 取得最大值.推导出当且仅当PA =AB =6时,PA ⋅AB 取得最大值36.分别以AP ,AB ,AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A −xyz .利用向量法能求出平面PCM 与平面PCD 所成二面角的余弦值. 【解答】由AD =6,DM =4,可得AM =2,得四边形ABCM 是矩形,∴ CM ⊥AD ,又PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴ PA ⊥CM , 又,PM ,AD ⊂平面PAD ,∴ CM ⊥平面PAD , 又CM ⊂平面PCM ,∴ 平面PCM ⊥平面PAD . 四棱锥P −ABCD 的体积为:V =13⋅12⋅(AD +BC)⋅AB ⋅PA =43⋅AB ⋅PA ,要使四棱锥P −ABCD 的体积取最大值,只需AB ⋅PA 取得最大值. 由条件可得PA 2+AB 2=PB 2=72, ∴ 72≥2PA ⋅AB ,即PA ⋅AB ≤36,当且仅当PA =AB =6时,PA ⋅AB 取得最大值36.分别以AP ,AB ,AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A −xyz . 则P(6, 0, 0),C(0, 6, 2),D(0, 0, 6),M(0, 0, 2), PC →=(−6,6,2),PD →=(−6,0,6),PM →=(−6,0,2), 设平面PCD 的一个法向量为n 1→=(x 1,y 1,z 1),由n 1→⋅PC →=0,n 1→⋅PD →=0, 可得{−6x 1+6y 1+2z 1=0−6x 1+6z 1=0 ,令y 1=2,得n 1→=(3,2,3), 同理可得平面PCM 的一个法向量为n 2→=(1,0,3), 设平面PCM 与平面PCD 所成二面角为θ, 则cosθ=|n 1→⋅n 2→|n 1→|⋅|n 2→||=√10⋅√22=6√5555.由于平面PCM 与平面PCD 所成角为锐二面角, ∴ 平面PCM 与平面PCD 所成二面角的余弦值为6√5555.已知函数f(x)=x2+bsinx−2,(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x−5)=F(5−x).(1)求函数f(x)的解析式;(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0, 1)上单调,求实数a的取值范围;(3)函数ℎ(x)=ln(1+x2)−12f(x)−k有几个零点?【答案】由题设得:F(x)=x2+bsinx,∵F(x−5)=F(5−x),∴F(−x)=F(x)∴x2−bsinx=x2+bsinx,∴bsinx=0对于任意实数x都成立,∴b=0∴f(x)=x2−2.由g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx,得g′(x)=2x+2+ax(x>0)g(x)在(0, 1)上恒单调,只需g′(x)≥0或g′(x)≤0在(0, 1)上恒成立.即2x2+2x+a≥0或2x2+2x+a≤0在(0, 1)上恒成立.∴a≥−(2x2+2x)或a≤−(2x2+2x)在(0, 1)上恒成立.设u(x)=−(2x2+2x),x∈(0, 1),易知:u(x)∈(−4, 0),∴a≥0或a≤−4.令y=ln(1+x2)−12f(x),y′=2x1+x2−x=−x(x+1)(x−1)1+x2,令y′=0⇒x=0或x=1或x=−1,列表如下:∴当k>ln2+12时,无零点;当k<1或k=ln2+12时,有两个零点;当k=1时,有三个零点;1利用导数研究函数的极值【解析】(1)先表示出汗水F(x)的表达式,再根据F(x−5)=F(5−x)求出b的值,进而可确定函数f(x)的解析式.(2)将(1)中求出的函数f(x)的解析式代入函数g(x)然后求导,将问题转化为g′(x)≥0或g′(x)≤0在(0, 1)上恒成立.(3)对函数ℎ(x)进行求导,然后根据导函数的正负和原函数的单调性的关系判断函数的单调性,进而确定零点.【解答】由题设得:F(x)=x2+bsinx,∵F(x−5)=F(5−x),∴F(−x)=F(x)∴x2−bsinx=x2+bsinx,∴bsinx=0对于任意实数x都成立,∴b=0∴f(x)=x2−2.由g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx,得g′(x)=2x+2+ax(x>0)g(x)在(0, 1)上恒单调,只需g′(x)≥0或g′(x)≤0在(0, 1)上恒成立.即2x2+2x+a≥0或2x2+2x+a≤0在(0, 1)上恒成立.∴a≥−(2x2+2x)或a≤−(2x2+2x)在(0, 1)上恒成立.设u(x)=−(2x2+2x),x∈(0, 1),易知:u(x)∈(−4, 0),∴a≥0或a≤−4.令y=ln(1+x2)−12f(x),y′=2x1+x2−x=−x(x+1)(x−1)1+x2,令y′=0⇒x=0或x=1或x=−1,列表如下:∴当k>ln2+12时,无零点;当k<1或k=ln2+12时,有两个零点;当k=1时,有三个零点;当1<k<ln2+12时,有四个零点.已知函数f(x)=(a+2)lnx+ax−x2.(1)讨论f(x)的单调性;32定义域为(0, +∞), f ′(x)=a+2x+a −2x =−(x+1)(2x−a−2)x,当a ≤−2时,f ′(x)<0,f(x)在(0, +∞)上单调递减, 当a >−2时,由f ′(x)>0,得0<x <a+22,f(x)在(0,a+22)上单调递增,由f ′(x)<0,得x >a+22,f(x)在(a+22,+∞)上单调递减,综上,当a ≤−2时,f(x)的单调递减区间是(0, +∞); 当a >−2时,f(x)的单调递减区间是(a+22,+∞),单调递增区间是(0,a+22).易知a >0, ①当0<a ≤2时,a+22≥a ,由(1)知,f(x)在(0, a)上单调递减,此时,f(x)在(0, a)上不存在最大值. ②当a >2时,f(x)在(0,a+22)上单调递增,在(a+22,a)上单调递减, 则f(x)max =f(a+22)=(a +2)lna+22+a(a+2)2−(a+22)2=(a +2)lna+22+a 2−44,故p(a)=(a +2)ln a+22+a 2−44(a >2),设g(x)=(x +2)lnx+22+x 2−44(x >2),则g ′(x)=1+lnx+22+x2,∵ x >2,∴ g ′(x)>0,∴ g(x)在(2, +∞)上单调递增, ∴ g(x)>g(2)=4ln2,即p(a)>4ln2.① ∵ 32a 2+a −4=12(3a −4)(a +2),且a >2, ∴ 要证p(a)<32a 2+a −4,只需证ln a+22+a−24<3a−42,即证lna+22−5a−64<0,设ℎ(x)=lnx+22−5x−64(x >2),则ℎ(x)=1x+2−54<0,则ℎ(x)在(2, +∞)上单调递减, 从而ℎ(x)<ℎ(2)=ln2−1<0,即lna+22−5a−64<0,则p(a)<32a 2+a −4,②由①②可知,4ln2<p(a)<32a 2+a −4.【考点】利用导数研究函数的最值 利用导数研究函数的单调性 【解析】(1)分类讨论,利用导数求函数的单调区间即可,注意函数的定义域为(0, +∞);(2)从(1)中结论可知,当0<a ≤2时,f(x)在(0, a)上单调递减,不存在最大值;当a >2时,f(x)max =f(a+22),再构造函数,结合导数,利用分析法证明即可.定义域为(0, +∞), f ′(x)=a+2x+a −2x =−(x+1)(2x−a−2)x,当a ≤−2时,f ′(x)<0,f(x)在(0, +∞)上单调递减, 当a >−2时,由f ′(x)>0,得0<x <a+22,f(x)在(0,a+22)上单调递增,由f ′(x)<0,得x >a+22,f(x)在(a+22,+∞)上单调递减,综上,当a ≤−2时,f(x)的单调递减区间是(0, +∞); 当a >−2时,f(x)的单调递减区间是(a+22,+∞),单调递增区间是(0,a+22).易知a >0, ①当0<a ≤2时,a+22≥a ,由(1)知,f(x)在(0, a)上单调递减,此时,f(x)在(0, a)上不存在最大值. ②当a >2时,f(x)在(0,a+22)上单调递增,在(a+22,a)上单调递减, 则f(x)max =f(a+22)=(a +2)lna+22+a(a+2)2−(a+22)2=(a +2)lna+22+a 2−44,故p(a)=(a +2)ln a+22+a 2−44(a >2),设g(x)=(x +2)lnx+22+x 2−44(x >2),则g ′(x)=1+lnx+22+x2,∵ x >2,∴ g ′(x)>0,∴ g(x)在(2, +∞)上单调递增, ∴ g(x)>g(2)=4ln2,即p(a)>4ln2.① ∵ 32a 2+a −4=12(3a −4)(a +2),且a >2, ∴ 要证p(a)<32a 2+a −4,只需证ln a+22+a−24<3a−42,即证lna+22−5a−64<0,设ℎ(x)=lnx+22−5x−64(x >2),则ℎ(x)=1x+2−54<0,则ℎ(x)在(2, +∞)上单调递减, 从而ℎ(x)<ℎ(2)=ln2−1<0,即lna+22−5a−64<0,则p(a)<32a 2+a −4,②由①②可知,4ln2<p(a)<32a 2+a −4.请在第22、23、二题中任选一题作答,答时用2B 铅笔在答题卡上把所选题目的题号涂黑.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为ρ=2√2cos(θ+π4),直线l 的参数方程为{x =t y =−1+2√2t (t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标;【答案】解:(1)由圆C 的极坐标方程为ρ=2√2cos(θ+π4), 化为ρ2=2√2(√22ρcosθ−√22ρsinθ),把{x =ρcosθy =ρsinθ代入可得:圆C 的普通方程为x 2+y 2−2x +2y =0,即(x −1)2+(y +1)2=2.∴ 圆心坐标为(1, −1), ∴ 圆心极坐标为(√2,7π4);(2)由直线l 的参数方程{x =ty =−1+2√2t(t 为参数),把t =x 代入y =−1+2√2t 可得直线l 的普通方程:2√2x −y −1=0, ∴ 圆心到直线l 的距离d =|2√2+1−1|3=2√23, ∴ |AB|=2√r 2−d 2=2√2−89=2√103,点P 直线AB 距离的最大值为r +d =√2+2√23=5√23,S max =12×2√103×5√23=10√59. 【考点】直线的参数方程参数方程与普通方程的互化 圆的极坐标方程 点到直线的距离公式 【解析】(1)由圆C 的极坐标方程为ρ=2√2cos(θ+π4),化为ρ2=2√2(√22ρcosθ−√22ρsinθ),把{x =ρcosθy =ρsinθ代入即可得出. (2)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2√r 2−d 2,利用三角形的面积计算公式即可得出. 【解答】解:(1)由圆C 的极坐标方程为ρ=2√2cos(θ+π4), 化为ρ2=2√2(√22ρcosθ−√22ρsinθ),把{x =ρcosθy =ρsinθ代入可得:圆C 的普通方程为x 2+y 2−2x +2y =0,即(x −1)2+(y +1)2=2.∴ 圆心坐标为(1, −1), ∴ 圆心极坐标为(√2,7π4);x =t把t =x 代入y =−1+2√2t 可得直线l 的普通方程:2√2x −y −1=0, ∴ 圆心到直线l 的距离d =|2√2+1−1|3=2√23,∴ |AB|=2√r 2−d 2=2√2−89=2√103,点P 直线AB 距离的最大值为r +d =√2+2√23=5√23,S max =12×2√103×5√23=10√59. [选修4-5:不等式选讲]已知函数f(x)=m −|x −1|−2|x +1|. (1)当m =5时,求不等式f(x)>2的解集;(2)若二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,求实数m 的取值范围. 【答案】当m =5时,f(x)={3x +6,x <−1−x +2,−1≤x ≤14−3x,x >1,由f(x)>2结合函数的单调性易得不等式解集为 (−43,0); 由二次函数的解析式可得该函数在对称轴x =−1处取得最小值2, 而 f(x)={3x +1+m,x <−1−x −3+m,−1≤x ≤1−3x +m −1,x >1在x =−1处取得最大值m −2,所以要使二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,只需m −2≥2, 即m ≥4. 【考点】绝对值三角不等式 【解析】(1)将函数的解析式写成分段函数的形式,然后结合函数的单调性和不等式的特点即可确定不等式的解集;(2)首先求得二次函数的最小值和f(x)的最大值,据此得到关于实数m 的不等式,求解不等式即可求得最终结果. 【解答】当m =5时,f(x)={3x +6,x <−1−x +2,−1≤x ≤14−3x,x >1,由f(x)>2结合函数的单调性易得不等式解集为 (−43,0); 由二次函数的解析式可得该函数在对称轴x =−1处取得最小值2, 而 f(x)={3x +1+m,x <−1−x −3+m,−1≤x ≤1−3x +m −1,x >1在x =−1处取得最大值m −2,所以要使二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,只需m −2≥2,。
北京市中学2024-2025学年高三上学期10月月考数学试卷含答案
北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(六)一、选择题.1.(5分)已知集合2{|log 1}A x x =<,集合{|||2}B x N x =∈<,则(A B = )A .{|01}x x <<B .{|02}x x <C .{|22}x x -<<D .{0,1}2.(5分)已知i 为虚数单位,则复数3(1)(1)(i i --= )A .2iB .2i -C .2D .2-3.(5分)已知平面向量a ,b 的夹角为30︒,||1a =,1()2a a b -=-,则||(b = )AB .2C .3D .44.(5分)已知实数x ,y 满足约束条件()1221x y x y y +⎧⎪-⎨⎪⎩,则yx 的最大值为( )A .2B .32C .1D .235.(5分)在区间(0,3)上随机地取一个数k ,则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点“发生的概率为( ) A .13B .12C .23D .16.(5分)已知3(21)()x x a -+展开式中各项系数之和为27,则其展开式中2x 项的系数为( )A .24B .18C .12D .47.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若sin A =,a =,c a >,则角C 的大小为( )A .3πB .2πC .23πD .34π8.(5分)在下面四个三棱柱中,A ,B 为三棱柱的两个顶点,E ,F ,G 为所在棱的中点,则在这四个三棱柱中,直线AB 与平面EFG 不平行的是( )A .B .C .D .9.(5分)已知椭圆2222:1(0)x y C a b a b +=>>与抛物线2:2(0)E y px p =>有公共焦点F ,椭圆C 与抛物线E 交于A ,B 两点,且A ,B ,F 三点共线,则椭圆C 的离心率为( )A 21B .22C .3D .51-10.(5分)已知数列{}n a 满足:对*n N ∀∈,1log (2)n n a n +=+,设n T 为数列{}n a 的前n 项之积,则下列说法错误的是( ) A .12a a >B .17a a >C .63T =D .76T T <11.(5分)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形。
江西省多校联考2024-2025学年高三上学期10月月考试题 数学含答案
江西省10月份高三联考数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2,3}A =,{},B x y x A y A =+∈∈,则A B = ()A .{2}B .{3}C .{2,3}D .{1,2,3}2.在复数范围内,方程49x =的解的个数为()A .1B .2C .3D .43.已知双曲线22:1y C x m-=的离心率大于实轴长,则m 的取值范围是()A .(3,)+∞B .)+∞C .(0,3)D .4.若220m n -≠,cos()2m αβ-=,cos()2n αβ+=,则tan tan αβ=()A .m n m n-+B .m n m n+-C .2m n m n -+D .2m n m n+-5.函数2()(31)e xf x x =-的最小值为()A .433e--B .133e 2--C .0D .24e--6.已知向量,,a b c ,满足1a = ,2b = ,3c = ,π,,3a b a b c 〈〉=〈+〉=,则a b + 在c 方向上的投影向量为()A .3cB .143c C .6c D .76c 7.现有6个人计划在暑期前往江西省的南昌、九江、赣州、萍乡四个城市旅游,每人都要从这四个城市中选择一个城市,且每个城市都有人选择,则至少有2人选择南昌的选法种数为()A .420B .660C .720D .12008.已知函数()f x 满足()()()22x yf x y f x f y +=+++,且(1)1f =,则(1000)f =()A .99922995+B .99922996+C .100022995+D .100022996+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()sin 2f x x =,2()cos 2g x x =,则()A .()f x 与()g x 的值域相同B .()f x 与()g x 的最小正周期相同C .曲线()y f x =与()y g x =有相同的对称轴D .曲线()y f x =与()y g x =有相同的对称中心10.如图,现有一个底面直径为10cm ,高为25cm 的圆锥形容器,已知此刻容器内液体的高度为15cm ,忽略容器的厚度,则()A .此刻容器内液体的体积与容器的容积的比值为35B .容器内液体倒去一半后,容器内液体的高度为cm2C .当容器内液体的高度增加5cm 时,需要增加的液体的体积为3185πcm 3D .当容器内沉入一个棱长为11.已知抛物线2:4E y x =的焦点为F ,过点F 且斜率为的直线与E 交于A ,B 两点,其中点A 在第一象限.若动点P 在E 的准线上,则()A .AP BP ⋅的最小值为0B .当PAB △为等腰三角形时,点PC .当PAB △的重心在x 轴上时,PAB △的面积为924D .当PAB △为钝角三角形时,点P 的纵坐标的取值范围为,,84⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭三、填空题:本题共3小题,每小题5分,共15分.12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.13.已知A ,B ,C ,D 四点都在球O 的球面上,且A ,B ,C 三点所在平面经过球心,AB =π3ACB ∠=,则点D 到平面ABC 的距离的最大值为______,球O 的表面积为______.14.若x ,y ,z 均为正数,且2(2)1x x y z +=,则83x yz 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数321()43f x x ax x =+-.(1)当1a =-时,求曲线()y f x =在点(3,(3))f 处的切线方程.(2)试问是否存在实数a ,使得()f x 在[]1,a 上单调递增?若存在,求a 的取值范围;若不存在,请说明理由.16.(15分)贵妃杏是河南省灵宝市黄河沿岸地区的一种水果,其果实个大似鹅蛋,外表呈橙黄色,阳面有晕.贵妃杏口感甜美,肉质实心鲜嫩多汁,营养丰富,是河南省的知名特产之一.已知该地区某种植园成熟的贵妃杏(按个计算)的质量M (单位:克)服从正态分布()2,N μσ,且(96106)0.7P M ≤≤=,(9496)0.1P M ≤≤=.从该种植园成熟的贵妃杏中选取了10个,它们的质量(单位:克)为101,102,100,103,99,98,100,99,97,101,这10个贵妃杏的平均质量(单位:克)恰等于μ克.(1)求μ.(2)求(100104)P M <≤.(3)甲和乙都从该种植园成熟的贵妃杏中随机选取1个,若选取的贵妃杏的质量大于100克且不大于104克,则赠送1个贵妃杏;若选取的贵妃杏的质量大于104克,则赠送2个贵妃杏.记甲和乙获赠贵妃杏的总个数为X ,求X 的分布列与数学期望.17.(15分)如图,在四棱锥P ABCD -中,PA ⊥底面,ABCD BC ∥平面,PAD BC AB ⊥.(1)证明:平面PAD ⊥平面PAB .(2)若AD AB =,PA BC =,且异面直线PD 与BC 所成角的正切值为32,求平面PAB 与平面PCD 所成二面角的正弦值.18.(17分)已知点()11,0F -,2(1,0)F ,动点M 满足12123MF MF F F +=,动点M 的轨迹为记为E .(1)判断E 与圆22:8O x y +=的位置关系并说明理由.(2)若P 为E 上一点,且点P 到x 轴的距离(0,1)d ∈,求12PF F △内切圆的半径的取值范围.(3)若直线:(1)l y k x =-与E 交于C ,D 两点,1A ,2A 分别为E 的左、右顶点,设直线1AC 的斜率为()110k k ≠,直线2A D 的斜率为()220k k ≠,试问122212k k k k +是否为定值?若是,求出该定值;若不是,请说明理由.19.(17分)在n 个数码1,2,…,(,2)n n n ∈≥N 构成的一个排列12n j j j 中,若一个较大的数码排在一个较小的数码的前面,则称它们构成逆序,这个排列的所有逆序的总个数称为这个排列的逆序数,记为()12n j j j τ ,例如,(12)0τ=,(4132)4τ=.(1)比较()613245τ与(15432)τ的大小;(2)设数列{}n a 满足()211(22)(15432)2n n n na n a n n τ++-+=+,12a =,求{}n a 的通项公式;(3)设排列122(,5)n j j j n n ∈≥N 满足()211,2,,10,29,28,,2n n n n i j i i =+-=-- ,()11,12,,210n i j i i ==- ,()122n n b j j j τ= ,21020n n b c +=,证明:56n c c c +++≥ 3840(4)[(214)ln 2124]2402nn n --++-.江西省10月份高三联考数学参考答案1.C 依题意可得{2,3,4,5,6}B =,则{2,3}A B = .2.D由49x =,得()()22330x x+-=,得x =或x =3.A由题意得2m >>,解得3m >.4.A 因为cos()cos cos sin sin 2m αβαβαβ-=+=,cos()cos cos sin sin 2n αβαβαβ+=-=,所以cos cos m n αβ=+,sin sin m n αβ=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.5.B2()(61)e x f x x '=+,令()0f x '<,得16x <-,令()0f x '>,得16x >-,所以2()(31)e xf x x =-的最小值为11331131e e 622f --⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭.6.C 因为1a = ,2b = ,3c = ,π,3a b 〈〉=,所以a b +=== a b + 在c 方向上的投影向量为()||||a b c c c c +⋅⋅=2π||||cos 3||926a b c c c c c +==⨯ .7.B将6人分成4组,分配方案有两种:1,1,2,2和1,1,1,3.那么至少有2人选择南昌的选法种数为22133364263322C C C C A 110A 660A ⎛⎫+== ⎪⎝⎭.8.D令1y =,得(1)()(1)22()23x x f x f x f f x +=+++=++,则(1)()23xf x f x +-=+,则2999(2)(1)23,(3)(2)23,,(1000)(999)23f f f f f f -=+-=+-=+ ,将以上各式相加得()9992999212(1000)(1)22239993(10001)12f f --=++++⨯=+⨯-- 100022995=+,所以10001000(1000)22995(1)22996f f =++=+.9.ABC()sin 2[0,1]f x x =∈,1cos 4()[0,1]2xg x +=∈,则()f x 与()g x 的值域相同,A 正确.()f x与()g x 的最小正周期均为2ππ42=,B 正确.曲线()y f x =与()y g x =的对称轴方程均为π()4k x k =∈Z ,C 正确.曲线()y f x =没有对称中心,曲线()y g x =有对称中心,D错误.10.BCD 此刻容器内液体的体积与容器的容积的比值为3152725125⎛⎫= ⎪⎝⎭,A 错误.设容器内液体倒去一半后液体的高度为cm h ,则31152h ⎛⎫= ⎪⎝⎭,解得2h =,B 正确.因为15103252⨯=,155104252+⨯=,所以当容器内液体的高度增加5cm 时,需要增加的液体的体积为π53⨯⨯()223185π3344cm 3+⨯+=,C 正的正方体铁块时,设容器内液体的高度为cm H,体积233π31546πcm 3V =⨯⨯+=,则346π45π15H ⎛⎫= ⎪⎝⎭,15H ===,D 正确.11.AC依题意可得(1,0)F ,直线AB的方程为1)y x =-,代入24y x =,消去y 得22520x x -+=,解得12x =,212x =,因为点A在第一象限,所以(2,A,1,2B ⎛ ⎝.E 的准线方程为1x =-,设(1,)P m -,则(3,AP m =--,3,2BP m ⎛=-+ ⎝,所以2294022AP BP m m ⎛⎫⋅=+--=-≥ ⎪ ⎪⎝⎭ ,A 正确.当PAB △为等腰三角形时,要使得点P 的纵坐标最大,则AB AP =,即1222++=,且m >,解得2m +=,B 错误.PAB △的重心坐标为1212,33m ⎛⎫+- ⎪+ ⎪ ⎪⎝⎭,即1,23m ⎛⎫+ ⎪ ⎪⎝⎭,当PAB △的重心在x 轴上时,203m+=,得m PAB =△的面积为111224⎛⎫⨯+⨯=⎪⎝⎭,C 正确.当A ,B ,P三点共线时,m =-由0AP BP ⋅≥ ,得APB ∠为锐角或直角,当ABP ∠为直角或BAP ∠为直角时,0AB BP ⋅= 或0AB AP ⋅= ,得8m =-或4m =,当PAB △为钝角三角形时,点P 的纵坐标的取值范围为(,8⎛⎫-∞--- ⎪ ⎪⎝⎭,4⎛⎫+∞ ⎪ ⎪⎝⎭,D 错误.12.-2因为(2)02022f =+=+=,所以(2)(2)2f f -=-=-.13.4;64π设球O 的半径为R ,由正弦定理得28sin ABR ACB==∠,则4R =,则点D 到平面ABC 的距离的最大值为4,球O 的表面积为24π64πR =.14.127(方法一)由2(2)1x x y z +=,得3221x z x yz +=,不妨令32a x z =,2b x yz =,0a >,0b >,则2834a b x yz =,且1a b +=,所以283(1)4a a x yz -=.令2(1)()(01)4a a f a a -=<<,则(23)()4a a f a -'=,令()0f a '>,得20,3a ⎛⎫∈ ⎪⎝⎭,令()0f a '<,得2,13a ⎛⎫∈ ⎪⎝⎭,所以max 21()327f a f ⎛⎫== ⎪⎝⎭,即83x yz 的最大值为127.(方法二)由2(2)1x x y z +=,得3321x z x z x yz ++=.由,,0)3a b c a b c ++≥>,得1≥则83127x yz ≤,当且仅当32x z x yz =,即x y =时,等号成立,故83x yz 的最大值为127.15.解:(1)当1a =-时,321()43f x x x x =--,则2()24f x x x '=--,所以(3)1f '=-,因为(3)12f =-,所以曲线()y f x =在点(3,(3))f 处的切线方程为12(3)y x +=--,即9y x =--(或90x y ++=).(2)假设存在实数a ,使得()f x 在[]1,a 上单调递增,则2()240f x x ax '=+-≥对[1,]x a ∈恒成立,即22xa x ≥-对[1,]x a ∈恒成立.当[1,]x a ∈时,22x y x =-为增函数,则max 22132122x x ⎛⎫-=-= ⎪⎝⎭,所以32a ≥,又1a >,所以a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.16.解:(1)1011021001039998100999710110010μ+++++++++==.(2)因为100μ=,所以(104106)(9496)0.1P M P M ≤≤=≤≤=,所以0.70.1(100104)0.32P M -<≤==.(3)设1人获赠贵妃杏的个数为Y ,则(0)0.5P Y ==,(1)0.3P Y ==,(2)0.2P Y ==.依题意可得X 的可能取值为0,1,2,3,4,(0)0.50.50.25P X ==⨯=,(1)0.50.320.3P X ==⨯⨯=2(2)0.30.50.220.29P X ==+⨯⨯=,(3)0.30.220.12,(4)0.20.20.04P X P X ==⨯⨯===⨯=则X 的分布列为X 01234P0.250.30.290.120.04所以()10.320.2930.1240.04 1.4E X =⨯+⨯+⨯+⨯=.17.(1)证明:PA ⊥ 底面ABCD ,PA BC ∴⊥.BC AB ⊥ ,PA AB A = ,BC ∴⊥平面PAB .BC ∥ 平面PAD ,平面PAD 平面ABCD AD =,BC AD ∴∥,AD ∴⊥平面PAB .又AD ⊂平面,PAD ∴平面PAD ⊥平面PAB .(2)解:BC AD ∥ ,∴直线PD 与直线BC 所成的角为PDA ∠.PA ⊥ 底面ABCD ,3,tan 2PA PA AD PDA AD ∴⊥∴∠==,即PA =32AD .设AD 为2个单位长度,以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则(0,0,0),(0,2,0)A D ,(2,3,0)C ,(0,0,3)P ,(2,1,0)CD ∴=-- ,(0,2,3)DP =-设平面PCD 的法向量为(,,)n x y z = ,则20,230,n CD x y n DP y z ⎧⋅=--=⎪⎨⋅=-+=⎪⎩取3x =-,则6,4y z ==,得(3,6,4)n =-.易知平面PAB 的一个法向量为(0,2,0)AD =,则cos ,AD 〈 66161||||261AD n n AD n ⋅〉===⨯.故平面PAB 与平面PCD 所成二面角的正弦值为56161.18.解:(1)因为12121236MF MF F F F F +==>,所以E 是以1F ,2F 为焦点,且长轴长为6的椭圆.设E 的方程为22221(0)x y a b a b +=>>,则26a =,可得3a =,又1c =,所以2228b a c =-=,联立22198x y +=与228x y +=,得0x =,2y =±,所以E 与圆22:8O x y +=相切.(2)12PF F △的周长1212628l PF PF F F =++=+=,12PF F △的面积121(0,1)2S F F d d =⋅=∈,所以12PF F △内切圆的半径2110,44S r d l ⎛⎫==∈ ⎪⎝⎭,故12PF F △内切圆的半径的取值范围为10,4⎛⎫ ⎪⎝⎭.(3)联立221, 98(1),x y y k x ⎧+=⎪⎨⎪=-⎩得()()22228918980k x k x k +-+-=,易知0∆>,且21221889k x x k +=+,()21229889k x x k -=+.设()()1122,,C x y D x y ,则121212,33y yk k x x ==+-,所以()()()()()()1212112122212112123133331333y x k x x k x x x x k y x k x x x x x x -----+===+-+-+-.(方法一)由21221889k x x k +=+,()21229889k x x k-=+,得()121259x x x x =+-,所以()()1212112212121259332461593348122x x x x k x x k x x x x x x +---++-===+--+-+-.(方法二)因为()()12122121212232343x x x x x k k x x x x x -+++=-++-,所以()()()()()()22222222221222222222229898543895423289898998981838918434898989k k k k k x x k k k k k k k k k k x xk kk ---++-++++++==----+-+-++++2222221848218936962489k x k k x k--++==--++.所以1222121221125k k k k k k k k ==++,故122212k k k k +为定值,且定值为25.19.(1)解:在排列613245中,与6构成逆序的有5个,与3构成逆序的有1个,与1,2,4,5构成逆序的均有0个,所以(613245)516τ=+=;在排列15432中,与5构成逆序的有3个,与4构成逆序的有2个,与3构成逆序的有1个,与1,2构成逆序的均有0个,所以(15432)3216τ=++=.故(613245)(15432)ττ=.(2)解:由(1)知()211(22)62n n n na n a n n ++-+=+,所以()()12121(22)622n nn n na n a nn nn ++++-=++,即116(1)22n n n n a a n n ++-=+⋅.因为12a =,所以数列2n n a n ⎧⎫⎨⎬⋅⎩⎭是首项为1,公差为6的等差数列,所以16(1)652n n a n n n =+-=-⋅,则()2652n n a n n =-⋅.(3)证明:因为()211,2,,10,29,28,,2n n n n i j i i =+-=-- ,所以在排列122n j j j 中,排在前面的10个数依次为2n ,21n -,22n -,…,29n -,排在后面的10个数依次为10,9,8,…,1,所以()()1222122210(9810)n n n nj j j τ=-+-++-++++++ (220)10101010n -+++ 个所以()()2122210(9810)10220202210n n n n n n b =-+-++-++++++-=⨯- ,则210220n n n b c +==.设函数3840()4ln (32)f x x x x x =+-≥,则22223840443840(60)(64)()1x x x x f x x x x x --+-'=--==,当3264x ≤<时,()0f x '<,当64x >时,()0f x '>,所以min 3840()(64)644ln 6412424ln 264f x f ==+-=-,所以38404ln 12424ln 2x x x +-≥-,当且仅当64x =时,等号成立.取2(5)n x n =≥,则384024ln 212424ln 22n n n +-≥-,即384024ln 212424ln 2(5)2m n n n ≥-+-≥所以56561114ln 2(56)3840(12424ln 2)(4)222n n c c c n n ⎛⎫+++≥⨯+++-++++--⎪⎝⎭,即515611222(5)(4)ln 23840(12424ln 2)(4)112n n c c c n n n +-+++≥+--⨯+--- 3840(4)[(214)ln 2124]2402n n n =--++-.。
2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)
2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q 点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f(x)=sin|x|2+cosxB. f(x)=sinx•ln|x|2+cosxC. f(x)=cosx•ln|x|2+cosxD. f(x)=cosxx5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2 + M2r2=(R+r)M1R3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A. √M2M1RB. √M22M1RC. √3M2M13 RD. √M23M13 R6.(单选题,5分)已知函数f(x)={x,0≤x≤1,ln(2x),1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f(x1)=f(x2),则x2-x1的最大值为()A. e2B. e2−1C.1-ln2D.2-ln47.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<08.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条9.(多选题,5分)5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出做出预测.由如图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增12.(多选题,5分)关于函数f(x)=alnx+ 2x,下列判断正确的是()A.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(12,1)C.当a>e时,函数 f (x)有两个零点D.当f (x)的最小值为2时,a=213.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .16.(填空题,5分)若函数f(x)=x(x-1)(x-a),(a>1)的两个不同极值点x1,x2满足f(x1)+f(x2)≤0恒成立,则实数a的取值范围为___ .17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为: b̂=∑x i y i −nxyn i=1∑x i 2n i=1−nx2=i −x )i −y n i=1)∑(x −x )2n â=y −b̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.21.(问答题,12分)已知函数f(x)=x|2a-x|+2x,a∈R.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有3个不相等的实数根,求实数t的取值范围.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【正确答案】:A【解析】:由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】:解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)【正确答案】:A【解析】:由题意推出∠QOx角的大小,然后求出Q点的坐标.【解答】:解:点P从(0,1)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,所以∠QOx= 2π3,所以Q(cos 2π3,sin 2π3),所以Q (−12,√32).故选:A.【点评】:本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向.3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f (x )=sin|x|2+cosx B. f (x )=sinx•ln|x|2+cosxC. f (x )=cosx•ln|x|2+cosx D. f (x )=cosx x【正确答案】:B【解析】:根据题意,依次分析选项中函数是否符合函数的图象,综合即可得答案.【解答】:解:根据题意,依次分析选项: 对于A , f (x )=sin|x|2+cosx,其定义域为R ,不符合题意;排除A ;对于C ,f (x )= cosx•ln|x|2+cosx,其定义域为{x|x≠0},有f (-x )=cos (−x )ln|−x|2+cos (−x ) = cosx•ln|x|2+cosx=f (x ), 即函数f (x )为偶函数,其图象关于y 轴对称,不符合题意;排除C , 对于D ,f (x )= cosxx,其定义域为{x|x≠0}, 有f (-x )=cos (−x )x =- cosx x=-f (x ), 即函数f (x )为奇函数,其图象关于原点对称, 当x→+∞时,f (x )→0,不符合题意;排除D ; 故选:B .【点评】:本题考查根据函数的图象选择解析式,注意结合函数的奇偶性、定义域等性质运用排除法进行分析,属于基础题.5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程: M 1(R+r )2+ M 2r 2 =(R+r ) M1R 3 . 设α= rR .由于α的值很小,因此在近似计算中 3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( )A. √M2M1RB. √M22M 1RC. √3M2M 13RD. √M23M 13R【正确答案】:D【解析】:由α= rR.推导出 M 2M 1= 3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR= √M 23M 13R .【解答】:解:∵α= rR .∴r=αR ,r 满足方程: M 1(R+r )2 + M 2r 2 =(R+r ) M1R3 . ∴11+2•r R +r 2R2•M 1 + R 2r2•M 2 =(1+ r R)M 1,把 α=r R代入,得: 1(1−α)2•M 1+1α2•M 2 =(1+α)M 1, ∴ M 2α2 =[(1+α)- 1(1−α)2 ]M 1=(1+α)3−1(1+α)2•M 1 =α(α2+3α+3)(1+α)2M 1, ∴ M2M 1=3α3+3α4+α5(1+α)2≈3α3, ∴r=αR= √M23M 13R .故选:D .【点评】:本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题. 6.(单选题,5分)已知函数 f (x )={x ,0≤x ≤1,ln (2x ),1<x ≤2,若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f (x 1)=f (x 2),则x 2-x 1的最大值为( ) A. e 2B. e 2−1C.1-ln2D.2-ln4【正确答案】:B【解析】:画出函数图象得到x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],根据函数的单调性求出其最大值即可.【解答】:解:画出函数f(x)的图象,如图示:结合f(x)的图象可知,因为x1=ln(2x2),所以x2∈(1,e2],则x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],则g′(x)=x−1x,所以g(x)在(1,e2]上单调递增,故g(x)max=g(e2)=e2−1,故选:B.【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,是一道常规题.7.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0【正确答案】:A【解析】:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.方法二:根据条件取x=-1,y=0,即可排除错误选项.【解答】:解:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y-x>0,由于y-x+1>1,故ln(y-x+1)>ln1=0.方法二:取x=-1,y=0,满足2x-2y<3-x-3-y,此时ln(y-x+1)=ln2>0,ln|x-y|=ln1=0,可排除BCD.故选:A.【点评】:本题主要考查了函数的单调性在比较变量大小中的应用,属于基础试题.8.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条【正确答案】:B【解析】:设AB方程为y=m,根据△ABC是等边三角形计算m的值,得出结论.【解答】:解:根据题意,设直线l的方程为y=m,则A(log2m,m),B(log2m-1,m),AB=1,设C(x,2x),∵△ABC是等边三角形,∴点C到直线AB的距离为√32,∴m-2x= √32,∴x=log2(m- √32),又x= 12(log2m+log2m-1)=log2m- 12,∴log 2(m- √32 )=log 2m- 12 =log 2 m √2∴m - √32 = m√2 ,解得m=2√3+√62, 故而符合条件的直线l 只有1条. 故选:B .【点评】:本题考查了指数函数图象与性质的应用问题,也考查了指数,对数的运算问题,属于中档题.9.(多选题,5分)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G 经济产出做出预测.由如图提供的信息可知( ) A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【正确答案】:ABD【解析】:根据统计图中的信息,逐个分析选项,即可判断出正误.【解答】:解:对于选项A:由图可知,运营商的经济产出逐年增加,所以选项A正确,对于选项B:由图可知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,所以选项B正确,对于选项C:由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而2029年、2030年信息服务商在总经济产出中处于领先地位,所以选项C错误,对于选项D:由图可知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两种差距有逐步拉大的趋势,所以选项D正确,故选:ABD.【点评】:本题主要考查了简单的合情推理,考查了统计图的应用,考查了学生逻辑思维能力,是基础题.10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件【正确答案】:ACD【解析】:直接利用充分条件和必要条件判定A和B的结论,直接利用命题的否定的应用判定C的结论,直接利用奇函数的性质判定D的结论.【解答】:解:对于A:当“a>1”时,“a2>1”成立,但是当“a2>1”时,“a>1或a<-1”,故选项A正确.对于B:“(a-1)-2<(2a-3)-2”的充要条件是:a-1>2a-3,整理得a<2,故选项B错误.对于C:命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”.故选项C正确.对于D:函数y=f (x)的定义域为R,当“f(0)=0”时,函数f(x)不一定为奇函数,但是,当函数f(x)为奇函数,则f(0)=0,故选项D正确.故选:ACD.【点评】:本题考查的知识要点:充分条件和必要条件,奇函数的性质,命题的否定,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增【正确答案】:ABC【解析】:直接利用函数的周期确定B的结论,直接利用函数的对称性判定A的结论,直接利用函数的解析式的求法判定C的结论,直接利用函数的图象和偶函数的性质判定D的结论.【解答】:解:对于B:函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x),整理得f(x+2)=f(x),所以函数为周期为2的函数,故B正确.对于C:由于0<x<1,所以2<x+2<3,由于x∈(2,3)时,f(x)=log2(x-1),所以f(x)=f(x+2)=log2(x+1),设-1<x<0,则0<-x<1,由于f(x)=-f(-x)=-log2(-x+1),故C正确.对于A:根据函数的性质,函数的图象关于(1,0)对称,故A正确.对于选项D:函数 y=f (|x|)的图象是将函数y=f(x)的图象关于y轴对称,在(-1,0)上单调递减,故D错误.故选:ABC.【点评】:本题考查的知识要点:函数的性质,单调性,周期性,函数的解析式的求法,主要考查学生的运算能力和转换能力及思维能力,属于中档题.12.(多选题,5分)关于函数f(x)=alnx+ 2,下列判断正确的是()xA.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(1,1)2C.当a>e时,函数 f (x)有两个零点D.当f (x ) 的最小值为2时,a=2 【正确答案】:ABD【解析】:对于A ,代入a 的值,求出函数的导数,求出函数的单调区间,得到函数的最小值即可,对于B ,代入a 的值,求出函数的导数,得到函数的单调性,问题转化为关于x 的不等式组,解出即可,对于C ,求出函数的单调性,求出函数的最小值,根据a 的范围判断最小值的范围即可判断, 对于D ,由最小值是2,得到关于a 的方程,解出即可.【解答】:解:对于A :a=1时,f (x )=lnx+ 2x ,f′(x )= x−2x 2 , 令f′(x )>0,解得:x >2,令f′(x )<0,解得:0<x <2, 故f (x )在(0,2)递减,在(2,+∞)递增, 故f (x )≥f (2)=ln2+1, 故A 正确;对于B :a=-1时,f (x )=-lnx+ 2x,f′(x )= −x−2x 2 <0, f (x )在(0,+∞)递减,不等式f (2x-1)-f (x )>0,即f (2x-1)>f (x ),故 {2x −1>0x >02x −1<x ,解得: 12<x <1,故B 正确;对于C :f′(x )= a x- 2x2 =ax−2x 2, ∵a >e ,令ax-2>0,解得:x > 2a,令ax-2<0,解得:0<x < 2a, 故f (x )在(0, 2a )递减,在( 2a ,+∞)递增, 故f (x )min =f ( 2a )=aln 2a+ 22a=a (ln2-lna )+a=aln 2e a,∵0< 2e a <2,故1< 2e a <2时,ln 2ea >0,f (x )min >0,函数无零点, 故C 错误;对于D :结合C ,f (x )min =aln 2e a=2,解得:a=e , 故D 正确; 故选:ABD .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道常规题.13.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .【正确答案】:[1]-2【解析】:由偶函数的定义可求得x>0时,f(x)的解析式,求得导数,由导数的几何意义,代入x=1,计算可得所求值.【解答】:解:f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,可得x>0时,-x<0,f(x)=f(-x)=lnx-3x,导数为f′(x)= 1x-3,则曲线y=f(x)在点(1,-3)处的切线斜率是k=1-3=-2.故答案为:-2.【点评】:本题考查函数的奇偶性和解析式的求法,以及导数的运用:求切线的斜率,考查转化思想和运算能力,属于中档题.14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .【正确答案】:[1]- 54【解析】:利用二倍角公式整理函数解析式,值函数的解析式关于cosx的一元二次函数,设cosx=t,函数的顶点为最低点,此时函数值为最小值.【解答】:解:y=cosx+cos2x=cosx+2cos2x-1,设cosx=t,则-1≤t≤1,函数f(t)min=f(- 14)= 12- 14-1=- 54,故答案为:- 54.【点评】:本题主要考查了二次函数的性质.考查了学生的换元思想的运用.15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .【正确答案】:[1]a>c>b【解析】:可以得出 log 49>32>1 , (827)−13=32,2-1.2<1,然后即可得出a ,b ,c 的大小关系.【解答】:解:∵ log 49>log 48=log 4432=32>1 , (827)−13=32 ,2-1.2<20=1,∴a >c >b .故答案为:a >c >b .【点评】:本题考查了对数的运算性质,分数指数幂的运算,对数函数和指数函数的单调性,考查了计算能力,属于基础题.16.(填空题,5分)若函数f (x )=x (x-1)(x-a ),(a >1)的两个不同极值点x 1,x 2满足f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围为___ . 【正确答案】:[1]a≥2【解析】:把x 1,x 2代入到f (x )中求出函数值代入不等式f (x 1)+f (x 2)≤0中,在利用根与系数的关系化简得到关于a 的不等式,求出解集即可.【解答】:解:因f (x 1)+f (x 2)≤0,故得不等式x 13+x 23-(1+a )(x 12+x 22)+a (x 1+x 2)≤0.即(x 1+x 2)[(x 1+x 2)2-3x 1x 2]-(1+a )[(x 1+x 2)2-2x 1x 2]+a (x 1+x 2)≤0. 由于f′(x )=3x 2-2(1+a )x+a .令f′(x )=0得方程3x 2-2(1+a )x+a=0. 因△=4(a 2-a+1)≥4a >0,故 {x 1+x 2=23(1+a )x 1x 2=a3 代入前面不等式, 两边除以(1+a ),并化简得 2a 2-5a+2≥0.解不等式得a≥2或a≤ 12 (舍去)因此,当a≥2时,不等式f (x 1)+f (x 2)≤0成立.【点评】:考查学生求导数及利用导数研究函数极值的能力,灵活运用一元二次方程根与系数的关系解决数学问题的能力.17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?【正确答案】:【解析】:由集合知识可以解出集合A,对集合B进行分类求解,再利用集合的子集,交集,补集解出.【解答】:解:由log2(x-1)>1得x-1>2即x>3,故A=(3,+∞)选① :A⊆B当a>2时,B=(-∞,4-a)∪(a,+∞),∵A⊆B∴2<a≤3;当a<2时,B=(-∞,a)∪(4-a,+∞),∵A⊆B∴4-a≤3即1≤a<2;当a=2时,B=(-∞,2)∪(2,+∞),此时A⊆B综上:1≤a≤3选② ③ :答案同①故答案为:1≤a≤3.【点评】:本题属于结构不良试题,补充条件后,试题完整,利用集合的相关知识解决,属于基础题.18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.【正确答案】:【解析】:(1)利用诱导公式,和同角三角函数的基本关系关系,可将f (α)的解析式化简为f (α)=-cosα;(2)由α是第三象限角,且 cos (3π2−α)=35 ,可得cosα=- 45 ,结合(1)中结论,可得答案.【解答】:解:(1)f (α)= sin (5π−α)cos (π+α)cos(3π2+α)cos(α+π2)tan (3π−α)sin(α−3π2)= sinα•(−cosα)•sinα(−sinα)•(−tanα)•cosα =-sinα•cosα•sinαsinα•sinα=-cosα (2)∵ cos (3π2−α) =-sinα= 35,∴sinα=- 35 ,又由α是第三象限角, ∴cosα=- 45 , 故f (α)=-cosα= 45【点评】:本题考查的知识点是三角函数的化简求值,熟练掌握和差角公式,诱导公式,同角三角函数的基本关系关系,是解答的关键.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为:b ̂=∑x i y i −nxyni=1∑xi 2n i=1−nx2=i −x )i −y ni=1)∑(x −x )2n a ̂=y −b ̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .【正确答案】:【解析】:(1)由已知求得 b ̂ 与 a ̂ 的值,可得线性回归方程,取x=7求得y 值得结论; (2)求出K 2的值,结合临界值表得结论.【解答】:解:(1) x =1+2+3+4+55=3 , y =3+6+9+15+275=12 ,∑x i 5i=1y i =1×3+2×6+3×9+4×15+5×27 =237.b ̂=i 5i=1i −5xy∑x 25−5(x )2= 237−5×3×1255−45=5.7 ,a ̂=y −b̂x =12−5.7×3=−5.1 , 则y 关于x 的线性回归方程为 y ̂=5.7x −5.1 . 取x=7,可得 y ̂=5.7×7−5.1=34.8 .故预测2025~2030年间该市机动车纯增数量的值约为34.8万辆; (2)根据2×2列联表,计算可得 K 2=220×(90×40−20×70)2110×110×160×60=556≈9.167>6.635, ∴有99%的把握认为“对限行的意见与是拥有私家车”有关.【点评】:本题考查线性回归方程的求法,考查独立性检验的应用,考查计算能力,是中档题. 20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.【正确答案】:【解析】:(1)由平面AA 1C 1C⊥平面AA 1B 1B ,推出OC⊥平面AA 1B 1B ,故OC⊥OB ;易证Rt△AOC≌Rt△BOC ,故OA=OB ,从而得AA 1⊥OB ,再由线面垂直的判定定理得证;(2)以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B ,故∠CBO 为直线BC 与平面ABB 1A 1所成角,可得OA=OB=OC=1,写出B 、A 1、B 1、D 的坐标,根据法向量的性质求得平面A 1B 1D 的法向量 m ⃗⃗ ,由OB⊥平面AA 1C 1C ,知平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ ,再由cos < m ⃗⃗ , n ⃗ >= m ⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |即可得解.【解答】:(1)证明:∵平面AA 1C 1C⊥平面AA 1B 1B ,平面AA 1C 1C∩平面AA 1B 1B=AA 1,OC⊥AA 1,∴OC⊥平面AA 1B 1B , ∴OC⊥OB ,∵CA=CB ,OC=OC ,∠COA=∠COB=90°, ∴Rt△AOC≌Rt△BOC , ∴OA=OB , ∵∠BAA 1=45°,∴∠ABO=∠BAA 1=45°,∠AOB=90°,即AA 1⊥OB , 又OC⊥AA 1,OB∩OC=O ,OB 、OC⊂平面BOC , ∴AA 1⊥平面BOC , ∴AA 1⊥BC .(2)解:以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B , ∵直线BC 与平面ABB 1A 1所成角为45°, ∴∠CBO=45°,∵AB= √2 ,∴OA=OB=OC=1,∴B (0,1,0),A 1(-1,0,0),B 1(-2,1,0),D (-1,0,1), ∴ A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,1), 设平面A 1B 1D 的法向量为 m ⃗⃗ =(x ,y ,z ),则 {m ⃗⃗ •A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0m ⃗⃗ •B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,即 {z =0x −y +z =0 ,令x=1,则y=1,z=0,所以 m ⃗⃗ =(1,1,0),∵OB⊥平面AA 1C 1C ,∴平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ =(0,1,0), ∴cos < m ⃗⃗ , n ⃗ >= m⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |= √2×1= √22 , 由图可知,二面角B 1-A 1D-C 1为锐角, 故二面角B 1-A 1D-C 1的余弦值为 √22 .【点评】:本题考查空间中线与面的位置关系、二面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知函数f (x )=x|2a-x|+2x ,a∈R . (1)若函数f (x )在R 上是增函数,求实数a 的取值范围;(2)若存在实数a∈[-2,2],使得关于x 的方程f (x )-tf (2a )=0有3个不相等的实数根,求实数t 的取值范围.【正确答案】:【解析】:(1)写出f (x )的分段函数,求出对称轴方程,由二次函数的单调性,可得a-1≤2a ,2a≤a+1,解不等式即可得到所求范围;(2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解.讨论 ① 当-1≤a≤1时, ② 当a >1时, ③ 当a <-1时,判断f (x )的单调性,结合函数和方程的转化思想,即可得到所求范围.【解答】:解:(1)∵ f (x )={x 2+(2−2a )x ,x ≥2a−x 2+(2+2a )x ,x <2a 为增函数,由于x≥2a 时,f (x )的对称轴为x=a-1; x <2a 时,f (x )的对称轴为x=a+1, ∴ {a −1≤2a 2a ≤a +1解得-1≤a≤1; (2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解. ① 当-1≤a≤1时,f (x )在R 上是增函数,关于x 的方程f (x )=tf (2a )不可能有3个不相等的实数根. ② 当1<a≤2时,2a >a+1>a-1,∴f (x )在(-∞,a+1)上单调递增,在(a+1,2a )上单调递减, 在(2a ,+∞)上单调递增,所以当f (2a )<tf (2a )<f (a+1)时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根,即4a <t•4a <(a+1)2. ∵a >1,∴ 1<t <14(a +1a +2) .设 ℎ(a )=14(a +1a +2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,∴1<t <h (a )max .又h (a )在(1,2]递增,所以 ℎ(a )max =98,∴ 1<t <98. ③ 当-2≤a <-1时,2a <a-1<a+1,所以f (x )在(-∞,2a )上单调递增, 在(2a ,a-1)上单调递减,在(a-1,+∞)上单调递增, 所以当f (a-1)<tf (2a )<f (2a )时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根, 即-(a-1)2<t•4a <4a .∵a <-1,∴ 1<t <−14(a +1a−2) . 设 g (a )=−14(a +1a −2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,所以1<t <g (a )max . 又可证 g (a )=−14(a +1a −2) 在[-2,-1)上单调递减, 所以 g (a )max =98 ,所以 1<t <98 ..综上,1<t<98【点评】:本题考查分段函数的单调性的判断和运用,注意运用二次函数的对称轴和区间的关系,考查存在性问题的解法,注意运用分类讨论的思想方法,以及函数方程的转化思想的运用,考查运算化简能力,属于中档题.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e【正确答案】:【解析】:(1)依题意,f(x)+f(-x)=0在定义域上恒成立,由此建立方程,解出即可;(2)求导后分m≤2及m>2讨论即可;(3)可知e x0+e−x0=m,进而得到f(x0),研究其单调性,结合已知可得x0≤1,由此可求得实数m的取值范围.【解答】:解:(1)由函数f(x)为奇函数,得f(x)+f(-x)=0在定义域上恒成立,∴e x-ae-x-mx+e-x-ae x+mx=0,化简可得(1-a)(e x+e-x)=0,故a=1;,(2)由(1)可得f(x)=e x-e-x-mx,则f′(x)=e x+e−x−m=e2x−me x+1e x① 当m≤2时,由于e2x-me x+1≥0恒成立,即f′(x)≥0恒成立,故不存在极小值;② 当m>2时,令e x=t,则方程t2-mt+1=0有两个不等的正根t1,t2(t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,lnt1),(lnt2,+∞)上单调递增,在(lnt1,lnt2)上单调递减,即在lnt2出取到极小值,所以,实数m的取值范围为(2,+∞);(3)由x0满足e x0+e−x0=m代入f(x)=e x-e-x-mx,消去m得f(x0)=(1−x0)e x0−(1+x0)e−x0,构造函数h(x)=(1-x)e x-(1+x)e-x,则h′(x)=x(e-x-e x),当x≥0时,e−x−e x=1−e2xe x≤0,故当x≥0时,h′(x)≤0恒成立,故函数h(x)在[0,+∞)上单调减函数,其中ℎ(1)=−2e ,则f(x0)≥−2e,可转化为h(x0)≥h(1),故x0≤1,由e x0+e−x0=m,设y=e x+e-x,可得当x≥0时,y′=e x-e-x≥0,∴y=e x+e-x在(0,1]上递增,故m≤e+1e,综上,实数m的取值范围为(2,e+1e].【点评】:本题考查利用导数研究函数的单调性,极值及最值,同时也涉及了奇函数的定义,考查转化思想及逻辑推理能力,属于中档题.。
2023-2024学年山东省青岛重点中学高三(上)月考数学试卷(10月份)(含解析)
2023-2024学年山东省青岛重点中学高三(上)月考数学试卷(10月份)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)l已知集合A=(xl2x -1 > O}, 8 = (xlx 2 + 2x -3 < 0},则AnB =( )A.(0,3)B.(0,1)C .(-3,+oo )D.(-1,+co )2若z(l-3i) = 2 -i ,则;=()1 1 1 1 C. l+iD. 1-iA -+ . - i B. - --i 3已知等差数列{a n }的前5项和S 5= 35,且满足a 5= 13a 1,则等差数列{a n }的公差为()A.-3B. -1C.1D.34.2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道已知火箭的最大速度v(单位:Mkm/s)与燃料质榄M(单位:kg)、火箭质榄m(单位:kg)的函数关系为v= Z ln(l+-).若已知火箭的质量为,n 3100kg,火箭的最大速度为llkm/s,则火箭需要加注的燃料质量为()(参考数值为lnZ "" 0.69, ln244.69 "" 5.50,结果精确到O.Olt,lt = 1000kg)A. 243.69tB.244.69tC.755.44tD.890.23t5已知s in(x+合)= -i,则c os(子-x)=()7-8A l -8B 7-8c1-8D6.已知X> 0, y > 0,且X + 2y = 1,下列结论中错误的是()1A.xy的最大值是-81 C.-+-的最小值是9X yB.沪+心的最小值是21D.x 2 +4沪的最小值是-7设函数f (x) = sin(w x 叶)在区间(0,兀)恰有三条对称轴,则Q 的取值范围是()A [抖,号)B.音,节C (早,创D . (13 19了飞l8已知a>b,c>d,五=丘=1.01,(1-c)e'=(l -d)社=0.99,则()A.a+b<OB. c + d> 0C. a+ d> 0D. b + c>0二、多选题(本大题共4小题,共20.0分。
2024-2025学年黑龙江省哈尔滨市哈尔滨三中高三(上)月考数学试卷(10月份)(含答案)
2024-2025学年黑龙江省哈尔滨三中高三(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合A ={y|y =24−x 2},B ={x|y =ln(x 2+2x +3)},则A ∩B =( )A. (0,4]B. [1,4]C. [1,+∞)D. (0,+∞)2.已知3+i 是关于x 的方程2x 2−mx +n =0(m,n ∈R)的一个根,则m +n =( )A. 20B. 22C. 30D. 323.已知x >0,y >0,lg 2x +lg 4y =lg2,则1x +12y 的最小值为( )A. 2B. 22C. 23D. 44.数列{a n }中,若a 1=2,a 2=4,a n +a n +1+a n +2=2,则数列{a n }的前2024项和S 2024=( )A. 1348B. 1350C. 1354D. 26985.在△ABC 中,D 为BC 中点,CP =λCB ,AQ =23AB +13AC ,若AD =25AP +35AQ ,则λ=( )A. 12B. 13C. 14D. 156.在三棱柱ABC−A 1B 1C 1中,点D 在棱BB 1上,且BB 1=4BD ,点M 为A 1C 1的中点,点N 在棱BB 1上,若MN//平面ADC 1,则NBNB 1=( )A. 2B. 3C. 4D. 57.已知偶函数f(x)定义域为R ,且f(3x)=f(2−3x),当x ∈[0,1]时,f(x)=x 2,则函数g(x)=|cos (πx)|−f(x)在区间[−52,12]上所有零点的和为( )A. −7B. −6C. −3D. −28.已知平面向量a ,b ,c ,满足|a |=|b |=1,且cos 〈a ,b〉=−12,|c−a +b |=1,则b ⋅(a−c )的最小值为( )A. −1B. 0C. 1D. 2二、多选题:本题共3小题,共18分。
吉林省长春市第二中学2023-2024学年高三上学期10月月考数学试题+Word版含答案
2024届高三年级第二次调研测试数学学科试卷命题人:戴丽美 审题人:张伟萍一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知p :2log 1x <,则p 的充分不必要条件是( )A. 2x < B. 02x << C. 01x << D. 03x <<2. 已知正实数a ,b 满足196a b+=,则()()19a b ++的最小值是( )A. 8B. 16C. 32D. 363. 已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( )A. 5[1,]3B. 5(1,3C. (]5,1(,)3-∞-⋃+∞ D. ()5,1[1,)3-∞- 4. 已知函数()()21,1215,1x a x f x x a x x ⎧+⎪=⎨-++>⎪⎩,…对12,R x x ∀∈,12x x ≠,满足1212()[()()]0x x f x f x -->,则实数a 的取值范围是( )A. 13a <…B. 13a <<C. 512a <<D. 512a <…5. 已知定义在R 上的函数()f x 满足()()0,(1)(1)f x f x f x f x -+=+=-,且当(1,0)x ∈-时,41()log ()2f x x =--,则172f ⎛⎫= ⎪⎝⎭( )A.12B. 1- C. 12-D. 16. 如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则EM EN ⋅=( )A. 3- B. 2- C. 32-D. 12-7. 已知函数()2f x x m =+与函数()11ln 3,22g x x x x ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎣⎦⎝⎭的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A. 5ln 2,24⎡⎤+⎢⎥⎣⎦B. 52ln 2,ln 24⎡⎤-+⎢⎥⎣⎦C. 5ln 2,2ln 24⎡⎤++⎢⎥⎣⎦D. []2ln 2,2-8. 将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的 1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数 ()g x 在3(,)22ππ上没有零点,则 ω的取值范围是( )A. 228(0,][,939B. 2(0,]9C. 28(0,][,1]99D. (0,1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 设函数()sin 22f x x x =+,则下列结论正确的是( )A. ()f x 的最小正周期为πB. ()f x 的图象关于直线12x π=对称C. ()f x 的一个零点为3x π=D. ()f x1+10. 下列说法中错误的为()A. 已知()1,2a =r ,()1,1b =r ,且a 与a λb + 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B. 向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C. 若//a b ,则a 在b方向上的正射影的数量为ar D. 三个不共线的向量OA ,OB ,OC ,满足AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫ ⎪=⋅+= ⎪⎝⎭,则O 是ABC V 的内心11. 在现代社会中,信号处理是非常关键技术,我们通过每天都在使用的电话或者互联网就能感受到,而信号处理背后的“功臣”就是正弦型函数.()()71sin 2121i i x f x i =-⎡⎤⎣⎦=-∑的图象就可以近似的模拟某种信号的波形,则下列说法正确的是( )A. 函数()f x 为周期函数,且最小正周期为πB. 函数()f x 为偶函数C. 函数()y f x =的图象关于直线π2x =对称D. 函数()f x 导函数()f x '的最大值为712. 设函数()()πsin 05f x x ωω⎛⎫=+> ⎪⎝⎭,已知()f x []0,2π有且仅有5个零点,则( )A. ()f x 在()0,2π有且仅有3个极大值点B. ()f x 在()0,2π有且仅有2个极小值点C. ()f x 在π0,10⎛⎫⎪⎝⎭单调递增D. ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x 都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.14. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2221cos cos sin sin sin 4A B C B C -+==,且ABC V的面积为a 的值为________.15. 如图,在ABC V 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若ABC V的面积为,则AP的最小值为__________.的的在16. 若函数()cos sin f x a b x c x =++的图象经过点()0,1和π,4a ⎛⎫- ⎪⎝⎭,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x ≤恒成立,则实数a 的取值范围是______.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17. 已知函数()ln f x x x ax b =++在()()1,1f 处的切线为2210x y --=.(1)求实数,a b 的值;(2)求()f x 的单调区间.18. 已知函数()2f x x ω=sin cos x x ωω+(0)>ω的最小正周期为π.(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)若()f x >,求x 取值的集合.19. 如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台P ,已知射线AB ,AC 为湿地两边夹角为120°的公路(长度均超过2千米),在两条公路AB ,AC 上分别设立游客接送点M ,N ,从观景台P 到M ,N 建造两条观光线路PM ,PN ,测得2AM =千米,2AN =千米.(1)求线段MN 的长度;(2)若60MPN ∠=︒,求两条观光线路PM 与PN 之和的最大值.20. 已知函数()2ln f x x ax a x =-+有两个极值点1x ,2x .(1)求a 的取值范围;(2)证明:()()1212242416ln2f x f x x x +++<.21. 设函数()sin xf x e a x b =++.(Ⅰ)当1a =,[)0,x ∈+∞时,()0f x ≥恒成立,求b 的范围;(Ⅱ)若()f x 在0x =处切线为10x y --=,且方程()2m xf x x-=恰有两解,求实数m 的取值范围.22 已知函数()1sin e xx f x x -=+,ππ,2x ⎛⎫∈- ⎪⎝⎭.(1)求证:()f x 在()ππ,2-上单调递增;(2)当()π,0-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦≤恒成立,求k 的取值范围.的.2024届高三年级第二次调研测试数学学科试卷命题人:戴丽美 审题人:张伟萍一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知p :2log 1x <,则p 的充分不必要条件是( )A. 2x <B. 02x << C. 01x << D. 03x <<【答案】C 【解析】【分析】解出2log 1x <的解集,p 的充分不必要条件是其子集,选出即可.【详解】解:由2log 1x <得02x <<,p 的充分不必要条件是()0,2的子集,C 符合,故选:C.【点睛】本题考查充分不必要条件的判断,是基础题.2. 已知正实数a ,b 满足196a b+=,则()()19a b ++的最小值是( )A. 8 B. 16C. 32D. 36【答案】B 【解析】【分析】对196a b+=1≥且96b a ab +=,把()()19a b ++展开得到()()=7919a b ab +++,即可求出最小值.【详解】因为正实数a ,b 满足196a b+=,所以196a b =+≥1≥,当且仅当19=a b 时,即1,33a b ==时取等号.因为196a b+=,所以96b a ab +=,所以()()919=9797916a a b a b b b a +++≥+=+=++.故()()19a b ++的最小值是16.故选:B3. 已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是()A. 5[1,]3B. 5(1,3C. (]5,1(,)3-∞-⋃+∞ D. ()5,1[1,)3-∞- 【答案】A 【解析】【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解【详解】22()lg[(1)(1)1]f x a x a x =-+++ 的值域为R 令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =±当1a =时,21y x =+符合题意;当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A【点睛】转化命题的等价命题是解题关键.4. 已知函数()()21,1215,1xa x f x x a x x ⎧+⎪=⎨-++>⎪⎩,…对12,R x x ∀∈,12x x ≠,满足1212()[()()]0x x f x f x -->,则实数a 的取值范围是( )A. 13a <…B. 13a <<C. 512a << D. 512a <…【答案】D 【解析】【分析】先判断()f x 是R 上的增函数,列关于实数a 的不等式组,即可求得实数a 的取值范围.【详解】由题意,得()f x 是R 上的增函数,则()11141215a a a a >⎧⎪+⎪⎨⎪+-++⎪⎩……,解得512a <…,故选:D5. 已知定义在R 上函数()f x 满足()()0,(1)(1)f x f x f x f x -+=+=-,且当(1,0)x ∈-时,41()log ()2f x x =--,则172f ⎛⎫= ⎪⎝⎭( )A.12B. 1- C. 12-D. 1【答案】B 【解析】【分析】根据函数()f x 满足(1)(1)f x f x +=-,得到(2)()f x f x -=,再结合()()0f x f x -+=,得到(4)()f x f x +=,即()f x 的周期为4,然后利用周期结合当(1,0)x ∈-时,41()log ()2f x x =--求解.【详解】因为函数()f x 满足(1)(1)f x f x +=-,所以(2)()f x f x -=,又因为()()0f x f x -+=,所以(2)()f x f x +=-,所以(4)()f x f x +=,又因为(1,0)x ∈-时,41()log ()2f x x =--,则17118222⎛⎫⎛⎫⎛⎫=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f ,2421og 1111112log 12222log 422⎛⎫ ⎪⎛⎫⎛⎫⎛⎫=--=--=--=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭l f .故选:B【点睛】本题主要考查函数奇偶性和周期性的综合应用,还考查了转化求解问题的能力,属于中档题.6. 如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则EM EN ⋅=( )的A. 3-B. 2-C. 32-D. 12-【答案】A 【解析】【分析】利用平面向量线性运算、数量积运算求得正确答案.【详解】24,2,1MN BC OM OE ====.()()EM EN EO OM EO ON⋅=+⋅+ ()()22143EO OM EO OM EO OM =+⋅-=-=-=- .故选:A7. 已知函数()2f x x m =+与函数()11ln3,22g x x x x ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎣⎦⎝⎭的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A. 5ln 2,24⎡⎤+⎢⎥⎣⎦ B. 52ln 2,ln 24⎡⎤-+⎢⎥⎣⎦C. 5ln 2,2ln 24⎡⎤++⎢⎥⎣⎦D. []2ln 2,2-【答案】D 【解析】【分析】由题可得()()()2ln 3h x f x g x x x x m =+=+-+在1,22⎡⎤⎢⎥⎣⎦有零点,利用导数研究函数的性质进而可得20ln 22m m -≤≤+-,即得.【详解】原问题等价于()()()2ln 3h x f x g x x x x m =+=+-+在1,22⎡⎤⎢⎥⎣⎦有零点,而()()()1123211h x x x x x x'=+-=--,∴()1,1,02x h x ⎛⎫'∈<⎪⎝⎭,()h x 单调递减, (]()1,2,0x h x '∈>,()h x 单调递增,又()()1512,2ln 22,ln 224h m h m h m ⎛⎫=-=-+=--+⎪⎝⎭,由1ln 22>可判断()122h h ⎛⎫> ⎪⎝⎭,因而()h x 的值域为[]2,ln 22m m -+-,又()h x 有零点,有20ln 22m m -≤≤+-,所以[]2ln2,2m ∈-.故选:D.8. 将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的 1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数 ()g x 在3(,)22ππ上没有零点,则 ω的取值范围是( )A. 228(0,][,939B. 2(0,]9C. 28(0,][,1]99D. (0,1]【答案】A 【解析】【分析】根据y =Acos (ωx +φ)的图象变换规律,求得g (x )的解析式,根据定义域求出56x πω-的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数()cos f x x =的图象先向右平移56π个单位长度,可得5cos 6y x π⎛⎫=-⎪⎝⎭的图象,再将图象上每个点的横坐标变为原来的1ω(0)>ω倍(纵坐标不变),得到函数5()cos 6g x x πω⎛⎫=-⎪⎝⎭的图象,∴周期2T πω=,若函数()g x 在3(,)22ππ上没有零点,∴ 553526626x ωπππωππω-<-<-,∴ 35526262T ωππωπππω⎛⎫⎛⎫---≤=⎪ ⎪⎝⎭⎝⎭,21ω∴≤,解得01ω<≤,又522635226k k πωππππωπππ⎧-+≤-⎪⎪⎨⎪+≥-⎪⎩,解得3412323k ωω-≤≤-,当k =0时,解2839ω≤≤,当k =-1时,01ω<≤,可得209ω<≤,ω∴∈228(0,][,]939.故答案为:A .【点睛】本题考查函数y =Acos (ωx +φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 设函数()sin 22f x x x =+,则下列结论正确的是( )A. ()f x 的最小正周期为πB. ()f x 的图象关于直线12x π=对称C. ()f x 的一个零点为3x π=D. ()f x1+【答案】ABC 【解析】【分析】先化简,得到()2sin 23f x x π⎛⎫=+⎪⎝⎭,再根据三角函数的图像和性质对四个选项一一验证.【详解】函数()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭.对于A :()f x 的最小正周期为π.故A 正确;对于B :2sin 2212123πππf ⎛⎫⎛⎫=⨯+=⎪⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称.故B 正确;对于C :2sin 20333πππf ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,所以3x π=是()f x 的一个零点.故C 正确;对于D :函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最大值为2.故D 错误.故选:ABC10. 下列说法中错误的为()A. 已知()1,2a =r ,()1,1b =r ,且a 与a λb + 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B. 向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C. 若//a b ,则a 在b方向上的正射影的数量为ar D. 三个不共线的向量OA ,OB ,OC ,满足AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫ ⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫⎪=⋅+= ⎪⎝⎭,则O 是ABC V 的内心【答案】AC 【解析】【分析】对于A ,由向量的交角为锐角的等价条件为数量积大于0,且两向量不共线,计算即可;对于B ,由124e e = ,可知1e ,2e不能作为平面内所有向量的一组基底;对于C ,利用向量投影的定义即可判断;对于D ,由0AB CA OA AB CA ⎛⎫⎪⋅+= ⎪⎝⎭,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,进而得出点O 是ABC V 的内心.【详解】对于A ,已知()1,2a =r ,()1,1b =r ,且a 与a λb +的夹角为锐角,可得()0a a b λ+>⋅ ,且a 与a λb +不共线,()1,2a λb λλ+=++ ,即有()1220λλ++⨯+>,且()212λλ⨯+≠+,解得53λ>-且0λ≠,则实数λ的取值范围是53λ>-且0λ≠,故A 不正确;对于B ,向量,,213,24e ⎛⎫=- ⎪⎝⎭,124e e = ,∴向量1e ,2e不能作为平面内所有向量的一组基底,故B 正确;对于C ,若a b P ,则a 在b上的投影为a ± ,故C 错误;对于D ,AB CA AB CA+ 表示与ABC V 中角A 的外角平分线共线的向量,由0AB CA OA AB CA ⎛⎫⎪⋅+= ⎪⎝⎭,可知OA 垂直于角A 的外角平分线,所以,点O 在角A 的平分线上,同理,点O 在角B 平分线上,点O 在角C 的平分线上,故点O 是ABC V 的内心,D 正确.故选:AC.【点睛】本题考查了平面向量的运算和有关概念,具体包括向量数量积的夹角公式、向量共线的坐标表示和向量投影的定义等知识,属于中档题.11. 在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到,而信号处理背后的“功臣”就是正弦型函数.()()71sin 2121i i x f x i =-⎡⎤⎣⎦=-∑的图象就可以近似的模拟某种信号的波形,则下列说法正确的是( )A. 函数()f x 为周期函数,且最小正周期为πB. 函数()f x 为偶函数C. 函数()y f x =的图象关于直线π2x =对称D. 函数()f x 的导函数()f x '的最大值为7的【答案】CD 【解析】【分析】利用周期的定义可判断A 选项的正误;利用奇偶性的定义可判断B 选项的正误;利用函数的对称性可判断C 选项的正误;求得函数()f x 的导数,求出()f x '的最大值,可判断D 选项的正误.【详解】对于选项A :因为()()()()()7711sin 21πsin 21π21π2121==-+-+-⎡⎤⎡⎤⎣⎦⎣⎦+==--∑∑i i i x i i x f x i i ()()()7711sin π21sin 212121==-+--⎡⎤⎡⎤⎣⎦⎣⎦==-=---∑∑i i i x i x f x i i ,即()()πf x f x +=-,可知函数()f x 的最小正周期不为π,故A 错误;对于选项B :因为sin y x =为奇函数,所以()sin sin x x =--,所以()()71sin 21sin 3sin 5sin 7sin 9sin11sin13sin 2135791113i i x x x x x x xf x x i =-⎡⎤⎣⎦==++++++-∑也是奇函数,故B 错误;对于选项C :因为()()()()()7711sin 21πsin 21π21π2121==-----⎡⎤⎡⎤⎣⎦⎣⎦-==--∑∑i i i x i i x f x i i ()()()7711sin π21sin 212121==----⎡⎤⎡⎤⎣⎦⎣⎦===--∑∑i i i x i x f x i i ,即()()πf x f x -=,所以函数()y f x =的图像关于直线π2x =对称,故C 正确;对于选项D :因为()sin 3sin 5sin 7sin 9sin11sin13sin 35791113x x x x x xf x x =++++++,所以()cos cos3cos5cos 7cos9cos11cos13f x x x x x x x x '=++++++,因为cos ,cos3,cos5,cos 7,cos9,cos11,cos13x x x x x x x 的取值范围均为[]1,1-,可知()7'≤f x ,当0x =时,()07f '=,所以()f x '的最大值为7,所以D 正确.故选:CD .12. 设函数()()πsin 05f x x ωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]0,2π有且仅有5个零点,则( )A. ()f x 在()0,2π有且仅有3个极大值点B. ()f x 在()0,2π有且仅有2个极小值点C. ()f x 在π0,10⎛⎫⎪⎝⎭单调递增D. ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭【答案】ACD 【解析】【分析】由()f x 在[]0,2π有且仅有5个零点,可得265ωπ5π≤+<ππ可求出ω的范围,然后逐个分析判断即可.【详解】因为()()πsin 05f x x ωω⎛⎫=+> ⎪⎝⎭在[]0,2π有且仅有5个零点,如图所示,所以265ωπ5π≤+<ππ,所以1229510ω≤<,所以D 正确,对于AB ,由函数sin y x =在,2π55ωππ⎡⎤+⎢⎥⎣⎦上的图象可知,()f x 在()0,2π有且仅有3个极大值点,有3个或2个极小值点,所以A 正确,B 错误,对于C ,当π0,10x ⎛⎫∈ ⎪⎝⎭时,ππππ,55105x ωω⎛⎫+∈+ ⎪⎝⎭,因为1229510ω≤<,所以π49ππ1051002ωπ+<<,所以πππ,5105ω⎛⎫+ ⎪⎝⎭π0,2⎛⎫⎪⎝⎭,所以()f x 在π0,10⎛⎫⎪⎝⎭单调递增,所以C 正确,故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x 都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.【解析】【分析】根据题设凸函数的性质可得1(sin sin sin )sin(33A B CA B C ++++≤即可求最大值,注意等号成立条件.【详解】由题设知:1(sin sin sin )sin()sin 333A B C A B C π++++≤==,∴sin sin sin A B C ++≤,当且仅当3A B C π===时等号成立.14. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2221cos cos sin sin sin 4A B C B C -+==,且ABC V 的面积为a 的值为________.【答案】【解析】【分析】根据同角三角函数的基本关系以及正弦,余弦定理求得角A 的值,再利用正弦定理可得22sin sin sin bc a B C A=,结合ABC V 的面积求出边a 的值.【详解】解:222cos cos sin sin sin A B C B C -+= ,()2221sin 1sin sin sin sin A B C B C ∴---+=,即222sin sin sin sin sin B A C B C -+=,由正弦定理角化边得222b a c bc -+=,2221cos 222b c a bc A bc bc +-∴===,由正弦定理sin sin sin a b c A B C==,22sin sin sin bc a B C A∴=即221sin 43bc a π=,化简得23a bc =,又ABC V的面积为1sin 2ABC S bc A ==V 8bc ∴=224a ∴=解得a =故答案为:15. 如图,在ABC V 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若ABC V的面积为,则AP的最小值为__________.【解析】【分析】用,AC AB表示,CD PD ,利用这两者共线可求m ,求出2AP 后利用基本不等式可求其最小值.【详解】因为2AD DB =,故23AD AB = ,所以23CD AD AC AB AC =-=- ,而211326PD AD AP AB mAC AB AB mAC =-=--=-,因为CD 与PD 为非零共线向量,故存在实数λ,使得2136AB AC AB mAC λ⎛⎫-=- ⎪⎝⎭,故14,4m λ==,所以1142AP AC AB =+ ,所以2221111+216482AP AC AB AC AB =+⨯⨯⨯⨯,由ABC V的面积为=,故8AC AB ⨯= ,所以22211113164AP AC AB =++≥+= ,当且仅当4,2AC AB ==u u u r u u u r时等号成立.故minAP =,故答案【点睛】思路点睛:与三角形有关的向量问题,如果知道边与夹角的关系,则可以考虑用已知的边所在的向量作为基底向量,其余的向量可以用基地向量来表示,此时模长的计算、向量的数量积等都可以通过基底向量来计算.16. 若函数()cos sin f x a b x c x =++的图象经过点()0,1和π,4a ⎛⎫- ⎪⎝⎭,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x ≤恒成立,则实数a 的取值范围是______.【答案】0,4⎡+⎣【解析】【分析】先根据()π01,4f f a ⎛⎫=-= ⎪⎝⎭将,b c 转化为a 来表示,由此化简()f x 的解析式,对a 进行分类讨论,根据()f x ≤恒成立列不等式来求得a 的取值范围.【详解】因为()f x 经过点()0,1和π,4a ⎛⎫- ⎪⎝⎭,所以(0)1f a b =+=,π4f a a ⎛⎫-=+= ⎪⎝⎭,可得1b c a ==-,故π()(1)cos (1)sin (1)(sin cos ))sin 4f x a a x a x a a x x a a x ⎛⎫=+-+-=+-+=-+ ⎪⎝⎭.因为π02x ≤≤,所以ππ3π444x ≤+≤πsin 14x ⎛⎫≤+≤ ⎪⎝⎭,为当1a <时,10a ->,可得π1)sin )4a a x a ⎛⎫-≤-+≤- ⎪⎝⎭,所以1())f x a a ≤≤-+,要使()f x ≤≤恒成立,)a a -+≤0a ≥,又1a <,从而01a ≤<;当1a =时,()1[f x =∈;当1a >时,10a -<,所以π1)sin )4a a x a ⎛⎫-≥-+≥- ⎪⎝⎭,所以1())f x a a ≥≥-+,要使()f x ≤≤恒成立,)a a -+≥4a ≤+,又1a >,从而14a <≤+综上所述,a的取值范围为04a ≤≤+.故答案为:0,4⎡+⎣【点睛】求解不等式恒成立的问题,主要解题思路是转化为求函数的最值来进行求解,如本题中()f x ≤恒成立,就转化为()f x 的值域,也即三角函数的值域来进行求解.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17. 已知函数()ln f x x x ax b =++在()()1,1f 处的切线为2210x y --=.(1)求实数,a b 的值;(2)求()f x 的单调区间.【答案】(1)012a b =⎧⎪⎨=⎪⎩(2)减区间为1(0,e 增区间为1(,)e +∞【解析】【分析】(1)求出函数的导数,计算f ′(1),f (1)可求出a ,b 的值;(2)求出函数的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;【详解】(1)依题意可得:122(1)10(1)2f f --==即()ln f x x x ax b=++ '()ln 1f x x a ∴=++又 函数()f x 在(1,(1))f 处的切线为2210x y --=,1(1)2f =(1)111(1)2f a f a b =+=⎧⎪∴⎨=+'=⎪⎩解得:012a b =⎧⎪⎨=⎪⎩(2)由(1)可得:f '(x )=1+lnx ,当10x e ⎛⎤∈ ⎥⎝⎦,时,f '(x )≤0,f (x )单调递减;当1x e ⎛⎫∈+∞ ⎪⎝⎭,时,f '(x )>0,f (x )单调递增,∴()f x 的单调减区间为1(0,),e ()f x 的单调增区间为1e⎛⎫+∞ ⎪⎝⎭,.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用,属于基础题.18. 已知函数()2f x x ω=sin cos x x ωω+(0)>ω的最小正周期为π.(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)若()f x >,求x 取值的集合.【答案】(1)函数()f x 的单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)x 取值的集合为5,2424x k x k k Z ππππ⎧⎫-+<<+∈⎨⎬⎩⎭.【解析】【详解】试题分析:(Ⅰ)根据二倍角的正弦公式、二倍角的余弦公式以及两角和的正弦公式化简()23f x sin x πω⎛⎫==+ ⎪⎝⎭,利用正弦函数的单调性解不等式3222,232k x k πππππ+≤+≤+即可求得函数()f x 的单调递减区间;(Ⅱ)()f x >,即sin 23x π⎛⎫+> ⎪⎝⎭,由正弦函数的性质得3222,434k x k k Z πππππ+<+<+∈,化简后,写成集合形式即可.试题解析:(Ⅰ) ())21sin cos 1cos2sin22f x x x x x x ωωωωω=+=++-1sin2sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为周期为22ππω=,所以1ω=,故()sin 23f x x π⎛⎫=+ ⎪⎝⎭, 由3222,232k x k k Z πππππ+≤+≤+∈,得7,1212k x k k Z ππππ+≤≤+∈,函数()f x 的单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,(Ⅱ)()f x >sin 23x π⎛⎫+> ⎪⎝⎭,由正弦函数得性质得3222,434k x k k Z πππππ+<+<+∈, 解得5222,1212k x k ππππ-+<<+所以5,2424k x k k Z ππππ-+<<+∈,则x 取值的集合为5,2424x k x k k Z ππππ⎧⎫-+<<+∈⎨⎬⎩⎭.19. 如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台P ,已知射线AB ,AC 为湿地两边夹角为120°的公路(长度均超过2千米),在两条公路AB ,AC 上分别设立游客接送点M ,N ,从观景台P 到M ,N 建造两条观光线路PM ,PN ,测得2AM =千米,2AN =千米.(1)求线段MN 的长度;(2)若60MPN ∠=︒,求两条观光线路PM 与PN 之和的最大值.【答案】(1)千米(2)【解析】【分析】(1)在AMN V 中,利用余弦定理运算求解;(2)在PMN V中,利用正弦定理边化角,结合三角恒等变换可得π6PM PN α⎛⎫+=+⎪⎝⎭,进而可得结果.【小问1详解】在AMN V 中,由余弦定理得,2222cos MN AM AN AM AN MAN =+-⋅∠,即222122222122MN ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,可得MN =所以线段MN的长度【小问2详解】设2π0,3PMN α⎛⎫∠=∈ ⎪⎝⎭,因为π3MPN ∠=,所以2π3PNM α∠=-,在PMN V 中,由正弦定理得sin sin sin MN PM PN MPN PNM PMN==∠∠∠,因为sin ∠MN MPN4=,所以24sin 4sin ,4sin 4si π3n PM PNM PN PMN αα⎛⎫=∠==∠= ⎪⎝⎭-,因此4si 2n 4s π3in PM PN αα-⎛⎫+=+ ⎪⎝⎭14sin 4sin 2ααα⎫=++⎪⎭6sin αα=+=π6α⎛⎫+ ⎪⎝⎭,因为2π03α<<,所以6ππ5π66α<+<,所以当ππ62α+=,即π3α=时,PM PN +取到最大值20. 已知函数()2ln f x x ax a x =-+有两个极值点1x ,2x .(1)求a 的取值范围;(2)证明:()()1212242416ln2f x f x x x +++<.【答案】(1)8a >(2)证明见解析【解析】【分析】(1)求导,将问题转化为220x ax a -+=在()0,∞+上有两个实数根1x ,2x ,根据二次方程根的分布即可求解,(2)结合1212,22a a x x x x =+=,代入化简式子,将问题转化()2ln 2416ln 242a a g a a a =--++<,利用导数即可求解.【小问1详解】()222a x ax a f x x a x x-+'=-+=,()f x 有两个极值点1x ,2x ,则()0f x '=在()0,∞+上有两个实数根1x ,2x ,所以220x ax a -+=在()0,∞+上有两个实数根1x ,2x ,则21212Δ800202a a a x x a x x ⎧⎪=->⎪⎪=>⎨⎪⎪+=>⎪⎩解得8a >,故a 的取值范围为8a >,【小问2详解】由(1)知1212,22a a x x x x =+=,且8a >,()()2212111222121224242424ln ln f x f x x ax a x x ax a x x x x x +++=-++-+++()()()2121212121212242ln x x x x x x a x x a x x x x =++--+++22ln 24ln 2442242a a a a a a a a a a =--++=--++,令()2ln 24(8)42a a g a a a a =--++>,()ln 22a a g a '=-+,令()()()112ln ,02222a a a h a g a h a a a-''==-+=-+=<在8a >上恒成立,为所以()()ln 22a a h a g a '==-+在8a >单调递减,故()()ln 84ln 4022a a g a g ''=-+<=-+<,因此()g a 在8a >单调递减,故()()81688ln 42416ln 2g a g <=--++=,故()2ln 2416ln 242a a g a a a =--++<,得证.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.21. 设函数()sin xf x e a x b =++.(Ⅰ)当1a =,[)0,x ∈+∞时,()0f x ≥恒成立,求b 的范围;(Ⅱ)若()f x 在0x =处的切线为10x y --=,且方程()2m x f x x -=恰有两解,求实数m 的取值范围.【答案】(I )1b ≥-(II )10m e -<<【解析】【详解】试题分析:(1)将参数值代入得到函数表达式,研究函数的单调性求得函数最值,使得最小值大于等于0即可;(2)根据切线得到0a =,2b =-,方程22x m x e x --=有两解,可得22x xe x m x -=-,所以x xe m =有两解,令()x g x xe =,研究这个函数的单调性和图像,使得常函数y=m ,和()x g x xe =有两个交点即可.解析:由()sin xf x e a x b =++,当1a =时,得()cos xf x e x '=+.当[)0,x ∈+∞时,[]1,cos 1,1xe x ≥∈-,且当cos 1x =-时,2,x k k N ππ=+∈,此时1x e >.所以()cos 0xf x e x =+>',即()f x 在[)0,+∞上单调递增,所以()()min 01f x f b ==+,由()0f x ≥恒成立,得10b +≥,所以1b ≥-.(2)由()sin xf x e a x b =++得()cos x f x e a x =+',且()01f b =+.由题意得()001f e a '=+=,所以0a =.又()0,1b +在切线10x y --=上.所以0110b ---=.所以2b =-.所以()2xf x e =-.即方程22x m x e x --=有两解,可得22x xe x m x -=-,所以x xe m =.令()x g x xe =,则()()1x g x e x '=+,当(),1x ∈-∞-时,()0g x '<,所以()g x 在(),1-∞-上是减函数.当()1,x ∈-+∞时,()0g x '>,所以()g x 在()1,-+∞上是减函数.所以()()min 11g x g e=-=-.又当x →-∞时,()0g x →;且有()10g e =>.数形结合易知:10m e-<<.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.22. 已知函数()1sin e x x f x x -=+,ππ,2x ⎛⎫∈- ⎪⎝⎭.(1)求证:()f x 在()ππ,2-上单调递增;(2)当()π,0-时,()sin e cos sin x f x x x k x --⎡⎤⎣⎦≤恒成立,求k 的取值范围.【答案】(1)证明见解析(2)π12k ≤+【解析】【分析】(1)求出函数()f x 的导数,判断导数在()ππ,2-的取值范围,从而证明()f x 的单调性;(2)由题意可得1cos sin x x k x --≤,分离参数得到 1cos sin x x k x --≤,求出1cos ()sin x x g x x--=导数,判断其单调区间,找出最小值即可.小问1详解】()1sin e x x f x x -=+,ππ,2x ⎛⎫∈- ⎪⎝⎭,()2cos e x x f x x -'=+,由()π,0x ∈-,有22x -≥,11e x >,则22e x x ->,又1cos 1x -≤≤,则()2cos 120e x x f x x -'=+>-+>.当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x ≥,20x ->,所以()2cos 0e xx f x x -'=+> 所以当()ππ,2-时,()0f x ¢>,综上,()f x 在()ππ,2-上单调递增.【小问2详解】()sin e cos sin x f x x x k x --⎡⎤⎣⎦≤.化简得1cos sin x x k x --≤.当()π,0x ∈-时,sin 0x <,所以1cos sin x x k x --≤,设()1cos sin x x g x x--=,()()()221sin sin cos 1cos sin 1cos cos sin sin x x x x x x x x x g x x x +-+='--+-=设()sin 1cos cos h x x x x x =+-+,()()cos cos sin sin 1sin h x x x x x x x x =-+-=-'.()π,0x ∈- ,10x ∴-<,sin 0x <,()0h x '∴>()h x ∴在()π,0-上单调递增,又由π02h ⎛⎫-= ⎪⎝⎭,所以当ππ,2x ⎛⎫∈-- ⎪⎝⎭时,()0h x <,()0g x '<,()g x ∴在ππ,2⎛⎫-- ⎪⎝⎭上单调递减;当π,02x ⎛⎫∈- ⎪⎝⎭时,()0h x ∴>,()0g x '>,()g x ∴在π,02⎛⎫- ⎪⎝⎭上单调递增,所以()min π1ππ21212g x g --⎛⎫=-==+ ⎪-⎝⎭,【故π12k ≤+.【点睛】思路点睛:不等式恒成立问题在定义域内,若()g x k ≥恒成立,即()min g x k ≥;在定义域内,若()g x k ≤恒成立,即()max g x k ≤.。
成都七中高三10月月考数学(理)试卷及答案
成都七中高2019届数学(理科)10月阶段考试(一) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分, 考试时间120分钟.第I 卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设x ∈R ,则“l<x<2”是“|x - 2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.二项式(x+1)n (n ∈N*)的展开式中x 2的系数为15,则n=( )A . 5B . 6C . 8D . 103.己知cos31°=a ,则sin 239°·tan 149°的值是( )A .21a a -BC .21a a- D .- 4.若a 为实数,且231ai i i+=++,则a=( ) A . 一4 B . 一3 C . 3 D . 4 5.函数f (x)=ln(x+1)—2x 的一个零点所在的区间是( ) A. (0,1) B. (1,2) C. (2,3) D. (3,4)6.若实数a ,b 满足11a b+=,则ab 的最小值为( )A. , B .2 C . D .47.已知则8.设函数则A. 3B. 6C. 9D. 129.设函数f ’(x)是奇函数f (x) (x ∈R)的导函数,f (-1)=0,当x>0时,x f ’(x)-f (x )<0,则使得f(x)>0成立的x 的取值范围是( )A .(一∞,一1)(0,1)B .(一1,0)(1,+∞)C .(一∞,一1)(一1,0)D .(0,1) (1,+∞)10.设函数若互不相等的实数x 1,x 2,x 3满足 123()()()f x f x f x ==,则x 1+x 2+x 3的取值范围是( )11.己知f(x)是定义在R上的增函数,函数y=f(x-l)的图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是( )A. (3,7)B. (9,25)C. (13,49]D. (9,49)12.设函数则使得成立的x的取值范围是第II卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若函数f(x)= (a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是14.在区间[0,2]上随机地取一个数x,则事件“-1≤发生的概率为15.己知函数f(x)-2 sin ωx(ω>0)在区间上的最小值是-2,则ω的最小值为16.己知函数f(x)= 则不等式f(x)≥log2(x+1)的解集是三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在直角坐标系xOy中,曲线C1(t为参数,t≠0),其中0≤a<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2 : p = 2 sinθ,C3 : p =cosθ(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.18.(本小题满分10分)己知关于x的不等式|x+a|<b的解集为{x|2<x<4)(1)求实数a,b的值;(2)19.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)己知每检测一件产品需要费用1 00元,设X 表示直到检测出2件次品或者检测 出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).20.(本小题满分12分)已知函数厂(x)=sin (ωx+φ)(0<ω<1,0≤φ≤π)是R 上 的偶函数,其图象关于点M对称 (1)求ω,φ的值;(2)求f(x)的单调递增区间;(3) x ∈,求f(x)的最大值与最小值.21.(本小题满分12分)己知函数f (x)= 1ln 1x x+- (1)求曲线y=f (x)在点(0,f(0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x)>233x x ⎛⎫+ ⎪⎝⎭ (3)设实数k 使得f (x)>k 33x x ⎛⎫+ ⎪⎝⎭对x ∈(0,1)恒成立,求k 的最大值.22.(本小题满分14分)(1)已知e x ≥ax +1,对0x ∀≥恒成立,求a 的取值范围;(2)己知xe - f '(x)=1 - e -x ,0<x<m ,求证f (x)<2m .。
四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)
成都市实验外国语学校高三10月月考数学试题总分:150考试时间:120分钟一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“,使”的否定是( )A .,使B .不存在,使C .,D .,2.已知等差数列的前项和为,若,且,则( )A .60B .72C .120D .1443.若,则( )A .3B .4C .9D .164,侧面展开图的扇形圆心角为的圆锥侧面积为( )A .B .C .D .5.小王每次通过英语听力测试的概率是,且每次通过英语听力测试相互独立,他连续测试3次,那么其中恰有1次通过的概率是( )A .B .C .D .6.已知,是方程的两个根,则( )A .B .C .D .7.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域5米深处的光强是海面光强的,则该海域消光系数的值约为(参考数据:,)()A .0.2B .0.18C .0.1D .0.148.已知函数,方程有四个不同根,,,,且满足,则的取值范围是( )x ∃∈R 210x x +-=x ∃∈R 210x x +-≠x ∈R 210x x +-=x ∀∉R 210x x +-≠x ∀∈R 210x x +-≠{}n a n n S 21024a a +=36a =8S =24log log 2m n +=2m n =2π39π6π23292273949tan 23︒tan 37︒2230x mx +-=m =--0eKDD I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<221323432x x x x x x +-A .B .C .D .二、多选题:本题共3小题,共18分。
四川省成都2024-2025学年高三上学期10月月考数学试题含答案
成都高2022级十月月考数学试卷(答案在最后)命题人:注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分;2.本堂考试时间120分钟,满分150分;3.答题前考生务必先将自已的姓名、学号填写在答题卡上,并用2B 铅笔填涂;4.考试结束后将答题卡交回.第I 卷(选择题部分,共58分)一、单项选择题:本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{|28}xA x =>,2{|280}B x x x =--≤,则()R A B ⋂=ð()A.[]2,3- B.(]2,3-C.[]4,3- D.[)4,3-【答案】A 【解析】【分析】解不等式化简集合,A B ,再利用补集、交集的定义求解即得.【详解】集合3{|22}(3,)x A x =>=+∞,则R (,3]A =-∞ð,又{|(2)(4)0}[2,4]B x x x =+-≤=-,所以()[]R 2,3A B =- ð.故选:A2.命题2:0,10p x x ax ∀>-+>的否定是()A.20,10x x ax ∀>-+≤B.20,10x x ax ∀≤-+>C.20,10x x ax ∃>-+≤D.20,10x x ax ∃≤-+≤【答案】C 【解析】【分析】由全称量词命题的否定形式即可求.【详解】命题2:0,10p x x ax ∀>-+>的否定是:20,10x x ax ∃>-+≤.故选:C3.已知m ∈R ,n ∈R ,则“228m n +>”是“4mn >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质可得必要性,举反例可说明不充分性,即可求解.【详解】当4mn >时,2228m n mn +≥>,故228m n +>,故“228m n +>”是“4mn >”的必要条件,当228m n +>时,比如1,4m n ==-,但是40mn =-<,故“228m n +>”是“4mn >”的不充分条件,故“228m n +>”是“4mn >”的必要不充分条件,故选:B4.函数()()21cos 2πe 1xf x x ⎛⎫=-- ⎪+⎝⎭的图像大致为()A. B.C. D.【答案】A 【解析】【分析】根据奇偶性以及π02x <<时()f x 的正负即可判断.【详解】函数()f x 的定义域为R ,且()e 1cos e 1x x f x x -=+,()()()e 11e cos cos e 11e x xx xf x x x f x -----=-==-++ ,()f x \是奇函数,排除选项C 和D ,当π02x <<时,()0f x >,排除选项B .故选:A .5.若,,R a b c ∈,且,0,a b c a b c >>++>则下列命题正确的是()A.11a b> B.11b ba a+<+C.33c a < D.若0ac <,则22cb ab <【答案】C 【解析】【分析】运用特殊值,结合作差法逐个判断即可.【详解】由于,0,a b c a b c >>++>对于A ,设4,2,1,421,4210,a b c ===>>++>则111142a b =<=,故A 错误;对于B ,设()4,0,1,401,4010,a b c ===->>-++->则11015b ba a+=>=+,故B 错误;对于C ,()()()2332221324a c a c a ac ca c a c c ⎛⎫⎛⎫-=-++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭,由于a c >,则0a c ->.2213024a c c ⎛⎫++> ⎪⎝⎭,则330a c ->.则33c a <.故C 正确.对于D ,设()4,0,1,401,4010,a b c ===->>-++->40ac =-<,则220cb ab ==,故D 错误;故选:C.6.下列说法正确的有是()A.若函数()f x 为奇函数,则()00f =;B.函数()11f x x =-在()(),11,-∞+∞ 上是单调减函数;C.若函数()21y f x =+的定义域为[]2,3,则函数()f x 的定义域为1,12⎡⎤⎢⎥⎣⎦;D.将()2y f x =的图像向右平移12个单位,可得()21y f x =-的图像【答案】D 【解析】【分析】对于A ,根据奇函数的性质,结合反例,可得答案;对于B ,根据单调性的性质,结合反例,可得答案;对于C ,根据定义域的定义,结合抽象函数的性质,可得答案;对于D ,根据函数平移的运算,可得答案.【详解】对于A ,若()1f x x=,则该函数为奇函数,但在0x =出无意义,故A 错误;对于B ,由2112-<-<<,则()112213f -==---,()12121f ==-,则()()22f f -<,故B 错误;对于C ,由函数()21y f x =+,23x ≤≤,则5217x ≤+≤,所以函数()f x 的定义域为[]5,7,故C 错误对于D ,将()2y f x =的图像向右平移12个单位,可得()12212y f x f x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象,故D 正确.故选:D.7.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =()A.116-B.116C.14D.12【答案】D 【解析】【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数,∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-,∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===,故选:D【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题.8.定义{}min ,,p q r 表示,,p q r 中的最小值.已知实数,,a b c 满足0,2a b c abc ++==,则()A.{}min ,,a b c 的最大值是2B.{}min ,,a b c 的最大值是C.{}max ,,a b c 的最小值是2D.{}max ,,a b c【答案】C 【解析】【分析】由题先分析出实数a ,b ,c 一正两负,然后利用基本不等式放缩求出最大值的最小值即可.【详解】因为2abc =,0a b c ++=,所以在a ,b ,c 中,2个为负数,1个为正数,不妨设0c >,则max{,,}a b c c =.因为()()a b c ≤-+-=,所以24c ab ≤,因为0c >,2abc =,所以224c c ≤,324c ≥,则2c ≥,故{}max ,,a b c 的最小值是2,无最大值.故选:C.二、多项选择题:本题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知正数x 、y ,满足2x y +=,则下列说法正确的是()A.xy 的最大值为1B.+的最大值为2C.21x y+的最小值为 D.2211x y x y +++的最小值为1【答案】ABD 【解析】【分析】对于AB ,利用基本不等式及其推论即可判断;对于CD ,利用换元法与基本不等式“1”的妙用即可判断.【详解】对于A ,因为0,0,2x y x y >>+=,所以2x y =+≥1xy ≤,当且仅当x y =且2x y +=,即1x y ==时,等号成立,所以xy 的最大值为1,故A 正确;对于B ,因为()2222222()2()0a ba b a b ab a b +-+=+-=-≥,所以()222()2a b a b +≤+,当且仅当a b =时,等号成立,所以()222224x y ⎡⎤≤+=+=⎣⎦2≤,当且仅当=且2x y +=,即1x y ==时,等号成立,的最大值为2,故B 正确;对于C ,211213()313222212y x x y x y y y x x ++⎛⎛⎫⎛⎫=+=++≥+=+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当2y xx y=且2x y +=,即42x y =-=-时等号成立,所以21x y +的最小值为32+,故C 错误;对于D ,令1s x =+,1t y =+,则1x s =-,1y t =-,24s t x y +=++=,0,0s t >>,所以()()22221111112211s t x y s t x y s t s t s t--+=+=-++-+=+++()11111221444t s s t s t s t ⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当s t =且4s t +=,即2s t ==,即1x y ==时,等号成立,所以2211x y x y +++的最小值为1,故D 正确.故选:ABD.【点睛】方法点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10.函数21()222x x f x +=-+的定义域为M ,值域为[1,2],下列结论中一定成立的结论的序号是()A.(,1]M ⊆-∞B.[2,1]M ⊇- C.1M ∈ D.0M∈【答案】ACD 【解析】【分析】先研究值域为[]1,2时函数的定义域,再研究使得值域为[]1,2得函数的最小值的自变量的取值集合,研究函数值取1,2时对应的自变量的取值,由此可判断各个选项.【详解】由于[]212()222(21)11,2xx x f x +=-+=-+∈,[]2(21)0,1x ∴-∈,[]211,1x ∴-∈-,[]20,2x ∴∈,(],1x ∴∈-∞,即函数21()222x x f x +=-+的定义域为(],1-∞当函数的最小值为1时,仅有0x =满足,所以0M ∈,故D 正确;当函数的最大值为2时,仅有1x =满足,所以1M ∈,故C 正确;即当[]0,1M =时,函数的值域为[]1,2,故(],1M ⊆-∞,故[2,1]M ⊇-不一定正确,故A 正确,B 错误;故选:ACD【点睛】关键点睛:本题考查函数的定义域及其求法,解题的关键是通过函数的值域求出函数的定义域,再利用元素与集合关系的判断,集合的包含关系判断,考查了学生的逻辑推理与转化能力,属于基础题.11.若1823,23a b +==,则以下结论正确的有()A.1b a -> B.112a b+>C .34ab >D.22b a<【答案】BC 【解析】【分析】由对数定义求出,a b ,再根据不等式的性质判断.作差并利用二次函数性质得出结论.【详解】由题意得2log 31a =-,228log 3log 33b ==-,213log 9b a --=-,而2log 93>,∴10b a --<,A 错误;∵0,0a b >>,2a b +=,a b ≠,∴1+1=12(+p(1+1)=12(2++)>+=2,B 正确;2222222(log 31)(3log 3)(log 3)4log 33(log 32)1ab =--=-+-=--+,又2>log 23>log 222=32,∴233(1)124ab >--+=,C 正确;2222222222(3log 3)2(log 31)(log 3)8log 311(log 34)5b a -=---=-+=--,又2223log 3log 27log 325=<=,即25log 33<,257log 34433->-=-,∴2−2=(log 23−4)2−5>−−5=49>0,∴22b a >,D 错误.故选:BC .第II 卷(非选择题部分,共92分)三、填空题:本题共3个小题,每小题5分,共15分.12.计算10247((96-+--=______.【答案】12##0.5【解析】【分析】根据给定条件,利用指数运算计算即得.【详解】11022247331(([()]12196222-+--=+-=-=.故答案为:1213.已知函数2()log (1)f x x =+,若1a b -<<,且()()f a f b =,则2a b ++的取值范围是__________.【答案】(2,)+∞【解析】【分析】去绝对值,结合对数运算及对勾函数的单调性即可求解.【详解】函数2()log (1)f x x =+,当0x ≥时,2()log (1)=+f x x ,当10x -<<时,2()log (1)f x x =-+,则()f x 在(1,)+∞单调递增,在(1,0)-单调递减,故10a -<<,0b >,由()()f a f b =,则22log (1)log (1)a b +=+,即22log (1)log (1)a b -+=+,所以2log (1)(1)0a b ++=,即(1)(1)1a b ++=,则111b a +=+,所以12(1)(1)(1)(1)a b a b a a ++=+++=+++,令1x a =+,则01x <<,则设函数1()g x x x=+,任取12,(0,1)x x ∈,不妨设1201x x <<<,因为()()12121211g x g x x x x x -=+--()()1212121x x x x x x --=,当1201x x <<<,所以120x x -<,120x x >,1210x x -<,所以()()12121210x x x x x x -->,所以()()120g x g x ->,即()()12g x g x >,所以()g x 在区间(0,1)上单调递减.则当1x →时,(1)2f →,当x →+∞时,()f x →+∞,故2a b ++的取值范围是(2,)+∞故答案为:()2,+∞14.已知不等式ln ln x x m x x n -≥+对0x ∀>恒成立,则当nm取最大值时,m =__________.【答案】e 【解析】【分析】由题设0m ≠,结合()ln y x m x =-、y x n =+的性质及不等式恒成立得0m >,再构造()()ln f x x m x x =--,利用导数研究其最小值得2000()()m f x f x m x x ≥=--且01(,)e x ∈+∞,根据不等式恒成立得200m m x n x --≥,应用基本不等式求nm最大值并确定取值条件0m x =,此时有000()ln x m x x n -=+恒成立即可求参数值.【详解】由()ln x m x x n -≥+,且0m ≠,若0m <,则()ln y x m x =-在x 趋向于0时,函数值趋向-∞,而y x n =+趋向于n ,此时()ln x m x x n -≥+在(0,)x ∈+∞上不能恒成立,所以0m >,令()()ln f x x m x x =--且(0,)x ∈+∞,则ln ()x x mf x x-'=,令()ln g x x x m =-且(0,)x ∈+∞,则()ln 1g x x '=+,所以10e x <<时()0g x '<,()g x 递减,1e x >时()0g x '>,()g x 递增,则11()()0e e g x g m ≥=--<,且1(0,)e x ∈时()0g x <,x 趋向正无穷时()g x 趋向正无穷,故01(,)ex ∃∈+∞,使000()ln 0g x x x m =-=,即00ln m x x =,所以0(0,)x x ∈时()0g x <,即()0f x '<,0(,)x x ∈+∞时()0g x >,即()0f x '>,所以0(0,)x x ∈上()f x 递减,0(,)x x ∈+∞上()f x 递增,则20000000()()ln ln m f x f x x x m x x m x x ≥=--=--,要使ln ln x x m x x n -≥+对0x ∀>恒成立,只需0()f x n ≥恒成立,所以200m m x n x --≥,即00111x n m m x m ≤--≤-=-,当且仅当0x m x m=,即0m x =时等号成立,结合已知参数比值取最大值,此时0()()f x f m m n ==-=,则0000ln ln 1x x m x x ==⇒=,故0e x =,即0e m x ==.故答案为:e【点睛】关键点点睛:首先确定0m >,再构造()()ln f x x m x x =--研究最小值,根据不等式恒成立有min 0()()f x f x n =≥,结合0()f x n =等号成立条件求参数m 的值.四、解答题:本题共5个小题,共70分,其中15题13分,16、17题每题15分,17、18题每题17分,解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭(1)求B ∠;(2)若2b =,求ABC V 周长的取值范围.【答案】(1)π3B =(2)(]4,6【解析】【分析】(1)由正弦定理和余弦差角公式,辅助角公式得到πsin 03B ⎛⎫-= ⎪⎝⎭,结合()0,πB ∈,即可求解;(2)由余弦定理和基本不等式,结合三角形两边之和大于第三边,得到24a c <+≤,得到周长的取值范围.【小问1详解】由正弦定理得πsin sin sin cos 6B A A B ⎛⎫=-⎪⎝⎭,故11sin sin sin cos sin sin cos sin sin 2222B A A B B A B A B ⎛⎫=+=+ ⎪⎪⎝⎭,所以1sin sin sin cos 22B A A B =,因为()0,πA ∈,sin 0A ≠,所以13πsin cos sin 0223B B B ⎛⎫-=-= ⎪⎝⎭,因为()0,πB ∈,所以π3B =;【小问2详解】由(1)可知,π3B =,222a c b ac +-=,又2b =,所以224a c ac +=+,由基本不等式得:222a c ac +≥,即42ac ac +≥,所以4ac ≤,当且仅当2a c ==时,等号成立.又()22223416a c a c ac ac +=++=+≤,即04a c <+≤,又2a c b +>=,所以24a c <+≤,所以46a b c <++≤,即ABC V 周长的取值范围是(]4,6.16.如图,在正三棱柱111ABC A B C -中,11,4,AB AA D ==是1AA 中点,E 在棱1BB 上,且13BE B E =.(1)求证:平面1C DE ⊥平面11AA C C ;(2)求平面1C DE 与平面ABC 的夹角的余弦值.【答案】(1)证明见解析(2)5【解析】【分析】(1)证明平面1C DE ⊥平面11AA C C ,只需在平面1C DE 内找到一条直线与平面11AA C C 垂直即可,a 根据线面垂直的判定定理易证⊥EF 平面11AA C C .(2)建立空间直角坐标系,分别求出平面1C DE 与平面ABC 的法向量,然后根据空间角的向量求法求解即可.【小问1详解】设1C D 的中点为F ,过F 作1GG ∥1AA 分别交11,AC A C 于1,G G ,连接EF 、11B G ,则1,G G 分别为11,AC A C 的中点,所以11112FG A D ==,由1114,3BB AA BE B E ===,得11B E =,即11FG B E =,又因为1FG ∥1B E ,所以四边形11B EFG 是平行四边形,所以EF ∥11B G ,因为1G 是11A C 的中点,111A B C △为正三角形,所以1111B G AC ⊥,由正三棱柱的性质得,1AA ⊥底面111A B C ,且11B G ⊂底面111A B C ,所以1111111,B G AA AC AA A ⊥⋂=,111,A C AA ⊂平面11AA C C ,所以11B G ⊥平面11AA C C .又因为EF ∥11B G ,所以⊥EF 平面11AA C C ,EF ⊂平面1C DE ,所以平面1C DE ⊥平面11AA C C .【小问2详解】以BC 中点O 为原点,(11,,OA OC OO O 为11B C 中点)分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -,则1311,0,2,0,,3,0,,4222D E C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,易得平面ABC 的一个法向量 1=0,0,1,设向量 s s 为平面1C DE 一个法向量,()1131,,2,0,1,122C D C E ⎛⎫=--=-- ⎪ ⎪⎝⎭,则由21210,0n C D n CE ⋅=⋅=,得120,022x y z y z --=+=,令1z =,得)21,1n =-,设平面1C DE 与平面ABC 的夹角为θ,则12125cos 5n n n n θ⋅==⋅ .所以平面1C DE 与平面ABC的夹角的余弦值为5.17.已知函数()()()2212ln ,21ln ,2g x x ax x f x x a x a x a a =--=-+++∈R (1)若[]12,2,6x x ∀∈时()()()1212120g x g x x x x x ->≠-,求实数a 的取值范围.(2)当a ∈R 时,讨论()f x 的单调性.【答案】(1)(],1-∞(2)答案见解析【解析】【分析】(1)根据题意,函数()g x 在[]26,上单调递增,利用导数,并分离参数a 的取值范围;(2)利用导数,分类讨论函数单调性.【小问1详解】依题意可得当[]2,6x ∈时,()0g x '≥恒成立,所以20x a x--≥在[]2,6x ∈上恒成立,即2a x x ≤-在[]2,6x ∈上恒成立,则min 2a x x ⎛⎫≤- ⎪⎝⎭,令()[]2,2,6h x x x x =-∈,由()2210h x x=+>',知ℎ在[]26,上单调递增,从而()min ()21a h x h ≤==.经检验知,当1a =时,函数()g x 不是常函数,所以a 的取值范围是(],1-∞.【小问2详解】()()221ln f x x a x a x a =-+++,定义域为0,+∞,()()()()21221x x a a f x x a x x--=-++=',令()0f x '=,得12x =或x a =.①当0a ≤时,当10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,2x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,f x f x '>单调递增;②当102a <<时,当()0,x a ∈和1,2x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,f x f x '>单调递增,当1,2x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减;③当12a =时,′≥0对()0,x ∞∀∈+恒成立,所以()f x 在0,+∞单调递增;④当12a >时,当10,2x ⎛⎫∈ ⎪⎝⎭和(),x a ∞∈+时,()()0,f x f x '>单调递增,当1,2x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减.综上所述:当0a ≤时,()f x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2∞⎛⎫+ ⎪⎝⎭单调递增;当102a <<时,()f x 在1,2a ⎛⎫ ⎪⎝⎭单调递减,在()0,a 和1,2∞⎛⎫+ ⎪⎝⎭单调递增;当12a =时,()f x 在0,+∞单调递增;当12a >时,()f x 在1,2a ⎛⎫ ⎪⎝⎭单调递减,在10,2⎛⎫⎪⎝⎭和(),a ∞+单调递增.18.如图,已知椭圆2222:1(0)x y C a b a b+=>>过点()3,1P ,焦距为,斜率为13-的直线l 与椭圆C 相交于异于点P 的,M N 两点,且直线,PM PN 均不与x 轴垂直.(1)求椭圆C 的方程;(2)若10MN =,求MN 的方程;(3)记直线PM 的斜率为1k ,直线PN 的斜率为2k ,证明:12k k 为定值.【答案】(1)221124x y +=(2)123y x =--(3)证明见解析【解析】【分析】(1)根据条件列方程组求解即可;(2)设直线l 的方程为13y x m =-+,与椭圆联立,由弦长公式求得MN 的方程;(3)将韦达定理代入12k k 中计算结果为定值.【小问1详解】由题意得2222291122a b c a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得322a b c ⎧=⎪=⎨⎪=⎩,故椭圆C 的方程为221124x y +=.【小问2详解】设直线l 的方程为13y x m =-+,()()1122,,,M x y N x y 由22131124y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得22469360x mx m -+-=,由()22Δ(6)14440m m =-->,得33m -<<,则212123936,24m m x x x x -+==.102MN ===解得2m =或2m =-当2m =时,直线1:23l y x =-+经过点()3,1P ,不符合题意,舍去;当2m =-时,直线l 的方程为123y x =--.【小问3详解】直线PM ,PN 均不与x 轴垂直,所以123,3x x ≠≠,则0m ≠且2m ≠,所以()()1212121212111111333333x m x m y y k k x x x x ⎛⎫⎛⎫-+--+- ⎪⎪--⎝⎭⎝⎭=⋅=----()()()212121212111(1)9339x x m x x m x x x x --++-=-++()222221936131(1)3619432936391833942m m m m m m m m m m -⋅--⋅+--===---⋅+为定值.19.设函数()e xf x ax =-,其中a ∈R .(1)讨论函数()f x 在[)1,+∞上的极值;(2)过点()1,0P 可作函数()f x 的两条切线,求a 的取值范围;(3)若函数()f x 有两零点()1212,x x x x <,且满足1211x x λλ+>+,求正实数λ的取值范围.【答案】(1)答案见解析(2)0ea <<(3)[)1,+∞【解析】【分析】(1)求出()e xf x a '=-,分e a ≤、e a >讨论,可得答案;(2)先设出切点()000,e xQ x ax -,再写出切线的方程,利用切线过()1,0P 得到关于0x 的方程()002e x a x =-,构造函数()()0002e ,x g x x =-从而将切线的个数问题转化成()0y g x =与y a =有2个交点问题,从而得解;(3)由零点存在定理可知120ln x a x <<<,而题设1212e e 0x x ax ax -=-=,消去a 可得221121e e e x x x x x x -==,令211x t x =>,且21ln t x x =-,求出2x ,1x ,将其代入1211x x λλ+>+得(1)(1)()ln 01t F t t t λλ+-=->+,再利用导数分1λ≥、01λ<<讨论可得答案.【小问1详解】由()e x f x ax =-知()e xf x a '=-,1)当e a ≤时,且有[)()()1,,0,x f x f x ∞∈+≥'单调递增,故无极值;2)当e a >时,有()()()1,ln ,0,x a f x f x ∈<'单调递减,而()()()ln ,,0,x a f x f x ∞'∈+>单调递增,故()()()ln ln ,f x f a a a a f x ==-极小值无极大值.综上,当e a ≤时,()f x 无极值;当e a >时,()f x 极小值为()ln ,a a f x -无极大值;【小问2详解】设点为()000,e xQ x ax -为函数()f x 图象上一点,则以点Q 为切点的切线l 方程为:()()()0000e e xxy ax ax x --=--,又l 过点()1,0P 则:()()()00000e e 1xxax a x --=--,即()002e xa x =-,令()()0002e ,xg x x =-则()()0001e xg x x =-',当01x <时()00gx '>,则()0g x 为增函数;当01x >时()00g x '<,则()0g x 为减函数,则()()0max 1e g x g ==,0x →+∞时,()00;gx x ∞∞→-→-时,()00g x →,故0e a <<.【小问3详解】由(1)可知当e a >时,()()ln 1ln 0f a a a =-<,()010f =>,且(),x f x ∞∞→+→+,由零点存在定理可知120ln x a x <<<,而题设可知1212e e 0x xax ax -=-=,消去a 可得221121e e e x x xx x x -==,令211x t x =>,且21ln t x x =-,即21ln ln ,11t t t x x t t ==--,将其代入1211x x λλ+>+,整理可令得()()()11ln 01t F t t t λλ+-=->+,而()()()2222111(1)(1)(1)t t F t t t t t λλλλ'--+=-=++,1)当1λ≥时,且()1,t ∈+∞,有()()22(1)0,(1)t F t F t t t λ-≥>+'单调递增,()()10F t F >=,满足题设;2)当01λ<<时,且211,t λ⎛⎫∈ ⎪⎝⎭,有()()0,F t F t '<单调递减,()()10F t F <=,不满足题设;综上,λ的取值范围为[)1,+∞【点睛】关键点点睛:第三问解题关键点是,将问题化为函数()()()11ln 01t F t t t λλ+-=->+,从而得解.。
吉林省重点高中2020届高三数学上学期月考试题二理【含答案】
吉林省重点高中2020届高三数学上学期月考试题(二)理考生注意:1.本试卷分选择题和非选择题两部分。
满分100分,考试时间90分钟。
2.答题前,考生务必用直径0.5毫米黑色,墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色,墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:集合、常用逻辑用语、函数、导数及其应用(约30%);三角函数、三角恒等变换、解三角形、平面向量(约70%)。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={x∈N|一2<x<6},若A ={2,4},B ={l ,3,4},则()∩B=U A ðA.{1,3} B.{l ,5} C{3,5} D.{1,3,5}2.“”的否定是2(2,),20x x x ∀∈+∞->A. B. 200(,2),20x x x ∃∈-∞-≤2(2,),20x x x ∀∈+∞-≤C. D.200(2,),20x x x ∃∈+∞-≤2(,2),20x x x ∀∈-∞->3.若角α的终边过点P(,cos0),则tan α的值是B. D.4.已知某扇形的面积为2.5cm 2,若该扇形的半径r 、弧长l 满足2r +l =7cm ,则该扇形圆心角大小的弧度数是A. B.5 C. D.或54512455.函数f(x)=x 3-x 2-4x 的一个零点所在区间为A.(-2,0)B.(-l ,0)C.(0,l)D.(1,2)6.如图,若,B 是线段AC 靠近点C 的一个四等分点,则下列等式成,,OA a OB b OC c === 立的是A. B. 2136c b a =-4133c b a =+C. D. 4133c b a =-2136c b a =+7.若cosθ=,且θ为第三象限角,则的值等于45-an 4(t )πθ+A. B. C.-7 D.71717-8.若函数y =sinx 的图象与直线y =-x 一个交点的坐标为(x 0,y 0),则2200(31cos 2x x π-+=+A -1 B.1 C. 1 D.无法确定±9.已知在矩形ABCD 中,AB =4,AD =2,若E ,F 分别为AB ,BC 的中点,则DE DF ⋅ =A.8B.10C.12D.1410.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,,△ABC 的面积等于,23A b π==外接圆的面积为A.16πB.8πC.6πD.4π11.为捍卫国家南海主权,我海军在南海海域进行例行巡逻。
2025届上师大附中高三数学上学期10月考试卷一附答案解析
2025届上师大附中高三10月月考数学试卷一一、填空题(1-6每题4分,7-12每题5分,共54分)1.函数()f x =的定义域为__.【答案】(0,1].【解析】【分析】由函数有意义需要的条件,求解函数定义域【详解】函数的意义,有0110x x≠⎧⎪⎨-≥⎪⎩,解得01x <≤,即函数()f x =定义域为(0,1].故答案为:(0,1]2. 已知0a >=________.【答案】34a 【解析】【分析】根式形式化为分数指数幂形式再由指数运算化简即可.1113322224a a a a ⎛⎫⎛⎫=⋅== ⎪ ⎪⎝⎭⎝⎭.故答案为:34a .3. 已知幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,求(3)f -=_________.【答案】19【解析】【分析】设幂函数为(),R f x x αα=∈,根据题意求得2α=-,得到2()f x x -=,代入即可求解.【详解】设幂函数为(),R f x x αα=∈,因为幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,可得139α=,解得2α=-,即2()f x x -=,所以21(3)(3)9f --=-=.故答案为:19.4. 若1sin 3α=,则cos(2)πα-=____.【答案】79-【解析】【分析】原式利用诱导公式化简后,再利用二倍角的余弦函数公式变形,将sin α的值代入计算即可求出值.【详解】因为1sin 3α=,所以()2227cos(2)cos 212sin12sin 199παααα-=-=--=-+=-+=-.故答案为: 79-5. 已知集合{|3sin ,}M y y x x =∈=R ,{|||}N x x a =<,若M N ⊆,则实数a 的取值范围是___________.【答案】(3,)+∞【解析】【分析】先求出集合M ,N ,再由M N ⊆可求出实数a 的取值范围【详解】解:由题意得{}{|3sin ,}33M y y x x y y ===-≤∈≤R ,{}{|||}N x x a x a x a =<=-<<,因为M N ⊆,所以3a >,故答案为:(3,)+∞6. 设a ,b ∈R .已知关于x 的不等式250ax x b -+>的解集为21,34⎛⎫-⎪⎝⎭,则不等式250ax x b ++<的解集为__________.【答案】12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】先由不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭求出实数a ,b 的值,再求不等式250ax x b ++<的解集.【详解】∵不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭,∴方程250ax x b -+=的两根分别为123x =-,214x =,且0a <∴由韦达定理可知,1212215342134x x a b x x a ⎧+=-+=⎪⎪⎨⎛⎫⎪=-⨯= ⎪⎪⎝⎭⎩解得122a b =-⎧⎨=⎩,∴将a ,b 代入不等式250ax x b ++<得212520x x -++<,即212520x x -->()()32410x x ⇔-+>∴不等式250ax x b ++<的解集为12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故答案为:12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.7. 已知锐角α的顶点为原点,始边为x 轴的正半轴,将α的终边绕原点逆时针旋转π6后交单位圆于点1,3P y ⎛⎫- ⎪⎝⎭,则sin α的值为________.【解析】【分析】先求得ππcos ,sin 66αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,然后利用三角恒等变换的知识求得sin α【详解】由于1,3P y ⎛⎫- ⎪⎝⎭在单位圆上,所以222181,39y y ⎛⎫-+== ⎪⎝⎭,由于α是锐角,所以289y y =⇒=13P ⎛- ⎝,所以π1πcos ,sin 636αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππππππsin sin sin cos cos sin 666666αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=⨯=.8. 已知()()()()1f x x x a x b =+++.若()y f x =为奇函数,则()0f '=__________.【答案】1-【解析】【分析】根据题意,求得()3f x x x =-,得到()231f x x ='-,即可求解.【详解】由函数()()()()321(1)()f x x x a x b x a b x a b ab x ab =+++=+++++++,可得()32(1)()f x x a b x a b ab x ab -=-+++-+++因为函数()f x 为R 上的奇函数,可得()()f x f x -=-,即3232(1)()(1)()x a b x a b ab x ab x a b x a b ab x ab -+++-+++=--++-++-,所以100a b ab ++=⎧⎨=⎩,解得01a b =⎧⎨=-⎩或10=-⎧⎨=⎩a b ,所以()3f x x x =-,可得()231f x x ='-,所以()01f '=-.故答案为:1-.9. 如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30o 和45 ,在A 处测得楼顶部M 的仰角为15 ,则鹳雀楼的高度约为___________m .【答案】74【解析】【分析】根据题意在Rt △ABC 中求出AC ,在△MCA 中利用正弦定理求出MC ,然后在Rt △MNC 中可求得结果.【详解】在Rt △ABC 中,274AC AB ==,在△MCA 中,105MCA ︒∠=,45MAC ︒∠=,则18030AMC MCA MAC ︒︒∠=-∠-∠=,由正弦定理得sin sin MC AC MAC AMC=∠∠,即74sin 45sin 30MC ︒︒=,解得MC =,在Rt △MNC中,74m MN ==.故答案:7410. 对于函数()f x 和()g x ,设(){}|0x f x α∈=,(){}|0x g x β∈=,若存在α,β,使得1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()21g x x ax =-+互为“零点相邻函数”,则实数a 的取值范围是______.【答案】[2,)+∞【解析】【分析】由题知函数()f x 有唯一零点1,进而得210x ax -+=在(0,2)上有解,再根据二次函数零点分布求解即可.【详解】因为1()e 2-=+-x f x x ,所以()f x 在R 上为增函数,又0(1)e 120f =+-=,所以()f x 有唯一零点为1,令()g x 的零点为0x ,依题意知0||11x -<,即002x <<,即函数()g x 在(0,2)上有零点,令()0g x =,则210x ax -+=(0,2)上有解,即1x a x +=在(0,2)上有解,因为12x x +≥=,当且仅当1x x =,即1x =时,取等号,所以2a ≥,故答案为:[2,)+∞.为为在11. 若函数()y f x =的图像上存在不同的两点M (x 1,y 1)和N (x 2,y 2),满足1212x x y y +≥()y f x =具有性质P ,给出下列函数:①()sin f x x =;②()x f x e =;③1(),(0,)f x x x x=+∈+∞;④()||1f x x =+.其中其有性质p 的函数为________(填上所有正确序号).【答案】①②【解析】【分析】利用数量积性质得出过点O 的直线与函数图像存在至少两个不同的交点,结合函数图象可得.【详解】1212||||cos ,,|||OM ON x x y y OM ON OM ON OM ON ⋅=+=〈〉==所以1212cos ,1x x y y OM ON +≥⇔〈〉≥ ,即cos ,1OM ON 〈〉=± .即O ,M ,N 三点共线,即过点O 的直线与函数图像存在至少两个不同的交点,由图可知,①②符合.故答案为:①②12. 已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为______.【答案】29e 【解析】【分析】设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则由ln 10b m +--=,则(),P a b 在直线:ln 10l x y m +--=上,则22a b +可看作是O 到直线l 的距离的平方,利用导数求出其最小值即可得到答案【详解】解:设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则ln 10b m --=,所以点(),P a b 在直线ln 10l x y m +--=上,设O 为坐标原点,则222||a b OP +=,其最小值就是O 到直线l 的距离的平方,,2e,eméùÎêúëû,设t⎤=⎦,设()2ln1tg tt+=,则()()212lntg t tt-⎤'=≤∈⎦,所以()g t在⎤⎦上单调递减,所以()()min3eeg t g==,3e≥即2229ea b+≥,所以22a b+的最小值为29e,故答案为:29e二、选择题(13-14每题4分,15-16每题5分,共18分)13. 已知a b∈R,且0ab≠,则“22a b>”是“11a b<”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】【分析】结合指数函数单调性,根据充分必要条件的定义分别进行判断即可.【详解】22a b a b>⇔>Q,当0a b>>时,11a b<不成立,当11a b<<时,a b>不成立.所以a b>是11a b<的既不充分也不必要条件,即22a b>是11a b<的既不充分也不必要条件.故选:D.14. 设函数()sinf x x=,若对于任意5π2π,63α⎡⎤∈--⎢⎥⎣⎦,在区间[0,]m上总存在唯一确定的β,使得()()0f fαβ+=,则m的值可能是()A.π6B.π3C.2π3D.5π6【答案】B【解析】的【分析】由等量关系找α与β的关系,由α的范围求出sin β的范围,从而得出m 的值.【详解】∵()()0f f αβ+=,∴sin sin 0αβ+=,即()sin sin sin βαα=-=-,∵5π2π,63α⎡⎤∈--⎢⎥⎣⎦,即2π5π,36α⎡⎤-∈⎢⎥⎣⎦,∴()1sin sin 2βα⎡=-∈⎢⎣,又∵[]0,m β∈,∴π3m =故选:B15. 已知在ABC V 中,0P 是边AB 上一定点,满足023P B AB = ,且对于边AB 上任意一点P ,都有00PB PC P B P C ⋅≥⋅ ,则ABC V 是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定【答案】A【解析】【分析】取BC 的中点D ,DC 的中点E ,连接0P D ,AE ,根据向量的线性运算计算向量00,P B P C 并计算00P B P C ⋅ ,同理计算PB PC ⋅ ,根据不等关系可得出对于边AB 上任意一点P 都有0PD P D ≥ ,从而确定0P D AB ⊥,从而得到结果.【详解】取BC 的中点D ,DC 的中点E ,连接0P D ,AE (如图所示),则()()0000P B P C P D DB P D DC ⋅=+⋅+ ()()22000P D DB P D DB P D DB =+⋅-=- ,同理22PB PC PD DB ⋅=- ,因为00PB PC P B P C ⋅≥⋅ ,所以22220PD DB P D DB -≥- ,即220PD P D ≥ ,所以对于边AB 上任意一点P 都有0PD P D ≥ ,因此0P D AB ⊥,又023P B AB = ,D 为BC 中点,E 为DC 中点,所以023P B BD AB BE ==,所以0//P D AE ,即90BAE ∠=︒,所以90BAC ∠>︒,即ABC V 为钝角三角形.故选:A .16. 设函数,()2,2x x P f x x x M x∈⎧⎪=⎨+∈⎪⎩其中,P M 是实数集R 的两个非空子集,又规定(){(),},(){(),}A P y y f x x P A M y y f x x M ==∈==∈∣∣,有下列命题:①对任意满足P M ⋃=R 的集合P 和M ,都有()()A P A M ⋃=R ;②对任意满足P M ⋃≠R 的集合P 和M ,都有()()A P A M ⋃≠R ,则对于两个命题真假判断正确的是( )A. ①和②都是真命题B. ①和②都是假命题C. ①是真命题,②是假命题D. ①是假命题,②是真命题【答案】B【解析】【分析】根据集合的新定义对两个命题进行分析,从而确定正确答案.【详解】对于①可举反例,(,0],(0,)P M =-∞=+∞此时()()()()(),0,2,,A P A M A P A M ∞∞⎤⎡=-=+⋃≠⎦⎣R ,故①是假命题;对于②,可举反例(,4],(4)P M =-∞=++∞,此时()(,4],()(4,),()()R A P A M A P A M =-∞=+∞= ,故②是假命题;故选:B【点睛】解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.三、解答题(共5题,满分78分)17. 已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭ .(1)当a b∥时,求tan 2x 的值;(2)设函数()2()f x a b b =+⋅ ,且π0,2x ⎛⎫∈ ⎪⎝⎭,求()f x 的值域.【答案】(1)247- (2)1322⎛⎤+ ⎥⎝⎦【解析】【分析】(1)根据向量平行列出等式,计算tan x 的值,二倍角公式即可计算tan 2x ;(2)计算()f x ,并用辅助角公式化简,根据角的范围可求出值域.【小问1详解】因为a b∥,所以3sin cos 4x x -=,因为cos 0x ≠,所以3tan 4x =-,所以22tan 24tan 21tan 7x x x ==--.【小问2详解】213π3()2()2sin cos 2cos sin 2cos 222242f x a b b x x x x x x ⎛⎫=+⋅=++=++=++ ⎪⎝⎭ ,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,444x ⎛⎫+∈ ⎪⎝⎭,所以πsin 24x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以()f x的值域为1322⎛⎤ ⎥⎝⎦.18. 已知函数()22x x a f x =+其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =;(2)判断函数()f x 的奇偶性,并说明理由.【答案】(1)1x =或2log 3(2)答案见解析【解析】【分析】(1)因为()22x x a f x =+,()07f =,可得6a =,故6()22x x f x =+,因为()5f x =,即6252x x+=,通过换元法,即可求得答案;(2)因为函数定义域为R ,分别讨论()f x 为奇函数和()f x 为偶函数,即可求得答案.【详解】(1) ()22x xa f x =+,∴()07f =,即17a +=解得:6a =可得:6()22x xf x =+ ()5f x =∴6252x x+=令2x t =(0t >)∴65t t+=,即:2560t t -+=解得:12t =或23t =即:122x =,223x =∴11x =或22log 3x =.(2)函数定义域为R ,①当()f x 为奇函数时,根据奇函数性质()()f x f x -=-可得2222x x x x a a --⎛⎫+=-+ ⎪⎝⎭恒成立即1(1)202x x a ⎛⎫+⋅+= ⎪⎝⎭恒成立,∴1a =-.②当()f x 为偶函数时,根据偶函数性质()()f x f x -=可得2222x x x x a a --+=+恒成立即1(1)202x x a ⎛⎫-⋅-= ⎪⎝⎭恒成立,∴1a =.③当1a ≠±时,函数为非奇非偶函数.【点睛】本题主要考查了解指数方程和根据奇偶性求参数,解题关键是掌握指数方程的解法和奇偶函数的定义,考查了分析能力和计算能力,属于中档题.19. 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数()f x 模型制定奖励方案,试用数学语言表述公司对奖励函数()f x 模型的基本要求;(2)现有两个奖励函数模型:①()2150x f x =+;②()ln 2f x x =-;问这两个函数模型是否符合公司要求,并说明理由?【答案】(1)答案见解析(2)()2150x f x =+不符合公司要求,()ln 2f x x =-符合公司要求,理由见解析【解析】【分析】(1)根据题意,用数学语言依次写出函数()f x 的要求即可;(2)判断两个函数模型的单调性,并判断()9f x ≤,()5x f x ≤是否成立得解.【小问1详解】设奖励函数模型为()y f x =,则公司对奖励函数模型基本要求是:当[]10,1000x ∈时,()f x 是严格增函数,()9f x ≤恒成立,()5x f x ≤恒成立.【小问2详解】①对于函数模型()2150x f x =+,易知当[]10,1000x ∈时,()f x 为增函数,且()()max 26100093f x f ==<,所以()9f x ≤恒成立,但是()101005f ->,不满足()5x f x ≤恒成立,所以()2150x f x =+不符合公司要求;②对于函数模型()ln 2f x x =-,的当[]10,1000x ∈时,()10f x x'=>,所以()f x 为增函数,且()max f x f =()100023ln109=-+<,所以()9f x ≤恒成立,令()()ln 255x x g x f x x =-=--,则()1105g x x '=-<,所以()()10ln1040g x g =-<≤,所以()5x f x ≤恒成立,所以()ln 2f x x =-符合公司要求.20. 已知函数()y f x =的定义域为区间D ,若对于给定的非零实数m ,存在0x ,使得()()00f f x x m =+,则称函数()y f x =在区间D 上具有性质()P m .(1)判断函数()2f x x =在区间[]1,1-上是否具有性质12P ⎛⎫ ⎪⎝⎭,并说明理由;(2)若函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫⎪⎝⎭,求n 的取值范围;(3)已知函数()y f x =的图像是连续不断的曲线,且()()02f f =,求证:函数()y f x =在区间[]0,2上具有性质13P ⎛⎫ ⎪⎝⎭.【答案】(1)具有性质12P ⎛⎫ ⎪⎝⎭,理由见解析 (2)5,8π⎛⎫+∞ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)由题可得220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,结合条件即得;(2)由00sin sin 4x x π⎛⎫=+⎪⎝⎭,解得038x k ππ=+,()()050,N 48x k n k πππ+=+∈∈,可得58n π>,即得;(3)设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦,可得()()()1150200333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,可得111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即证;当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫> ⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,结合条件可知,存在0x ,()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即证.【小问1详解】函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.若220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,因为[]11,14-∈-,且[]1111,1424-+=∈-,所以函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.【小问2详解】解法1:由题意,存在()00,x n ∈,使得00sin sin 4x x π⎛⎫=+ ⎪⎝⎭,得0024x x k ππ+=+(舍)或0024x k x πππ+=+-()k ∈Z ,则得038x k ππ=+.因为0308x k ππ=+>,所以k ∈N .又因为()030,8x k n ππ=+∈且()()050,48x k n k πππ+=+∈∈N ,所以58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.解法2:当02n π<≤时,函数()sin f x x =,()0,x n ∈是增函数,所以不符合题意;当2n π>时,因为直线2x π=是函数()sin f x x =的一条对称轴,而函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫ ⎪⎝⎭,所以224n ππ⎛⎫-> ⎪⎝⎭,解得58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.【小问3详解】设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦.则有()()1003g f f ⎛⎫=- ⎪⎝⎭,112333g f f ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22133g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,⋅⋅⋅,11333k k k g f f --⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,⋅⋅⋅,()55233g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭{}()1,2,3,,6k ∈⋅⋅⋅.以上各式相加得()()()115020333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即()11500333k g g g g -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(ⅰ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,不妨设103i g -⎛⎫= ⎪⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即110333i i i g f f --⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,所以函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.(ⅱ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫>⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,其中i j ≠,{}1,2,3,,6i j ∈⋅⋅⋅、.由于函数()y g x =的图像是连续不断的曲线,所以当i j <时,至少存在一个实数011,33i j x --⎛⎫∈ ⎪⎝⎭(当i j >时,至少存在一个实数011,33j i x --⎛⎫∈ ⎪⎝⎭),其中{}1,2,3,,6i j ∈⋅⋅⋅、,使得()00g x =,即()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即存在0x ,使得()0013f x f x ⎛⎫=+ ⎪⎝⎭,所以函数()y f x =在区间[]0,2上也具有性质13P ⎛⎫⎪⎝⎭.综上,函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.21. 已知函数()e (,1),()(,)k x f x x k k g x cx m c m =∈≥=+∈N R ,其中e 是自然对数的底数.(1)当1k =时,若曲线()y f x =在1x =处的切线恰好是直线()y g x =,求c 和m 的值;(2)当1k =,e m =-时,关于x 的方程()()f x g x =有正实数根,求c 的取值范围:(3)当2,1k m ==-时,关于x 的不等式2()e ()f x ax bx g x -≥+≥对于任意[1,)x ∈+∞恒成立(其中,a b ∈R ),当c 取得最大值时,求a 的最小值.【答案】(1)2e,e c m ==-(2)[2e,)+∞(3)1【解析】【分析】(1)利用导数求得()f x 在1x =处的切线方程,通过对比系数求得,c m .(2)由()()f x g x =分离c ,利用构造函数法,结合导数来求得c 的取值范围.(3)由恒成立的不等式得到e 1e xc x x-≤-恒成立,利用构造函数法,结合导数来求得c 的最大值,进而求得a 的最小值,并利用构造函数法,结合导数来判断a 的最小值符合题意.【小问1详解】当1k =时,()e x f x x =,所以()(1)e x f x x '=+,由(1)e,(1)2e f f '==,得曲线()y f x =在1x =处的切线方程为e 2e(1)y x -=-,即2e e y x =-,由题意,2e,e c m ==-.【小问2详解】当1k =,e m =-时,()e ,()e x f x x g x cx ==-,由题意,方程e e x x cx =-在(0,)+∞上有解,即e e x c x =+在(0,)+∞上有解,令e ()e (0)x h x x x =+>,则2e e ()x h x x'=-,由()0h x '=得1x =,()h x '在()0,∞+上严格递增,所以:当(0,1)x ∈时,()0h x '<,所以()h x 严格递减,当(1,)x ∈+∞时,()0h x '>,所以()h x 严格递增,所以min ()(1)2e h x h ==,又x →+∞时,()h x →+∞,所以()h x 的值域为[2e,)+∞,所以c 的取值范围为[2e,)+∞.【小问3详解】当2,1k m ==-时,2()e ,()1x f x x g x cx ==-,由题意,对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,即:22e e 1x x ax bx cx -≥+≥-(*)恒成立,那么,2e 1x x cx ≥-恒成立,所以e 1e xc x x-≤-恒成立,令e 1()e (1)x x x x x ϕ-=-≥,则2e 1()(1)e 0x x x x ϕ-'=++>在[1,)+∞上恒成立,所以()ϕx 在[1,)+∞上严格递增,所以min ()(1)1x ϕϕ==,从而1c ≤,即c 的最大值为1,1c =时,取1x =代入(*)式,得00a b ≥+≥,所以=-b a ,所以21ax ax x -≥-在[1,)+∞上恒成立,得1a ≥,即a 的最小值为1,当1a =时,记()222()()e e e (1)x F x f x x x x x x x =---=--+≥,则()2()2e 21x F x x x x '=+-+,设()()()()222e 21,42e 2x x x x x u u x x x x '+-+=++-=,因为()u x '在[1,)+∞上严格递增,所以()()17e 20u x u ''≥=->,所以()F x '在[1,)+∞上严格递增,所以()(1)3e 10F x F ''≥=->,所以()F x 在[1,)+∞上严格递增,所以()(1)0F x F ≥=,从而对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,综上,a 的最小值为1.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三10月月考数学理试卷缺答案
一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的。
)
1、()
2、已知集合,则是的()
充要条件充分不必要条件必要不充分条件既不充分也不必要条件
3、在直角坐标系中,角以轴非负半轴为始边,终边上有一点,则(
)4、函数的定义域为()
5、在中,,,2AB a AC b BD DC ,用表示的结果为()
6、在下列函数中,函数的一部分图像如图所示的是(
)
A .
B .
C .
D .7、求函数图像上一点到直线的最小距离( )
8、函数的单调递增区间为()
Z k k k ,323
2
,3231
Z k k k ,32,3231Z
k k k ,3132,3231
9、偶函数(为自然对数的底数)在上()
有最大值有最小值单调递增不单调
10、设向量满足,,的夹角为,则()
大小不确定恒等于最小值为最大值为 2
11、在中,若B A b a B A b a sin sin 2222,则为()
等腰直角三角形等腰三角形直角三角形等腰三角形或直角三角形
12、函数x x x
x
x x f cos 24sin 2222的最大值与最小值的和为()
二、填空题(本大题共有4个小题,每小题5分,共20分)
13、已知,.
14、已知,则= .
15、函数21
log sin 42f x x x 的零点个数为个.
16、若对于任意恒有成立,则实数的取值范围是.
三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17、(10分)已知为正实数,求证:
18、(10分)已知曲线的参数方程为:,曲线的极坐标方程为:
(1)把化成普通方程;化成直角坐标方程;
(2)、相交两点,求、两点的直角坐标.
19、(12分)向量cos ,2cos ,2cos ,sin a x x b x x ,若
(1)求函数的解析式;
(2)求函数的对称轴方程;
(3)若,求的最大值和最小值.
20、(12分)已知函数
(1)讨论的单调性;
(2)求在区间上的最大值与最小值..
21、(12分)在中,角的对边分别为,,已知C b B c A a cos cos cos 3⑴求的值; ⑵若1cos 3
32cos ,6C B a ,求的长. 22、(14分)已知函数,
(1)若对定义域内的恒成立,求实数的取值范围;
(2)设有两个极值点且,求证:
(3)设对任意的,总存在,使不等式成立,求实数的取值范围.。