追及与相遇问题(20张PPT)

合集下载

追击与相遇问题教案(课堂PPT)

追击与相遇问题教案(课堂PPT)

甲火车以4 m/s的速度匀速前进,这时乙火车误入同一轨道,
且以20 m/s的速度追向甲车,当乙车司机发现甲车时两车
仅相距125 m,乙车立即以1 m/s2的加速度制动.问两车是
否会发生碰撞?
解析 设乙车制动t (s)后,v甲=v乙,即v甲=v0-at 代入数据得t=16 s
此时x甲=v甲t=64 m
是最大值,还是最小值,视实际情况而定。
3.临界条件 追和被追的两物体 速度相等 是能追上、追不上、两 者之间的距离有极值的临界条件.
2
三、解题思路(分析三个物理量的联系)
讨论追及、相遇的问题,其实质就是分析讨论 两物体在相同时刻,能否到达相同的位置的问题。
分析思路: (1)一个条件:两者速度相等 (2)两个关系:时间关系和位移关系
28
答 5m
③落到地板上用多少时间?
v自T
1 2
aT2
T 2v自 4s a
v汽aT1m 2/s x汽12aT2=24m
16
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其
图线与时间轴围成的三角形的面积。两车之间的距离则等于图
中矩形的面积与三角形面积的差。不难看出,当t=t0时矩形与三
26
解析 甲错,因为vm=at=0.28×180 m/s=50.4 m/s
>
30 m/s
vm30s30s018s0 a 0.1
乙错,因为t=
正12 确解法:摩托车的最大速度vm=at1 at12+vm(t-t1)=1 000+vt
解得a=0.56 m/s2
答案 甲、乙都不正确,应为0.56 m/s2

追及与相遇问题(20张PPT)

追及与相遇问题(20张PPT)
追及与相遇问题
目录
考点回扣 典例解析 变式训练
考 点 回 扣ຫໍສະໝຸດ 讨论追及、相遇的问题,其实质就是分析讨论两物体在 相同时间内能否到达相同的空间位置的问题。 1、两个关系:时间关系和位移关系
2、一个条件:两者速度相等
两者速度相等,往往是物体间能否追上,或两者距离最 大、最小的临界条件,是分析判断的切入点。
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。 由A、B 速度关系: v1
1 2 由A、B位移关系: v1t at v2t x0 2
at v2
(v1 v2 ) 2 (20 10) 2 a m/s2 0.5m/s2 2 x0 2 100
则a 0.5m / s
3 2 t 4s x 6t t 0 2 1 2 s at 24 m 2
v at 12m / s
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中, 以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个 物理量的分别为:v0=-6m/s,a=3m/s2,vt=0
(1)画清行程草图,找出两物体间的位移关系 (2)仔细审题,挖掘临界条件,联立方程 (3)利用二次函数求极值、图像法、相对运动知识求解
返回目录
典 例 解 析
[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以 3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的 速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后, 在追上自行车之前经过多长时间两车相距最远?此时距离是 多少?
2
则a 0.5m / s 2
方法四:相对运动法 以B车为参照物, A车的初速度为v0=10m/s,以加 速度大小a减速,行驶x=100m后“停下”,末速度为 vt=0 2 2

人教版高中物理-必修1-第二章 追及和相遇问题PPT

人教版高中物理-必修1-第二章 追及和相遇问题PPT

必修1 第二章 匀变速直线运动的研究
(1)追及(速度小追速度大)
甲一定能追上乙,且只相遇一 次,当两者的位移相等时则追 上.
必修1 第二章 匀变速直线运动的研究
(1)追及(速度大追速度小)
判断v甲=v乙的时刻甲乙的位 置情况
①若甲在乙前,则追上,并相遇两 次 ②若甲乙在同一处,则甲恰能追 上乙,只能相遇一次,避免相撞 的临界条件。 ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候
由A、B 速度关系: v1atv2
由A、B位移关系:v1t12at2 v2tx0
a(v1v2)2(2 01)0 2m2/s0.5m2/s
2x0
2100
则 a0.5m/s2
必修1 第二章 匀变速直线运动的研究
方法二:图象法
12(2010)t0 100
v/ms-1
20
A
t0 20s
10
B
a20100.5 o 20
t0
t/s
则 a0.5m/s2
必修1 第二章 匀变速直线运动的研究

方法三:二次函数极值法
若代两入车数不据相得撞,1其a位t2移1关0系t应1为0v01t012at2 v2t x0
2
其图像(抛物线)的顶点纵坐 标必为正值,故有
4 1 a100(10)2
保持的距离至少应为: B
A. S
B. 2S
C. 3S
D. 4S
每个人的心灵深处都有着只有他自己 理解的 东西。 对具有高度自觉与深邃透彻的心灵的 人来说 ,痛苦 与烦恼 是他必 备的气 质。 在一切创造物中间没有比人的心灵更 美、更 好的东 西了。 唯有心灵能使人高贵。所有那些自命 高贵而 没有高 贵的心 灵的人 ,都像 块污泥 。 一个人只要他有纯洁的心灵,无愁无 恨,他 的青春 时期, 定可因 此而延 长。 能充实心灵的东西,乃是闪烁着星星 的苍穹 ,以及 我内心 的道德 律。 你的心灵常常是战场。在这个战场上 ,你的 理性与 判断和 你的热 情与嗜 欲开战 。 无所事事并非宁静,心灵的空洞就是 心灵的 痛苦。

追及与相遇问题ppt.ppt

追及与相遇问题ppt.ppt

三、追及和相遇问题
例3 一辆汽车以3 m/s2的加速度开始启动的瞬间,另一辆 以6 m/s的速度做匀速直线运动的自行车恰好从汽车的旁边 通过. (1)汽车一定能追上自行车吗?若能追上,汽车经多长时 间追上?追上时汽车的瞬时速度多大?
(2)当v汽<v自时,两者距离如何变化? 当v汽>v自时,两者距离如何变化? 汽车追上自行车前多长时间与自行车相距最远?此时的距离 是多大? (3)画出两车运动的v-t图象,并试着用图象法解上述两问题.
[要点提炼] 初速度为 0 的匀加速直线运动, 以 T 为时间单位下列比 例式成立: (1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为:
1∶2∶3∶…∶n v1∶v2∶v3∶…∶vn=__________________
(2)1T 内、2T 内、3T 内、…、nT 内的位移之比为 x1∶x2∶x3∶…∶xn=12∶22∶32∶…∶n2
例3
一辆汽车以3 m/s2的加速度开始启动的瞬间,
解:
汽车:
v at 3 t 汽
1 2 32 x 汽 at t 2 2
例3 一辆汽车以3 m/s2的加速度开始启动的瞬间,另一辆 以6 m/s的速度做匀速直线运动的自行车恰好从汽车的旁边 通过.
(1)汽车一定能追上自行车吗?若能追上,汽车经多长时 间追上?追上时汽车的瞬时速度多大? (2)当v汽<v自时,两者距离如何变化? 当v汽>v自时,两者距离如何变化? 汽车追上自行车前多长时间与自行车相距最远?此时的 距离是多大?
(3)第一个 T 内、第二个 T 内、第三个 T 内、…、第 n 个 T 内 的 位 移 之 比 为 : x1 ∶ x2 ∶ x3 ∶ … ∶ xn = 1∶3∶5∶…∶(2n-1) _____________________________ . (4)通过连续相同的位移所用时间之比为 t1∶t2∶t3∶…∶tn= 1∶( 2-1)∶( 3- 2)∶…∶( n- n-1) . ________________________________________

追及与相遇问题(20张PPT)

追及与相遇问题(20张PPT)
追及与相遇问
• 追及与相遇问题概述 • 追及问题的解决方法 • 相遇问题的解决方法 • 追及与相遇问题的实际应用 • 练习题与解析
目录
Part
01
追及与相遇问题概述
定义与特点
定义
追及与相遇问题是一种常见的数学问题,主要研究两个或多个运动物体在同一直线上或 在不同路径上运动,其中一个物体追赶另一个物体或两者相遇的问题。
01
02
03
确定追及条件
当两物体速度相等时,是 追及的临界条件。
建立数学模型
根据题意,列出两物体的 位移方程,并找出时间关 系。
求解方程
解方程求出两物体的位移 和时间,判断是否追上。
Part
03
相遇问题的解决方法
直线上的相遇问题
确定参考系
选择一个合适的参考系,以便简 化问题。
检验解的合理性
根据实际情况检验解的合理性, 确保答案符合实际情况。
特点
这类问题通常涉及到速度、时间、距离等基本概念,需要运用数学模型和公式进行求解。
问题背景与重要性
问题背景
追及与相遇问题在日常生活和实际工程中有着广泛的应用,如交通、物流、航 天等领域。这类问题的解决有助于提高对物体运动规律的认识,为实际问题的 解决提供理论支持。
重要性
追及与相遇问题在数学教育和科学教育中也占有重要地位,是培养学生逻辑思 维和数学应用能力的重要素材。
行星运动中的追及与相遇
卫星轨道
天体碰撞
人造卫星在地球轨道上运行时,需要 考虑其他卫星或物体的影响,避免追 及和碰撞。
在宇宙中,天体之间的碰撞是相对罕 见的,但仍然需要关注小行星、彗星 等对地球的潜在威胁。
行星探测器
探测器在飞往行星的过程中,需要进 行精确的轨道设计和计算,确保能够 成功追及目标行星。

高一物理必修一《追及与相遇问题》(课件)共29张

高一物理必修一《追及与相遇问题》(课件)共29张

匀速直线运动中的追及问题
总结词
速度相等的条件下的追及问题
详细描述
当两个物体在匀速直线运动中发生追及,它们之间的相对速度是关键。当速度相 等时,追及问题达到临界状态,此时需要考虑物体的初始位置和速度。
匀加速直线运动中的追及问题
总结词
加速度相等的条件下的追及问题
详细描述
在匀加速直线运动中,两个物体之间的相对加速度决定了追及的难易程度。当加速度相等时,需要综合考虑物体 的初始速度和加速度,以及追及过程中的速度和距离。
速度恒定,位移公式为 $s = v times t$。
总结词
相对速度为零,即两物 体相对静止,无相对位
移。
总结词
两物体在同一直线上运 动,考虑相对位移和相
对速度。
匀加速直线运动中的相遇问题
01
02
03
04
总结词
加速度恒定,速度和位移随时 间变化,计算较复杂。
总结词
使用匀加速直线运动的位移公 式 $s = frac{1}{2}at^{2}$ 和
THANKS
感谢观看
速度公式 $v = at$。
总结词
考虑相对加速度和相对速度, 计算相对位移和相对时间。
总结词
考虑加速度的方向和大小,判 断两物体的相对位置和相对速
度。
匀减速直线运动中的相遇问题
总结词
总结词
加速度恒定但方向与初速度相反,速度逐 渐减小至零,计算较复杂。
使用匀减速直线运动的位移公式 $s = frac{v_{0}^{2}}{2a}$ 和速度公式 $v = v_{0} - at$。
详细描述
行人避让问题需要考虑行人的速度、车辆的速度以及车辆与行人之间的距离。通过分析 这些因素,可以计算出行人需要避让车辆的时间和距离。解决这类问题时,需要注意行

专题一 运动图象 追及相遇问题 (共61张PPT)

专题一 运动图象 追及相遇问题 (共61张PPT)

3.[追及相遇问题](多选)如图所示,Ⅰ、Ⅱ分别是甲、乙两小 球从同一地点沿同一直线运动的vt图线,根据图线可以判断 ( CD ) A.甲、乙两小球做的是初速度方向相反的匀变速直线运动, 加速度大小相等,方向相同 B.两球在t=8 s时相距最远 C.两球在t=2 s时刻速率相等 D.两球在t=8 s时相遇
A.第4 s初物体运动的加速度为2 m/s2 B.前8 s内物体运动的位移为32 m C.0~4 s与4~6 s内物体速度方向相反 D.0~4 s与4~6 s内物体的平均速度相等
4.[对xt图象的理解]甲、乙两车在同一条直道上行驶,它们运 动的位移x随时间t变化的关系如图所示,已知乙车做匀变速直线 运动,其图线与t轴相切于10 s 处,则下列说法中正确的是( C A.甲车的初速度为零 B.乙车的初位置在x0=60 m处 C.乙车的加速度大小为1.6 m/s2 D.5 s时两车相遇,此时甲车速度较大 )
[变式3]
在一大雾天,一辆小汽车以30 m/s的速度行驶在
高速公路上,突然发现正前方30 m处有一辆大卡车以10 m/s的 速度同方向匀速行驶,小汽车紧急刹车,刹车过程中刹车失灵 . 如图所示,a、b分别为小汽车和大卡车的vt图线,以下说法 正确的是(
C
)
A.因刹车失灵前小汽车已减速,不会追尾 B.在t=5 s时追尾 C.在t=3 s时追尾 D.由于初始距离太近,即使刹车不失灵也会追尾
考向1 根据图象分析物理过程 [典例4] (2016· 新课标全国卷Ⅰ)甲、乙两车在平直公路 s时并排行
上同向行驶,其vt图象如图所示.已知两车在t=3 驶,则( )
A.在t=1 s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5 m C.两车另一次并排行驶的时刻是t=2 s D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为 40 m [答案]

追及与相遇问题pptPPT课件

追及与相遇问题pptPPT课件
第/共21页
例1. 甲、乙两地相距180千米,甲骑车每小时行 12千米,乙骑车每小时行18千米,两人从两地同 时相向而行,何时相遇?
第4页/共21页
1. 甲、乙两地相距180千米,甲骑车每小时行12千米,乙骑车每小时行18千米,两人 从两地同时相向而行,何时相遇?
• 分析与解:本题是最简单、最基础的相遇问 题。甲、乙二人共同走完180千米的距离, 只要求出他们的速度和,运用公式:相遇时 间=总路程÷(甲速+乙速)即可解决。 180÷(18+12)=6(小时) 答:甲、乙两人6小时后相遇。
第2页/共21页
• 相遇问题 两个物体做相向运动或在环形跑道上做背 向运动,随着时间的推移,它们必然要面 对面地相遇,这类问题就叫做相遇问题。 它的特点是两个运动物体共同走完整个路 程。
• 它们的基本关系式如下: 总路程 = 速度和 × 相遇时间 相遇时间 = 总路程 ÷ 速度和 速度和 = 总路程 ÷ 相遇时间
• 分析与解:根据题意可知,第一辆 • 汽车先行2小时后,第二辆汽车 • 才出发,画线段图分析:
• 从图中可以看出第一辆车行2小时的路程为两车的路程差, 即54×2=108(千米),两车相距108千米,第二辆车去 追第一辆车,第二辆车每小时比第一辆车每小时多行63- 54=9(千米),即为速度差。所以用追及时间=路程差÷ 速度差来解。
第19页/共21页
The end,thank you!
追及与相遇问题
第20页/共21页
感谢您的观看!
第21页/共21页
第9页/共21页
• 3. 大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头 儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟 后两人相遇,那么大头儿子的速度是每分钟走多少米?

【物理专题】追击和相遇问题的求解方法ppt课件

【物理专题】追击和相遇问题的求解方法ppt课件

例3.羚羊从静止开场奔跑,经过50m的间隔能加速到 最大速度25m/s,并能维持一段较长的时间。猎豹从静 止开场奔跑,经过60m的间隔能加速到最大速度30m/s, 以后只能维持这个速度4.0s。设猎豹间隔羚羊x m开场发 起攻击,羚羊那么在猎豹开场攻击后1.0s才开场奔跑,假定 羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一 直线运动。求: 〔1〕猎豹要在最大速度减小前追到羚羊,x值应在什 么范围内? 〔2〕猎豹要在其加速阶段追上羚羊,x值应在什么 范围内?
速度小 的加速
当两者速度相等时有最大间隔
追速度
大 的 假设两者位移相等,那么追上。
例1.甲车以10米/秒,乙车以4米/秒的速率在同一 直车道中同向前进,假设甲车驾驶员在乙车后方距 离d处发现乙车,立刻踩刹车使其车获得-2米/秒2 的加速度,为使两车不致相撞,d的值至少应为多 少?
例2、甲、乙两汽车沿同一平直公路同向匀速行驶,甲车 在前,乙车在后,它们行驶的速度均为16m/s。知甲车紧 急刹车时加速度a1=3m/s2,乙车紧急刹车时加速度 a2=4m/s2,乙车司机的反响时间为0.5s(即乙车司机看到甲 车刹车后0.5s才开场刹车),求为保证两车在紧急刹车过程 中不相撞,甲、乙两车行驶过程中至少应坚持多大间隔? (为保证两车不相撞,行驶时两车前后间距至少为1.5m。)
速度大 的减速 追速度 小的
当速度相等时,假设追者位移仍小于被追击者 位移,那么永远追不上,此时两者间有最小间 当隔两。者位移相等时,且两者速度相等时,那么恰 能追上,也是两者防止碰撞的临界条件。
假设两者位移相等时,追者速度仍大于被追者的
速度,那么被追击者还有一次追上的时机,其间
速度相等时两者间隔有一个较大值。
大于31.875m小于等甲、乙两车同时从同一地点出发,向同一 方向沿直线运动中,甲以10m/s的速度匀速行驶, 乙以2m/s2的加速度由静止启动,求: (1)经多长时间乙车追上甲车?此时甲、乙两车

相遇和追击问题 课件 (共20张PPT)

相遇和追击问题 课件 (共20张PPT)
画出两个物体运动示意图,分析两个物体的运动性质, 找出临界状态,确定它们位移、时间、速度三大关系。 (1)基本公式法——根据运动学公式,把时间关系渗 透到位移关系和速度关系中列式求解。
(2)图象法——正确画出物体运动的v--t图象,根据 图象的斜率、截距、面积的物理意义结合三大关系求 解。
(3)数学方法——根据运动学公式列出数学关系式 (要有实际物理意义)利用二次甲乙两车在一平直道路上同向运动,其v-t图像如 图所示,图中ΔOPQ和ΔOQT的面积分别为s1和s2 (s2>s1)初始时,甲车在乙车前方s0处。则 v ( ) A B C 甲 A.若s0=s1+s2,两车不会相遇 Q 乙 B.若s0<s1,两车相遇2次 P C.若s0=s1,两车相遇1次 t O D.若s0=s2,两车相遇1次 T
假设羚羊从静止开始奔跑,经50m能加速到最大速度 25m/s,并能维持较长时间; 猎豹从静止开始奔跑,经 60m能加速到最大速度30m/s 以后只能维持这个速度 4s.设猎豹距羚羊xm时开始攻击,羚羊则在猎豹开始攻 击后1s才开始逃跑,假定羚羊和猎豹在加速阶段分别作 匀加速直线运动,且均沿同一直线奔跑. 1)猎豹要在其最大速度减速前追上羚羊,X的取值范围 2)猎豹要在其加速阶段追上羚羊,X在什么范围
A、B两列火车,在同一轨道上同向行驶,A车
在前,其速度vA=10 m/s,B车在后,其速度vB=30 m/s,因 大雾能见度低,B车在距A车x0=85 m时才发现前方有A车,这 时B车立即刹车,但B车要经过180 m才能停止.问:B车刹车时 A车仍按原速率行驶,两车是否会相撞?若会相撞,将在B车 刹车后何时相撞?若不会相撞,则两车最近距离是多少?
例1. A火车以v1=20m/s速度匀速行驶,司机发现前方同 轨道上相距100m处有另一列火车B正以v2=10m/s速度 匀速行驶,A车立即做加速度大小为a的匀减速直线运 动。要使两车不相撞,a应满足什么条件?

追及、相遇问题——高考真题-完整版PPT课件

追及、相遇问题——高考真题-完整版PPT课件
【真题】(海南·8)甲乙两车在一平直道路上同向运动,其 v-t 图像
如图所示,图中△OPQ 和△OQT 面积分别是 x1 和 x2(x1<x2).初始
时,甲车在乙车前方 x0 处 (ABC )
A.若 x0=x1+x2,两车不会相遇
B.若 x0<x1,两车相遇 2 次
C.若 x0=x1,两车相遇 1 次 D.若 x0=x2,两车相遇 1 次
比x0大还是 小呢?
解析 若乙车追上甲车时,甲、乙两车速度相同,即此时t=T,则x0=x1,此后甲 车速度大于乙车速度,全程甲、乙仅相遇一次;若甲、乙两车速度相同时,x0<x1,则此
时乙车已在甲车的前面,以后甲还会追上乙,全程中甲、乙相遇2次;若甲、乙两车
速度相同时,x0>x1,则此时甲车仍在乙车的前面,以后乙车不可能追上甲车了,全 程中甲、乙都不会相遇,综上所述,选项A、B、C对,D错. 答案 ABC
解析显隐
第一页,共二页。
内容摘要
解析 若乙车追上甲车时,甲、乙两车速度相同,即此时t=T,则x0=x1,此后甲车速度大于乙车速度,全程甲、乙仅相遇一 次。解析 若乙车追上甲车时,甲、乙两车速度相同,即此时t=T,则x0=x1,此后甲车速度大于乙车速度,全程甲、乙仅相遇一
No 次。若甲、乙两车速度相同时,x0<x1,则此时乙车已在甲车的前面,以后甲还会追上乙,全程中甲、乙相遇2次。比x0大还是小

Iቤተ መጻሕፍቲ ባይዱage
第二页,共二页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动。要使两车不相撞,a应满足什么条件?
方法一:公式法
两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
由A、B位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
方法二:图象法
设经过时间t汽车和自行 车之间的距离Δx,则
x
v自t
1 2
at 2
6t
3 2
t2
当t
6 2 (
3)
2s时
2
x汽
△x
x自
xm
62 4( 3)
6m
2
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多
大?汽车运动的位移又是多大?
x 6t 3 t 2 0
t 4s
v at 12m / s
2
3
以自行车为 参照物,公式中的 各个量都应是相
vt2 v02 2as
s vt2 v02 0 (6)2 m 6m
2a
23
对于自行车的物 理量.注意物理量 的正负号.
问:xm=-6m中负号表示什么意思?
表示汽车相对于自行车是向后运动的,其相对于自行车 的位移为向后6m.
例2:A火车以v1=20m/s速度匀速行驶,司机发现前方 同轨道上相距100m处有另一列火车B正以v2=10m/s速度 匀速行驶,A车立即做加速度大小为a的匀减速直线运
(3)相撞 两物体“恰相撞”或“恰不相撞”的临界条件: 两物体在同一位置时,速度恰相同
若后面的速度大于前面的速度,则相撞。
3、解题方法 (1)画清行程草图,找出两物体间的位移关系 (2)仔细审题,挖掘临界条件,联立方程 (3)利用二次函数求极值、图像法、相对运动知识求解
返回目录
典例解析
[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以 3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动 后,在追上自行车之前经过多长时间两车相距最远?此时距 离是多少?
vt=0
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
则a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的
物理量.注意物理量的正负号.
返回目录
变 式 训练
例1:某人骑自行车,v1=4m/s,某时刻在他前面7m 处有一辆以v2=10m/s行驶的汽车开始关闭发动机, a=2m/s2,问此人多长时间追上汽车 ( C )
角形的面积之差最大。
v/ms-1
V-t图像的斜率表示物体的加速度
汽车
6 tan 3
t0
t0 2s
当t=2s时两车的距离最大
6
o
α
t0
自 行
车 t/s
xm
1 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面
积(汽车的位移)的差的变化规律
方法三:二次函数极值法
甲一定能追上乙,v甲=v乙的 时刻为甲、乙有最大距离的时刻
判断v甲=v乙的时刻甲乙的位 置情况
①若甲在乙前,则追上,并相遇两次 ②若甲乙在同一处,则甲恰能追上乙 ③若甲在乙后面,则甲追不上乙,此 时是相距最近的时候
情况同上 若涉及刹车问题,要先
求停车时间,以作判别!
(2)相遇 ①同向运动的两物体的追及即相遇 ②相向运动的物体,当各自位移大小之和等于开 始时两物体的距离,即相遇
A. S
B. 2S
C. 3S
D. 4S
答案 B
天成书业物理组
s 1 at2 24m
2
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中,
以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个
物理量的分别为:v0=-6m/s,a=3m/s2,vt=0
对汽车由公式 vt v0 at
t vt v0 0 (6) s 2s
a
追及与相遇问题
考点回扣 典例解析 变式训练
目录
考点回扣
讨论追及、相遇的问题,其实质就是分析讨论两物体在 相同时间内能否到达相同的空间位置的问题。
1、两个关系:时间关系和位移关系
2、一个条件:两者速度相等
两者速度相等,往往是物体间能否追上,或两者距离最 大、最小的临界条件,是分析判断的切入点。
(1)追及
A、6s B、7s C、8s D、9s
注意“刹车”运动的单向性!
例2:两辆完全相同的汽车,沿水平直路一前一后
匀速行驶,速度均为,若前车突然以恒时的加速度开
始刹车,已知前车在刹车过程中行驶距离S,在上
述过程中要使两车不相撞,则两车在匀速运动时,
保持的距离至少应为:
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度
x汽
相等时,两车之间的距离最大。设
经时间t两车之间的距离最大。则
△x
v汽 at v自
v6
x自
t s 2s
xm
a
x自
3
x汽
v自t
1 2
at 2
6 2m
1 2
3 22 m
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是
多大?汽车运动的位移又是多大?
4 1 a 100 (10)2
2
0
4 1 a
2
则a 0.5m / s2
或列方程 ∵不相撞
v1t
1 2
at
∴△<0
2
v2t x0
100
代入数据得
4 1 a 100
1
2
at
0
2
10t
100
0
2
则a 0.5m / s2
方法四:相对运动法
以B车为参照物, A车的初速度为v0=10m/s,以加 速度大小a减速,行驶x=100m后“停下”,末速度为
v自T
1 2
aT 2
t 2v 4s a
v汽 aT 12m / s
s汽
1 2
aT
2=24m
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
1 2
(20 10)t0
100
v/ms-1
20
A
10
B
t0 20 s
o
t0
t/s
a 20 10 0.5
20
则a 0.5m / s2
方法三:二次函数极值法
若两车不相撞,其位移关系应为 v1t
代入数据得 1 at2 10t 100 0
1 2
at 2
v2t
x0
2
其图像(抛物线)的顶点纵坐 标必为正值,故有
相关文档
最新文档