八年级上十二章轴对称知识点总结(最全最新)

合集下载

八年级上数学轴对称知识点

八年级上数学轴对称知识点

八年级上数学轴对称知识点数学中的轴对称是一个重要的概念,它在几何学中有着特殊的地位。

轴对称是一种在几何上对称性的表示,就是说经过此类对称变换后,物体会维持原来的形状。

轴对称广泛应用于数学的各个领域,从简单的平面图形到三维几何图形,都可以应用轴对称进行变形。

而在八年级上数学的学习中,轴对称是数学中一个重要的知识点。

接下来,本文将为大家详细介绍八年级上数学轴对称的知识点。

一、轴对称的定义及性质1.定义:平面上的轴对称是指当一个点绕着轴旋转180度后,仍能落在原来的位置上的变换。

2.性质:若点P和点P'在轴对称的图形上位于同一位置,则它们在轴上的距离相等,且轴垂直于P和P'之间的连线。

二、轴对称的应用1.轴对称可以应用于平面图形的构造,如圆,矩形,三角形等。

2.轴对称可以帮助我们求出平面图形的对称中心,并用这个对称中心得到一些图形的性质。

3.轴对称可以用于解题,如对称图形的面积、图形重心的求解等。

三、轴对称与对称中心的求解1.对称中心的定义:一个平面图形可以有很多对称中心,但每个对称中心都必须满足:通过这个对称中心,将图形分为对称的两部分,且分割的两部分的对应点在图形轴对称的位置上。

2.求解对称中心的方法:通过找到轴对称图形上的对称关系,确定对称直线的位置,然后在对称直线上作垂线,交点即为对称中心。

四、轴对称的练习1.练习一:如图,在平面直角坐标系中,直线l是x轴的正半轴,正方形ABCD经过轴对称后,变为图形A'B'C'D',点C、C'、E在同一直线上,且EE'的坐标为(7,4),求正方形ABCD的边长。

解:通过图形的观察,我们可以得出以下结论:1)正方形ABCD在x轴上的对称点是A’B’C’D’,因为它们的横坐标相等,纵坐标互为相反数。

2)点C、C’、E在同一直线上,因此点E的坐标应该是在点C和C’连线上的,可以算出点C(x,y)的坐标后,求出点C’的坐标,再连通C’E’的直线,求出其上与x轴交点的坐标即可求出正方形的边长。

八年级上册轴对称的知识点

八年级上册轴对称的知识点

八年级上册轴对称的知识点轴对称是几何中常见的概念,也是初中数学中必须掌握的一个知识点。

在此,我们将对八年级上册轴对称的相关知识进行详细介绍,以便同学们更好地掌握。

一、轴对称的定义
轴对称,指平面上存在一条直线,将图形对称折叠后,两边完全重合,那么这条直线就叫做轴对称线,这种图形就是轴对称图形。

二、轴对称的性质
1.轴对称线是图形的对称轴,对称轴上任意一点到图形两边的距离相等。

2.轴对称图形中,如果一条线段与对称轴垂直,那么它与对称轴的交点一定在对称轴的中点。

3.轴对称图形中,如果一条线段与对称轴平行,那么它对称后
的线段与原线段的距离相等。

三、轴对称的判定方法
1.对称中心法:将图形折叠后,查看两边是否完全重合,确定
对称中心及轴对称线。

2.寻找轴对称点法:通过寻找具有对称性的点,确定轴对称线。

四、轴对称的常见图形
1.正方形:正方形具有4条对称轴,分别是4个边的中垂线和
2条对称线。

2.矩形:矩形具有2条对称轴,分别是2条相邻边的中垂线。

3.等边三角形:等边三角形具有3条对称轴,分别是3条中线。

4.等腰三角形:等腰三角形具有1条对称轴,即过顶点与底边中点的中线。

5.圆:圆具有无数条对称轴,都是其直径。

五、轴对称的应用
轴对称不仅在几何学中有广泛的应用,而且在现实生活中也有很多应用。

比如对称艺术品、镜像照片等。

六、总结
轴对称作为初中几何中的基础知识,是我们往后学习更高级几何学知识的基础。

通过本篇文章的介绍和总结,相信同学们已经对轴对称有了更深入的理解和掌握。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结
八年级上册数学轴对称的知识点总结如下:
1. 轴对称图形:如果一个图形可以折叠成两半,使得两半完全重合在一起,则这个图形是轴对称的。

轴对称图形具有轴对称轴,也称为镜像轴。

2. 轴对称图形的性质:
- 图形的每个点关于轴对称轴对应有另一个点。

- 图形的每一对对称点与轴对称轴的距离相等。

- 图形的任意两点关于轴对称轴的连线垂直于轴对称轴。

3. 轴对称图形的判断方法:
- 观察图形是否可以折叠成两半,使得两半完全重合。

- 观察图形是否和它自己的镜像一样。

4. 轴对称图形的绘制方法:
- 给出轴对称轴,沿着轴对称轴将图形折叠。

- 给定部分图形的对称点,通过连接对称点来绘制完整的轴对称图形。

5. 轴对称图形的性质的应用:
- 可以通过找到轴对称图形的对称点来绘制完整的图形。

- 可以通过轴对称图形的性质来解决有关对称点的问题,如求解距离、面积等。

这些都是八年级上册数学轴对称的知识点的总结,希望对你有所帮助!。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点在初中数学中,轴对称是一个非常重要的知识点。

轴对称是指在一个平面上,如果有一条直线,把这个平面分成两个对称的部分,那么我们就说这个平面是轴对称的。

八年级上册的数学课程中,轴对称被涉及到了,下面我们来详细地探讨一下轴对称的相关知识点。

一、轴对称的定义和性质轴对称的定义如上所述,即沿着一条直线进行对称,这条直线就称为轴线或者对称轴。

在轴对称的情况下,通过轴对称得到的镜像图形和原图形完全重合,这也就是轴对称的性质。

轴对称有如下的性质:(1)轴对称图形共有或自成一类轴对称得到的镜像图形和原图形完全重合,因此当把某个图形做轴对称后,得到的图形和原图形形状相同,只是位置不同。

所以,轴对称得到的镜像图形和原图形共有或自成一类。

(2)轴对称的两个对称图形的距离等于轴到这两个图形的距离我们知道,轴对称的求法是以轴线为轴进行对称,而轴线到对称位置不同的点的距离不同,因此,轴对称的两个对称图形的距离等于轴到这两个图形的距离。

(3)轴对称保持长度、角度不变轴对称能够保持长度和角度不变的原因是,轴对称的两个对称图形都是完全重合的,所以它们的长度和角度是相同的。

二、轴对称的基本步骤下面我们来看轴对称的基本步骤:(1)确定轴对称的轴线首先,要确定轴对称的轴线,它必须是平面内的一条直线。

(2)确定轴对称的中心点确定轴对称的中心点,这个点一般都在轴线上,它是轴线的中点。

(3)确定轴对称的象限确定轴对称的象限,即确定轴对称得到的镜像图形和原图形的位置关系。

(4)确定轴对称的顺序确定轴对称的顺序,从哪一端开始进行对称。

一般情况下,我们可以从离中心点近的位置开始对称。

三、轴对称的应用轴对称的应用十分广泛,下面我们来看一下轴对称在实际生活中的应用:(1)轮子的轴对称自行车、汽车等车辆的轮子都采用了轴对称的原理。

(2)建筑物的轴对称建筑物在建造过程中也采用了轴对称的方法,比如古希腊罗马建筑中的神殿、半圆形壳体建筑等。

八年级轴对称知识点总结

八年级轴对称知识点总结

八年级轴对称知识点总结在初中数学中,轴对称是一个十分重要的知识点,它不仅在数学中有很重要的应用,也在其他学科中有着广泛的应用。

在八年级阶段,轴对称的学习已经比较深入了,下面我们来总结一下八年级轴对称的知识点。

一、轴对称的定义轴对称是指图形中存在一条直线,使得图形关于这条直线对称。

我们把这条直线称为轴对称线。

轴对称图形可以分为两类:对称中心在轴对称线上的固定图形和对称中心不在轴对称线上的任意图形。

二、轴对称的性质轴对称有一些很特殊的性质:1.轴对称图形中,对于任意一点P,它的对称点P'在轴对称线上。

2.轴对称图形中,对于任意两点P、Q,它们的中点M在轴对称线上。

3.轴对称图形中,对于任意两线段AB、A'B',它们的交点M 在轴对称线上。

三、构造轴对称图形构造轴对称图形有以下几种方法:1.已知轴对称线和对称中心,先作出对称中心到轴对称线的垂线,然后将这条垂线翻折到轴对称线下方,就得到了对称图形。

2.已知轴对称线和对称中心,可以通过将每个点关于对称中心旋转180°后,再平移一定距离得到对称图形。

3.对于规则图形如正方形、正三角形等,可以通过旋转、平移等方式得到轴对称图形。

四、轴对称图形的性质应用轴对称图形的性质可以应用到很多场景中:1.在制作对称的艺术品、标志等方面,轴对称是常用的设计方法。

2.在建筑、船舶、汽车等领域,轴对称可以帮助工程师设计更加稳定、均衡的结构。

3.在生物学中,我们也可以看到很多轴对称的生物,例如海星、蟹、蝎子等。

以上就是八年级轴对称知识点的总结了。

但是轴对称的应用远不止于此,我们需要在实践中不断探索和应用它。

(完整版)八年级上十二章轴对称知识点总结(最全最新)

(完整版)八年级上十二章轴对称知识点总结(最全最新)

(完整版)⼋年级上⼗⼆章轴对称知识点总结(最全最新)轴对称知识点(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。

连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。

5.画⼀图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的'直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

【八上数学】《轴对称》最全知识点汇总

【八上数学】《轴对称》最全知识点汇总

5、垂直平分线(中垂线)定义垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平⾏(或在同⼀条直线上).(3)对应线段相等,对应⾓相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平⾏).如图:(1)AA′,BB′,CC′,DD′,被l垂直平分.(2)AA′∥BB′∥CC′,CC′、DD′在同⼀直线上.(3)AB=A′B′,BC=B′C′,CD=C′D′,AD=A′D′,∠BAD=∠B′A′D′,∠ABC=∠A′B′C′,∠BCD=∠B′C′D′,∠CDA=∠C′D′A′.(4)BA、B′A′,BC、B′C′,CD、C′D′的延长线交点在l上.DA、D′A′的延长线平⾏.7、对称轴的作法法1:作⼀条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定⼀条直线.法3:分别延长两对对应线段,确定两个交点,两点确定⼀条直线.8、给出⼀个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂⾜的距离为半径,截取相等,将所作对应点分别相连.⼆、实战演练例1:请在下列三个2×2的⽅格中,各画出⼀个三⾓形,要求所画三⾓形与图中三⾓形成轴对称,且所画的三⾓形顶点与⽅格中的⼩正⽅形顶点重合,并将所画三⾓形涂上阴影.分析:我们应该利⽤轴对称图形的性质,先选择不同的直线当对称轴,再作对称图形.显然⼤⽅格作为正⽅形,有4条对称轴,⽽还有⼀条⽐较难想,对称轴可以经过斜边和直⾓边的中点.解答:例2:如图,桌⾯上有A、B两球,若要将B球射向桌⾯任意⼀边,使⼀次反弹后击中A球,则可以瞄准的点有哪些?分析:本题中,对于桌⾯反弹的问题,其实属于物理中的光路问题,⼊射⾓等于反射⾓,⽽将⼊射⾓作对称后,恰好与反射⾓是对顶⾓,光线在同⼀直线上,因此我们考虑作对称.解答:变式:如图是⼀个台球桌⾯的⽰意图,图中四个⾓上的阴影部分分别表⽰四个⼊球孔.若⼀个球按图中所⽰的⽅向被击出(球可以经过多次反弹),则该球最后落⼊的球袋是______袋.分析:本题与例2类似,但如果每次都作对称,未免太过⿇烦,我们不难发现⼊射线与桌边的夹⾓为45°,则反射后的夹⾓也为45°,问题得解.解答:例3:如图,已知∠AOB=60°,点P为∠AOB内⼀点,分别作点P关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点M.(1)连接OP1,OP2,求∠P1OP2的度数.(2)若P1P2=8,求△PMN周长.分析:(1)要求∠P1OP2的度数,直接求显然很困难,我们不妨从对应线段考虑,则想到连接OP.(2)同样的,将组成三⾓形的三条线段中,能找到对应相等的线段找出,进⾏转化.解答:变式:如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐⾓α的数量关系.分析:(1)问不难,只需⽤3种⽅法中的任意⼀种即可.(2)问与例3类似,准确依据题意,画出图形后,根据对称性,连接对应线段就能有所突破.解答:(1)如图,连接B′B′′,C′C′′,各取中点,连接后,直线EF即为所求.(2)连接OB′,∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM,同理可得∠B′OE=∠B′′OE,∴∠BOB′′=∠BOB′+∠B′OB′′=2∠B′OM+2∠B′OE=2∠MOE=2α.。

八年级轴对称知识点讲解

八年级轴对称知识点讲解

八年级轴对称知识点讲解在初中数学中,轴对称是一种重要的几何概念,也是学生需要掌握的常识之一。

本文将为八年级学生详细讲解轴对称的概念、性质以及常见应用。

一、轴对称的概念轴对称是指一种对称方式,在平面内将图形分为两部分,其中一部分通过某个轴的旋转后可以恰好重合于另一部分,这个轴就被称为轴对称轴。

换言之,轴对称是指一种图形上下左右对称的状态。

二、轴对称的性质1. 坐标关系对于坐标系中的轴对称,其轴与坐标轴的交点处的坐标为(a, 0)或(0, a),其中a为实数。

2. 图形特征轴对称有以下几个特征:对称轴上的点不变;对称轴上的任何点到图形内的对应点的距离相等;对称轴将图形分为两个完全相同的部分。

3. 作图方法作图一个图形的轴对称需要以下几个步骤:确定对称轴的位置和方向;确定图形中所有对称的点或线段;将每个点或线段依次沿对称轴复制,直至构成整个轴对称图形。

三、常见应用1. 绘制轴对称图形轴对称在绘制各种图形时都可以派上用场。

所以,掌握绘制轴对称图形的技能是至关重要的。

2. 模拟新图形通过所给轴对称图形和轴对称轴,可以模拟出新的图形。

比如说,拥有线段CB、直线AB和DE且过点A的轴对称轴,通过绘制一条ADE的边来构建新的轴对称图形。

3. 发现轴对称图形性质在解题时,掌握轴对称图形的性质可以给我们提供更多的思路。

比如说,对于轴对称图形来说,它们的对称轴和对称图形上的任何一个点的坐标都是对应的;轴对称图形的面积等于其对称轴两侧图形面积之和。

以上是对轴对称的概念、性质以及常见应用的详细讲解。

希望通过本文的阐述,能够帮助八年级学生更好地理解轴对称的知识点,掌握轴对称应用技巧,从而提高其数学成绩。

八年级上册 数学 第十二章 轴对称 知识点与例题

八年级上册 数学 第十二章 轴对称 知识点与例题

第十二章轴对称1、轴对称图形:如果一个图形眼一条直线折叠,直线两旁的部分能够相互重合,该图形叫做轴对称图形,这条直线叫做对称轴。

2、线段是轴对称图形(对称轴:垂直平分线、线段所在的直线)3、线段的垂直平分线定义:垂直于一条线段,并且平分这条线段的直线;和线段两个端点距离相等的所有点的集合。

特点:○1是一条直线;○2垂直于已知线段;○3平分已知线段。

性质:线段垂直平分线上的点和这条线段两个端点的距离相等。

判定:和一条线段的两个端点激励相等的点,在这条线段的垂直平分线上。

判断方法:○1运用定义;○2先证某两点到线段两端点的距离分别相等,再由线段垂直平分线判定及直线公理判定。

4、两图形关于直线成轴对称概念:对称轴;对称点。

性质:○1关于某条直线对称的两个图形式是全等形;○2如果两个图形关于某条直线对称,那么,对称轴是任何一对对称点所连线段的垂直平分线。

画对称轴,画轴对称图形。

5、用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y),点(x,y)关于y轴对称的点的坐标为(-x,y)。

6、轴对称的变换○1由一个平面图形得到它的轴对称图形叫做轴对称变换。

○2由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样。

○3新图形上的每一点,都是原图形上的某一点关于直线l的对称点。

○4连接任意一对对应点的线段被对称轴垂直平分。

7、等腰三角形○1概念等腰三角形:有两条边相等的三角形。

腰——AB、AC;(AB=AC)底边——BC;顶角——∠BAC;底角——∠ABC、∠ACB;三条边都相等的三角形叫做等边三角形;等边三角形实际上是腰与底边相等的特殊的等腰三角形,等腰三角形包括等边三角形。

○2性质:等腰三角形的两个底角相等(等边对等角)作底边的中线、作底边的高线可证明两三角形全等。

(SAS)○3性质定理的推论1:三线合一:等腰三角形顶角的平分线垂直于底边并且平分底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结一、引言数学作为一门基础学科,其所包含的内容广泛而深刻。

在八年级上册中,轴对称作为其中的一个重要知识点,对学生来说具有一定的挑战性。

在本文中,我们将以八年级上册数学轴对称知识点为主题,进行全面的评估和总结,帮助学生更好地理解和掌握这一知识点。

二、基本概念1. 关于轴对称轴对称是指平面上存在一条直线,使得图形关于这条直线对称。

一个图形如果可以分成两部分,且其中一部分经过旋转、翻转或平移后可以和另一部分完全重合,那么这个图形就是关于这条直线对称的。

2. 轴对称的性质- 轴对称的图形关于对称轴是对称的。

- 轴对称的图形的对称中心在对称轴上。

- 轴对称的图形的每一点经过对称轴的对称变换后都能恰好在图形上。

三、基本题型在八年级上册数学中,关于轴对称的题型主要包括:1. 判断图形是否轴对称2. 找出图形的对称中心和对称轴3. 根据轴对称的性质,解决相关的计算题目四、实例分析以具体的实例来分析轴对称的知识点:题目:如图,判断图形是否关于虚线对称。

[图片]解析:根据图形可以看出,通过对折可以发现,图形A和图形B可以重合,因此该图形是关于虚线对称的。

又如,若已知一个三角形的对称轴为边AC,对称中心为边BC的中点O,求证△ABC是个等腰三角形。

解析:根据轴对称的性质,可以证明线段BO和OA相等,从而得到△ABC为等腰三角形。

五、拓展应用除了基本的题型和实例分析,八年级上册数学中的轴对称知识点还涉及到一些拓展应用,在真实生活中也是有一定的应用场景的。

在建筑设计中,轴对称的思想可以帮助设计师更好地进行建筑设计和规划,保证建筑物的整体美观和稳定性。

在工程制图和艺术设计中,轴对称也扮演着重要的角色。

六、总结与展望通过对八年级上册数学轴对称知识点的全面评估和总结,我们更深入地理解了轴对称的基本概念、基本题型和实例分析,以及在拓展应用中的意义。

在今后的学习中,我们应该更加注重轴对称知识点的理解和应用,结合实际情况进行综合训练,提高解决问题的能力和思维方式,为未来的学习和生活打下坚实的基础。

八年级上轴对称知识点总结

八年级上轴对称知识点总结

八年级上轴对称知识点总结轴对称是初中数学中非常重要的一个概念,它不仅是基础知识,还是学好高中数学的必备逻辑推理方法。

在八年级上学期,轴对称这一概念得到了进一步的发展和应用。

本篇文章将对八年级上轴对称知识点进行一一总结。

一、轴对称的基本概念轴对称是平面中的一种特殊变换,通过将图形绕轴旋转180°,得到的图形称为轴对称图形。

在轴对称中,轴是图形的中心对称线,轴对称图形左右对称。

二、轴对称图形的特征1. 轴对称图形内部不受影响,仍旧相同。

2. 轴对称图形的任何两点关于轴对称图形中心对称。

3. 轴对称图形的任何一个点到轴线的距离与它的对称点到轴线的距离相等。

三、确定轴对称图形的轴1. 图形本身具有轴对称性,轴对称中心就是图形的中心。

2. 图形的边界线或部分边界线是轴对称的,则轴对称中心在轴线上。

四、在轴对称中绘制图形在轴对称中,我们不仅可以根据轴对称中心绘制图形,还可以通过一些图形构建方法绘制出轴对称图形。

例如,我们可以将图形分成左右两个部分,然后将左半部分绕中心点旋转180度,得到一个完整的轴对称图形。

五、判断轴对称图形的对称特征判断轴对称图形的对称特征,可以用以下方法:1. 判断图形中是否存在轴对称中心。

2. 将两个同名点之间的距离与轴的距离进行比较,判断其是否相等。

六、轴对称图形的性质1. 轴对称图形中,任何两个对称点的坐标相同。

2. 轴对称图形中,通过轴对称中心的直线被轴分成两段,且两段的长度相等。

3. 轴对称图形中,若点P关于直线L对称的对称点为P',则L 为点P与点P'中点的轴对称中心。

七、轴对称与坐标系我们可以将轴对称与坐标系结合起来,使用坐标系的有关知识推导出轴对称图形的方程和性质。

例如,我们可以通过坐标系求出一个平面图形的中心点,进而找到其轴对称中心。

我们还可以利用坐标系求出两个轴对称图形的交点和角度。

八、轴对称的应用轴对称不仅是数学理论中的一个基础概念,也是一种实用的工具。

八年级上册轴对称知识点讲解

八年级上册轴对称知识点讲解

八年级上册轴对称知识点讲解在几何中,轴对称是个非常重要的概念。

轴对称有时被称为镜像对称,它是一种对于任何一个给定子集的每一个点,都存在另外一个点,并且这两个点是对于某一个轴对称的。

这篇文章将简要讲解八年级上册中轴对称的基本原理、性质以及实际应用。

一、基本概念轴对称是几何中的一种非常基本的形状变换方式。

如果一个图形围绕一条线对着它自己进行翻转,那么这个图形就是轴对称的。

轴对称的轴通常被称为对称轴,它是图形中的一条直线,用于将在对称轴的两侧的形状进行映射。

二、性质轴对称有一些重要的性质,包括以下几点:1. 轴对称是外形不变性:当一个形状进行轴对称时,它的外形不会改变。

2. 对称轴上的所有点不变:在对称轴上的每一个点都不会发生移动。

3. 如果一个图形是轴对称的,那么它的每个点都有一个关于对称轴的对称点。

4. 如果一个形状的某个区域是轴对称的,那么该区域内的所有点也是轴对称的。

三、例子下面是几个关于轴对称的例子:1. 正方形是轴对称的。

它的对称轴可以是连接对角线的中垂线。

2. 长方形是轴对称的,但只能是沿着它的较短边的中心线。

3. 图形ABCD是轴对称的,其对称轴为直线EF。

四、应用轴对称有许多实际应用,例如:1. 工程制图中,轴对称通常用于对称部件的绘制。

2. 根据轴对称的性质,可以设计出高效的演算法,以使编程过程更加简单。

3. 访问控制系统中,轴对称被用作安全控制块的一种方式。

结论对称是几何中一个非常基础的概念,并且它在各个领域内都有着广泛的应用。

轴对称是对称中的一种,它有着许多的性质和应用。

对于中学教育而言,轴对称是一个值得深入研究的主题,通过实际例子帮助学生更加深刻的理解轴对称的概念以及其在实际生活中的应用。

轴对称(全章知识梳理与考点分类讲解)(人教版)(学生版) 2024-2025学年八年级数学上册基础

轴对称(全章知识梳理与考点分类讲解)(人教版)(学生版) 2024-2025学年八年级数学上册基础

专题13.12轴对称(全章知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【知识点二】作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.【知识点三】等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.第二部分【题型展示与方法点拨】【题型1】利用轴对称的性质求值【例1】(2024八年级上·江苏·专题练习)如图,点P 在四边形ABCD 的内部,且点P 与点M 关于AD 对称,PM 交AD 于点G ,点P 与点N 关于BC 对称,PN 交BC 于点H ,MN 分别交AD BC ,于点E F ,.(1)连接PE PF ,,若12cm MN =,求PEF !的周长;(2)若134C D ∠+∠=︒,求HPG ∠的度数.【变式1】(23-24七年级下·广东深圳·期末)如图,四边形ABCD 中,AB AD =,将ABC V 沿着AC 折叠,使点B 恰好落在CD 上的点B '处,若110BAD ∠=︒,则ACB =∠()A .55︒B .45︒C .40︒D .35︒【变式2】(22-23八年级上·江苏镇江·阶段练习)如图,APT △与CPT △关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F ,当A ∠=︒时,FTC C ∠=∠.【题型2】利用折叠的特征求值【例2】(23-24七年级下·河南新乡·期末)如图,在长方形纸片ABCD 中,点E 在边AD 上,点F 在边BC 上,四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上;将AED '△沿ED '折叠得到A ED ''△且点A '恰好落在边BC 上.(1)若77BFE ∠=︒,则BFC '∠=.(2)若50A D B '∠='︒,求A EF '∠的度数.【变式1】(23-24九年级上·山东枣庄·开学考试)如图,四边形ABCD 为一矩形纸带,点E F 、分别在边AB CD 、上,将纸带沿EF 折叠,点A D 、的对应点分别为A ''、D ,若235∠=︒,则1∠的度数为()A .62.5︒B .72.5︒C .55︒D .45︒【变式2】(2024八年级上·江苏·专题练习)如图,在ABC V 和DCB △中,90,,A D AC BD ∠=∠=︒相交于点E ,AE DE =.将CDE 沿CE 折叠,点D 落在点D ¢处,若30BED ∠='︒,则BCD '∠的大小为.【题型3】线段垂直平分线的性质与判定求值【例3】(23-24八年级上·江苏宿迁·期中)如图,AD 是ABC 的角平分线,DE DF 、分别是ABD △和ACD 的高.(1)试说明AD 垂直平分EF ;(2)若8628ABC AB AC S === ,,,求DE 的长.【变式1】(23-24八年级上·四川巴中·期末)如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD .若7AC =,12BC =,则ADC △的周长为()A .12B .14C .19D .26【变式2】(23-24九年级上·重庆·期末)如图在ABC V 中,D 为AB 中点,DE AB ⊥,180ACE BCE ∠+∠=︒,EF BC ⊥交BC 于F ,8AC =,12BC =,则BF 的长为.【题型4】利用等腰三角形的性质与判定求值或证明【例4】(2024八年级上·江苏·专题练习)如图,在ABC V 中,AC BC =,120ACB ∠=°,CD 是AB 边上的中线,BD 的垂直平分线EF 交BC 于点E ,交AB 于点F ,15CDG ∠=︒.(1)求证:AD AG =;(2)试判断CDE 的形状,并说明理由.【变式1】(23-24八年级上·湖南株洲·期末)在ABC V 中,36A ∠=︒,72B ∠=︒,则ABC V 是()A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【变式2】(23-24八年级上·重庆沙坪坝·期末)如图,在ABC ∆中,AB AC =,AD BD =,DE AB ⊥于点E ,若4BC =,BDC 的周长为10,则AE 的长为.【题型5】利用等边三角形的性质与判定求值或证明【例5】(2024八年级上·江苏·专题练习)如图,已知Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,BAC ∠的平分线分别交BC ,CD 于E 、F .(1)试说明CEF △是等腰三角形.(2)若点E 恰好在线段AB 的垂直平分线上,试说明线段AC 与线段AB 之间的数量关系.【变式1】(23-24八年级上·福建福州·期末)如果,,a b c 为三角形的三边长,且满足()()()0a b b c c a ---=,那么该三角形的形状为()A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【变式2】(23-24九年级上·河北邯郸·期末)如图1,ABC V 和ADE V 是等边三角形,连接BD ,CE 交于点F .(1)BD CE 的值为;(2)BFC ∠的度数为︒.【题型6】利用30度所对的直角边等于斜边一半求值或证明【例6】(2024八年级上·江苏·专题练习)在Rt ABC △中,90ACB ∠=︒,M 是边AB 的中点,CH AB ⊥于点H ,CD 平分ACB ∠.(1)求证:CD 平分MCH ∠;(2)过点M 作AB 的垂线交CD 的延长线于点E ,求证:CM EM =;(3)AEM △是什么三角形?证明你的猜想.【变式1】(23-24九年级上·安徽合肥·期末)如图,ABC V 中,9030ACB A ∠=︒∠=︒,,CD AB ⊥于点D ,若1BD =,则AD 的长度为()A .5B .4C .3D .2【变式2】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90C ∠=︒,AD 是CAB △的平分线,DE 垂直平分AB ,若3CD =,则BD =.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2024·四川巴中·中考真题)如图,在ABC V 中,D 是AC 的中点,CE AB ⊥,BD 与CE 交于点O ,且BE CD =.下列说法错误的是()A .BD 的垂直平分线一定与AB 相交于点EB .3BDC ABD ∠=∠C .当E 为AB 中点时,ABC V 是等边三角形D .当E 为AB 中点时,34BOC AEC S S =△△【例2】(2024·江苏宿迁·中考真题)如图,在ABC V 中,5030B C ︒∠∠=︒=,,A 是高,以点A 为圆心,A 长为半径画弧,交AC 于点E ,再分别以B 、E 为圆心,大于12BE 的长为半径画弧,两弧在BAC ∠的内部交于点F ,作射线AF ,则DAF ∠=.2、拓展延伸【例】(22-23八年级上·吉林长春·阶段练习)在等腰ABC V 中,CA CB =,30B ∠=︒,将一块足够大的直角三角尺PMN (90M ∠=︒、30MPN ∠=︒)按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当P 运动到AB 中点时,α=__________度;(2)当45α=︒时,请写出图中所有的等腰三角形(ABC V 除外)__________.(3)在点P 的滑动过程中,当PCD △的形状是以PC 为底的等腰三角形时,请在指定位置画出此时形成的图形,并指出此时图中的所有直角三角形(PMN 除外).不用说明理由.。

八年级数学轴对称知识点总结

八年级数学轴对称知识点总结

八年级数学轴对称知识点总结轴对称轴对称是一种图形的位置关系,指如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

轴对称的两个图形形状相同,大小相等,是全等形。

如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线。

如果两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。

轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形。

轴对称涉及两个图形,而轴对称图形是对一个图形来说的。

如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。

线段的垂直平分线上的点与这条线段两个端点的距离相等。

反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

作轴对称图形几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形。

对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。

点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y)。

等腰三角形等腰三角形是有两边相等的三角形。

等腰三角形的两个底角相等,即“等边对等角”。

等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”)。

特别地,等腰直角三角形的每个底角都等于45°。

判定一个三角形是否为等腰三角形,只需要判断它的两条边是否相等。

如果两条边相等,则这个三角形是等腰三角形。

如果一个三角形拥有两个相等的角,那么这两个角所对的边也会相等,这就是我们所说的“等角对等边”。

八年级数学上册轴对称知识点总结

八年级数学上册轴对称知识点总结

--轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

如图2,∵CA=C B,直线m ⊥AB 于C,∴直线m 是线段AB 的垂直平分线。

(2)性质。

线段垂直平分线上的点与线段两端点的距离相等。

如图3,∵C A=CB,直线m ⊥AB 于C , 点P 是直线m 上的点。

∴PA=PB 。

(3)判定。

与线段两端点距离相等的点在线段的垂直平分线上。

如图3,∵PA =P B,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。

6、等腰三角形:(1)定义。

有两条边相等的三角形,叫做等腰三角形。

①相等的两条边叫做腰。

第三条边叫做底。

②两腰的夹角叫做顶角。

③腰与底的夹角叫做底角。

说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。

(2)性质。

①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。

②等边对等角。

如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。

③三线合一。

(3)判定。

①有两条边相等的三角形是等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称知识点
(一)轴对称和轴对称图形
1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.
2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)
3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系
区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.
联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线
(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).
(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.
(四)用坐标表示轴对称
1、点(x,y)关于x轴对称的点的坐标为(-x,y);
2、点(x,y)关于y轴对称的点的坐标为(x,-y);
3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

关于谁谁不变,关于原点都相反
(五)关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称
(七)点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);
点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);
(七)等腰三角形
1、等腰三角形性质:
性质1:等腰三角形的两个底角相等(简写成“等边对等角”)
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)(八)等边三角形
(九)定义:三条边都相等的三角形,叫等边三角形。

它是特殊的等腰三角形。

1、性质和判定:
(1)等边三角形的三个内角都相等,并且每一个角都等于60º。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60º的等腰三角形是等边三角形。

(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。

(九)其他结论
(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。

(.2.).三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。

...............................
作图题专练
1.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.
2..已知:....A .、.B .两点在直线.....l .的同侧,试分别画出符合条件的点...............M ...
(.1.)如图...,在..l .上求作一点.....M .,使得|.... AM ..-.BM .. |最小;....
作法:...
(.2.)如图,在.....l .上求作一点.....M .,使得|....AM ..-.BM ..|最大...
作法:...
(.3.)如图,在.....l .上求作一点.....M .,使得...AM ..+.BM ..最小....
(4)如果两点位于直线异侧,请你去解决上述问题
A C · ·D O B
变式练习....
1、如图,已知直线MN 与MN 同侧两点A 、B 求作:点P ,使点P 在MN 上,且∠APM=∠BPN
2..如图点....A .、.B .、.C .在直线...l .的同侧,在直线.......l .上,求作一点......P .,使得四边形......APBC ....的周长最小;......
3...如图已知线段......a .,点..A .、.B .在直线...l .的同侧,在直线.......l .上,求作两点......P .、.Q . (点..P .在点..Q .的左侧)且.....PQ ..=.a .,四边...形.APQB ....的周长最小.......
4.、.已知:如图点......M .在锐角∠....AOB ...的内部,在.....OA ..边上求作一点......P .,在..OB ..边上求作一点......Q .,使得Δ....PMQ ...的周长最....小;..
5.、.已知..:如图...3.-.14..,点..M .在锐角∠....AOB ...的内部,在.....OB ..边上求作一点......P .,使得点....P .到点..M .的距离与点.....P .到.OA ..边的距离之和最小..........
6、一条河两岸有A 、B 两地,要设计一条道路,并在河上垂直于河岸架一座桥,用来连接A 、B 两地,问路线怎样走,桥应架在什么地方,才能使从A 到B 所走的路线最短?。

相关文档
最新文档