物理重要二级结论

合集下载

高等考试物理常用的“二级结论”

高等考试物理常用的“二级结论”

高考物理常用的 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:T S S V V V V t 2221212+=+== 3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体:n 秒末速度(m/s ): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g = 7.相对运动:共同的分运动不产生相对位移。

[全]高中高考物理必考“二级结论”总结

[全]高中高考物理必考“二级结论”总结

[全]高中高考物理必考“二级结论”总结
一、力学
1. 平衡定律:物体在平面上平衡,则由一组互斥且合力为零的作用在物体身上。

2. 动量守恒定律:物体在受力过程中,它的动量总和保持不变(动量守恒定律)。

3. 能量守恒定律:物体在受力过程中,它的总能量总和保持不变(能量守恒定律)。

4. 运动定律:牛顿定律,重力作用时,物体受到的力与它的质量成正比,而且方向
和物体运动方向相反。

阻力守恒定律,只要恒定速度直线运动,则运动阻力与小量球的
质量} 运动量成正比,而且方向与小量球运动方向相同。

二、电学
1. 电荷守恒定律:任何系统中的电荷总和不变。

2. 欧拉定律:任何电路中,电位差的积分是电功的积分,而且绕线把开关改变电势
的变化,则欧拉定律的等号成立。

3. 高斯定律:当物体由完全不导体到完全导体时,电场强度在分隔处有跳变;当电
荷分布较为集中时,电场强度满足高斯定律。

三、热学
1. 热力学定律:能量守恒(热力学定律),任何物理系统的总的能量只是发生转换
不可消失。

2. 热放大定律:正温差扩大效应(热放大效应),表明热物质力学运动的正温差它
在高温处存在更强的力学运动速度。

3. 定压定容放热定律:恒定容狭放出的热量与容积有关,与压强无关。

4. 根-思定律:恒定压强放出的热量与压强有关,与容积无关。

高考物理超实用的18条二级结论,学会快速解题!

高考物理超实用的18条二级结论,学会快速解题!

18条超实用二级结论1. 匀变速直线运动的4个推论
2. 初速度为零的匀变速直线运动的6个比例关系
【活学巧用】
末速度为零的匀减速直线运动,可采用逆向思维法看成反方向的初速度为零、加速度等大的匀加速直线运动。

3. 0→v→0模型
4. 拉密定理
【临考必记】
如图所示,当θ1=θ2=θ3=120°时,则F1=F2=F3。

5. 等时圆模型
6. 内力公式秒解连接体的问题
【临考必记】
①两物体在光滑平面、光滑斜面、竖直方向上运动时均满足此公式;
②若接触面粗糙,两物体与接触面间的摩擦因数相同时也满足此公式。

7. 平抛运动速度的改变量
8. 平抛运动的2个推论
9. 开口法定性判断平抛运动的时间与速度大小
10. 竖直圆周运动的拉力差
11. 天体运动口诀
同一天体中心,“高轨、低速、大周期”。

12. “一动碰一静”弹性碰撞模型
13. 人船模型
【临考必记】类似人船模型
14. 口诀秒杀带电粒子在电场中的轨迹问题
15. 带电粒子在电场中偏转的2个推论
16. 闭合电路的动态分析口诀
17. 理想变压器中的2个“等效”
18. 楞次定律的3个推论。

高中物理重要二级结论总结

高中物理重要二级结论总结

高中物理重要二级结论总结1. 若三个力大小相等方向互成120°,则其合力为零。

2. 几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。

3. 在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等。

即2aT x =∆(可判断物体是否做匀变速直线运动)推广:2)(aT n m x x n m -=- 4. 在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。

即2/t V V =5. 对于初速度为零的匀加速直线运动(1)T 末、2T 末、3T 末、…的瞬时速度之比为:n v v v v n ::3:2:1::::321 =(2) T 内、2T 内、3T 内、…的位移之比为:2222321::3:2:1::::n x x x x n =(3)第一个T 内、第二个T 内、第三个T 内、…的位移之比为:(4)通过连续相等的位移所用的时间之比:()()()1::23:12:1::::321----=n n t t t t n 6. 物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。

7. 对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)8. 质量是惯性大小的唯一量度。

惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。

9. 做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等。

方向与加速度方向一致(即at V =∆)。

10. 做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。

11. 物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。

12. 做匀速圆周运动的的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。

有哪些高中物理的重要二级结论

有哪些高中物理的重要二级结论

有哪些高中物理的重要二级结论
想到哪说到哪
1.运动学想不明白就画v-t图,面积代表位移,斜率代表加速度
2.斜面小物块和静力学想不明白就画受力图,重力/支持力/摩擦力/拉力一个都不要少,画的时候问问自己。

如果物块匀速或静止,这几个力经过平移可以形成封闭图形;如果物体匀加速,这几个力通过平移首尾相连,起点指向终点就是ma的大小和方向
3.超重失重想不明白多坐几次电梯,感觉脚下一空时候是失重,感觉脚底被怼是超重
4.电磁场想不明白画轨迹图,画最边界最极端的条件就行,高考在这道题上一般不会让你列函数求极值的
5.选修3-5想不明白就把能量守恒和动量守恒写上,一般会给分。

再结合画v-t图和受力分析你就发现自己做出来了。

6.万有引力题想不明白就想开普勒三定律,离中心天体越近速度越快动能越大势能越小,轨道半长轴越大机械能越大势能越大运动周期越大。

双星是绕在两星之间的一个点转,设个r和R自己算。

7.电学实验直接选分压式,Ra*Rv>Rx^2电流表外接,反之内接。

8.交流电A=311有效值220v交流电,100πt频率50赫兹,每秒变换100次,升压降压U*I功率不变,q=n△φ/R这个注意一下。

9.电容题E=U/d C=Q/U C=ε*ε0*S/d E=σ/ε0这四个式子记住三个就可以,没有做不出来的题
10.电学题沿电场线电势降低,电场线越密库仑力越大加速度越大,切线代表加速度方向,法线连起来是等势面移动不做功。

11.多选题拿不准别选,但是要冲击清北复交的一定要拿得准。

太晚了想不出更多的了,想出来再补充吧。

看了结论一定要多做题多应用啊,不要把物理学成死记硬背的科目啊!。

高中物理常用二级结论

高中物理常用二级结论

高中物理常用二级结论
1.牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。

其中,F=ma,F为作用力,m为物体质量,a为加速度。

2.功与能:物体的功等于物体受到的力与位移的乘积。

能量可以转化,但总能量守恒。

3.万有引力定律:任何两个物体之间都存在引力,大小与物体质量成正比,与物体之间距离的平方成反比。

4.热力学第一定律:能量守恒,能量不能被创造或者消灭,只能从一种形式转化为另一种形式。

5.电流和电势差:电流是电荷在导体中的流动,电势差是电荷在电场中移动的能量变化。

6.磁感应强度和磁通量:磁感应强度是单位面积垂直于磁场方向的磁通量,磁通量是磁场穿过一个平面的总磁通量。

7.光的折射和反射:光线在光学介质之间传播时会发生折射,反射则是光线遇到光滑表面时的反弹现象。

8.波动理论:波是一种能量传递的形式,具有波长和频率的特性,可以是机械波或者电磁波。

- 1 -。

物理重要二级结论(全)

物理重要二级结论(全)

物理重要二级结论(全) LT3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。

则全程的平均速度: 前一半路程v 1,后一半路程v 2。

则全程的平均速度:5.自由落体6.竖直上抛运动同一位置 v 上=v 下 7.绳端物体速度分解8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0 ,确定了滑行时间t 大于t 0时,用asv t 22= 或S=v o t/2,求滑行距离;若t 小于t 0时221at t v s += 9.匀加速直线运动位移公式:S = A t + B t 2 式中202/tt v v v v +==-22202/t t v v v +=221v vv +=-21212v v v v v +=-ght 2=gH g v t t o 2===下上va=2B (m/s 2) V 0=A (m/s ) 10.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上 V 匀=V 匀减 V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max =同时同地出发两物体相遇:位移相等,时间相等。

A 与B 相距 △S ,A 追上B :S A =S B +△S ,相向运动相遇时:S A =S B +△S 。

11.小船过河:⑴ 当船速大于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /=②合速度垂直于河岸时,航程s 最短 s=d d 为河宽⑵当船速小于水速时 ①船头的方向垂直于水流的方向时,所用时间最短,船v d t /=②合速度不可能垂直于河1.沿粗糙水平面滑行的物体: a=μg2.沿光滑斜面下滑的物体: a=gsinα3.沿粗糙斜面下滑的物体 a =g(sinα-μcosα)45. 一起加速运动的物体系,若力是作用于1m 上,则1m 和2m 的相互作用力为212mmF m N +⋅=α增大, 当α=45°时沿角平分小球下落时小球下落时α6a =gtgα光滑,相对静止 弹力为零 相对静止 光滑,弹力为零8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大9.超重:a 方向竖直向上;(匀加速上升,匀减速下降) 失重:a 方向竖直向下;(匀减速上升,匀加速下降) 四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tg α方向水平,指向圆心B2飞车走壁3.竖直面内的圆周运动:1)速度gR52)离心轨道,小球在圆轨道过最高点要通过最高点,小球最小下滑高度为2.5R 。

高考物理常用的“二级结论”

高考物理常用的“二级结论”

高考物理常用的 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大小≥F 合≥F 大-F 小。

三个大小相等的共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动:时间等分时, S S aT n n -=-12 ,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体:n 秒末速度(): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 22m v h g= 7.相对运动:共同的分运动不产生相对位移。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合5.物体沿倾角为α的斜面匀速下滑时, μ= tan α6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内··位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末··速度比:V 1:V 2:V 3=1:2:3F已知方向 F 2的最小值 F 2的最小值F 2的最小值F 2③ 第一个T 内、第二个T 内、第三个T 内··的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处··速度比:V 1:V 2:V 3:·V n =② 经过1S 0时、2 S 0时、3 S 0时··时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0·时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

物理重要二级结论(全)

物理重要二级结论(全)

物理重要二级结论(全)一.力物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F大+F小≥F合≥F大-F小。

三个大小相等的力平衡,力之间的夹角为1200。

3.物体沿斜面匀速下滑,则μa=tg。

4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上。

6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理)。

7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。

二.直线运动:1.匀变速直线运动:平均速度:TSSVVVVt2221212时间等分时:SSaTnn-=-12,中间位置的速度:VVVS纸带处理求速度、加速度:TSSVt2212+=,212TSSa-=,(aSSnTn=--12。

2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比1:3:5:……等分位移:相等位移所用的时间之比。

3.竖直上抛运动的对称性:t上=t下,V上=-V下。

4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离。

5.“S=3t+2t2”:a=4m/s2,V0=3m/s。

6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等。

7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短。

船的合运动方向垂直河岸时,过河的位移最短。

8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解。

三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力。

失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。

高中物理重要二级结论(模板)

高中物理重要二级结论(模板)

物理重要二级结论一、静力学1.物体沿倾角为α的斜面匀速下滑时, μ= tanα2.轻质硬杆上的力未必沿杆,但用铰链连接的轻质硬杆上的力一定沿杆方向。

3.绳上的力一定沿着绳子指向绳子收缩的方向。

4.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

摩擦力方向一定与支持力(压力)垂直。

5.共点力平衡方法一:三角形图解法。

特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法二:相似三角形法。

特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) (1)时间等分(T ):① 1T、2T 、3T …位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末…速度比:V 1:V 2:V 3=1:2:3③ 第一个T 、第二个T 、第三个T …的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2(2)位移等分(S 0):① 1S 0处、2 S 0处、3 S 0处…速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 2.匀变速直线运动中的中间时刻的速度中间位置的速度 3.变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。

则全程的平均速度: 前一半路程v 1,后一半路程v 2。

高考物理必考的18条二级结论

高考物理必考的18条二级结论

高考物理 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12, 位移中点的即时速度V V V S212222=+, V V S t 22>纸带点痕求速度、加速度:T S S V t2212+= ,212T SS a -=,()a S S n T n =--1214.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体:n 秒末速度(m/s ): 10,20,30,40,506.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g=7.相对运动:共同的分运动不产生相对位移。

物理必背二级结论65条

物理必背二级结论65条

8.质量是惯性大小的唯一量度。

惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。

9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。

10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。

11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。

12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。

13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。

开普勒第三定律的内容是所有行星的半长轴的三次方跟公转周期的平方的比值都相等,即R3/ T2=k=GM/4π2。

14.地球质量为M,半径为R,万有引力常量为G,地球表面的重力加速度为g,则其间存在的一个常用的关系是。

(类比其他星球也适用)15.第一宇宙速度(近地卫星的环绕速度)的表达式v1=(GM/R)1/2=(gR)1/2,大小为7.9m/s,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。

随着卫星的高度h的增加,v减小,ω减小,a减小,T增加。

16.第二宇宙速度:v2=11.2km/s,这是使物体脱离地球引力束缚的最小发射速度。

17.第三宇宙速度:v3=16.7km/s,这是使物体脱离太阳引力束缚的最小发射速度。

18.对于太空中的双星,其轨道半径与自身的质量成反比,其环绕速度与自身的质量成反比。

19.做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。

20.滑动摩擦力,空气阻力等做的功等于力和路程的乘积。

21.静摩擦力做功的特点:(1)静摩擦力可以做正功,可以做负功也可以不做功。

高中物理二级结论汇总

高中物理二级结论汇总

高中物理二级结论汇总1. 质量守恒定律:在任何条件下,一个系统的质量总是保持不变的。

即在任何物理或化学现象中,物体的质量总是保持不变的。

3. 动量守恒定律:在任何条件下,一个系统的总动量总是保持不变的。

当一个物体受到某种力的作用,外力对其施加的动量大小等于物体自身产生的反向动量大小。

4. 弹性碰撞中动量守恒定律:在完全弹性碰撞中,两个物体的总动量在碰撞前后保持不变。

6. 牛顿第一定律:一个物体的状态不会改变,直到另一个物体对其施加了一个力。

7. 牛顿第二定律:一个物体受到的加速度与作用在它上面的力成正比,与物体的质量成反比。

8. 牛顿第三定律:对于每一个力的作用,总有一个相等并相反的力作用于不同的物体上。

即,每一件物品都会受到相等的反向力。

9. 引力定律:两个物体之间的引力与它们的质量和距离的平方成正比。

当两个物体的质量增加或距离减少时,它们之间的引力会增大。

10. 静电定律:物体之间的静电力与它们之间的电荷大小成正比,与它们之间的距离的平方成反比。

11. 磁力定律:磁场对物体施加的力与磁场的强度、电荷、速度和物体的方向有关。

当物体的方向与磁场方向垂直时,磁场力最大。

12. 焓变定律:焓变是一个系统能量变化的度量,等于系统内部能量与系统周围能量的差异。

13. 周期运动定律:当一个物体在引力或弹性力的作用下运动时,它的周期与其轨道形状和质量有关。

周期是指物体从一个位置再返回该位置所需的时间。

14. 波速公式:波速等于波长乘以频率。

15. 阻力公式:阻力与物体速度的平方成正比。

16. 物体受力平衡定律:如果一个物体处于力的平衡状态,那么它所受到的所有合力应该等于零。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

高中物理重要二级结论(全)1.力学原理:(1) 首先,运动定律,它指出了物体的外力关于物体的运动的总的反作用关系,既包括平衡态及非平衡态下物体的做功量,其中,动量定理、速率定理和能量定理是非常重要的原理;(2) 其次,万有引力定律,它指出了物体之间引力的规律,其中,万有引力定律由施特劳斯提出,随后被贝瑟尔用数学公式描述出来;(3) 最后,粒子的相对论,它指出了物体所产生的力是由粒子之间的相互作用来决定的,它为物理学提供了一种新的、深刻的思路。

2.物质质量与能量关系:(1) 物质质量与能量关系,它可以用泰勒-弗拉克定律来描述,即E=mc2,其中E表示能量,m表示物质的质量,c表示光速;(2) 此外,物质质量与能量关系还可以通过伦理考证电磁力学思想来解释,即物质能够从一种形式转换到另一种形式,物质的质量可以转换成能量,能量可以转化成物质;(3) 最后,物质与能量关系也可以从热力学角度理解,比如热能可以转化成动能,电能可以转换为化学能,而化学能又可以转换成电能,这就是典型的物质与能量的相互转换。

3.光的电磁理论:(1) 在光的电磁理论方面,先由Maxwell提出电磁场的旋转性质,即无穷小的电磁场可以相互展开,变换,并以一个正弦波的方式传播,这就是光的电磁理论;(2) 其次,光的电磁理论还包括光的真空中传播及物质间的传播,其中真空中传播通过电場、场强及波长等概念来描述,而物质间传播则包含反射、折射、衍射等性质;(3) 最后,光的传播可以经由干涉和衍射来描述,其中衍射是一种特殊的干涉效应,它的特征在于小的粒子可以产生明显的衍射现象。

4.电磁场原理:(1) 首先,山斯坦·佩尔定律,它指出了电场与磁场之间存在着对应关系,即当电场发生变化,就会对磁场产生影响,反之,当磁场发生变化,就会对电场产生影响;(2) 其次,电场电位定律,又称梅森·纳什现象,它指出了电位与电场之间存在着对应关系,即当电场发生变化时,电位也会发生变化;(3) 最后,电位及电场的相互作用,指的是在电位的剧烈变化处,极对对应的电场也会发生巨大的集中。

物理二级结论

物理二级结论

一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F(max)-F(min)≤F合≤F(max)+F(min)。

三个大小相等的共面共点力平衡,力之间的夹角为120°。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理)文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比5.物体沿斜面匀速下滑,则μ=tanα。

向上减速a=g(sinθ+μcosθ)向下加速a=g(sinθ-μcosθ)6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

12、绳上的张力一定沿着绳子指向绳子收缩的方向。

13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

图解法范围问题15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则二、运动学1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分:①1T内、2T内、3T内.位移比:S1:S2:S3....:Sn=1:4:9:....n2②1T末、2T末、3T末......速度比:V1:V2:V3=1:2:3③第一个T内、第二个T内、第三个T内···的位移之比:SⅠ:SⅡ:SⅢ:....:SN=1:3:5: ..:(2n-1)④ΔS=aT2Sn-S[n-k]= k aT2a=ΔS/T2 a =(Sn-S[n-k])/k T2位移等分:①1S0处、2S0处、3 S0处速度比:V1:V2:V3:...Vn=1:√2:√3:...:√n②经过1S0时、2S0时、3S0时...时间比:t1:t2:t3:...tn=1:√2:√3:...:√n③经过第一个1S0、第二个2 S0、第三个3 S0···时间比t1:t2:t3:...tn=1:√2-1:√3-√2:...:√n-√(n-1)3.匀变速直线运动中的平均速度v(t/2)=(v1+v2)/2=(S1+S2)/2T4.匀变速直线运动中的中间时刻的速度v(t/2)=(v1+v2)/2中间位置的速度5变速直线运动中的平均速度前一半时间v1,后一半时间v2。

物理二级结论

物理二级结论

物理二级结论一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共面共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: TS S V V V Vt 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12 , 位移中点的即时速度VV V S 212222=+, V V S t 22>纸带点痕求速度、加速度: TS S Vt 2212+= ,212TS S a -=,()aS S n Tn =--1214.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体: (g 取10m/s 2)n 秒末速度(m/s ): 10,20,30,40,50 n 秒末下落高度(m):5、20、45、80、125 第n 秒内下落高度(m):5、15、25、35、45 6.上抛运动:对称性:t t 下上=,v v =下上, 22m v h g=7.相对运动:共同的分运动不产生相对位移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熟记“二级结论”,在做填空题或选择题时,就可直接使用。

在做计算题时,虽必须一步步列方程,一般不能直接引用“二级结论”,但只要记得“二级结论”,就能预知结果,可以简化计算和提高思维起点,也是有用的。

细心的学生,只要做的题多了,并注意总结和整理,就能熟悉和记住某些“二级结论”,做到“心中有数”,提高做题的效率和准确度。

运用“二级结论”,谨防“张冠李戴”,因此要特别注意熟悉每个“二级结论”的推导过程,记清楚它的适用条件,避免由于错用而造成不应有的损失。

下面列出一些“二级结论”,供做题时参考,并在自己做题的实践中,注意补充和修正。

一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121FFFFF+≤≤-方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsinsinsin321FFF==4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T):① 1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32② 1T末、2T末、3T末······速度比:V1:V2:V3=1:2:3③ 第一个T内、第二个T内、第三个T内···的位移之比: SⅠ:SⅡ:SⅢ=1:3:5④ΔS=aT2 S n-S n-k= k aT2a=ΔS/T2 a =( S n-S n-k)/k T2位移等分(S0):① 1S0处、2 S0处、3 S0处···速度比:V1:V2:V3:···V n=② 经过1S0时、2 S0时、3 S0时···时间比:③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v1,后一半时间v2。

则全程的平均速度:前一半路程v1,后一半路程v2。

则全程的平均速度:5.自由落体6.竖直上抛运动同一位置v上=v下7.绳端物体速度分解:分解与绳有角度的速度,分解成沿着绳和垂直于绳的方向,沿绳方向速度相等。

8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t0,确定了滑行时间t大于t0时,用asvt22=或S=v o t/2,求滑行距离;若t小于t0时2021attvs+=9.匀加速直线运动位移公式:S = A t + B t2式中a=2B(m/s2) V0=A(m/s)10.追赶、相遇问题:匀减速追匀速:恰能追上或恰好追不上 V匀=V匀减 V0=0的匀加速追匀速:V匀=V匀加时,两物体的间距最大S max同时同地出发两物体相遇:位移相等,时间相等。

A与B相距△S,A追上B:S A=S B+△S,相向运动相遇时:S A=S B+△S。

11.小船过河:⑴ 当船速大于水速时①船头的方向垂直于水流的方向时,所用时间最短,船vdt/=②合速度垂直于河岸时,航程s最短 s=d d为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,船vdt/=)1(::)23(:)12(:1::::321----=nnttttn)::3:2:1nn::3:2:1TSSvvvv tt22212/+=+==-22/ttvvvv+==-2222/ttvvv+=221vvv+=-21212vvvvv+=-ght2=gHgvtt o2===下上②合速度不可能垂直于河岸,最短航程船水vvds⨯=三、运动和力1.沿粗糙水平面滑行的物体:a=μg 2.沿光滑斜面下滑的物体:a=gsinα3.沿粗糙斜面下滑的物体a=g(sinα-μcosα)4.沿如图光滑斜面下滑的物体:5.一起加速运动的物体系,若力是作用于1m上,则1m和2m的相互作用力为212mmFmN+⋅=与有无摩擦无关,平面,斜面,竖直方向都一样6.下面几种物理模型,在临界情况下,a=gtgα光滑,相对静止弹力为零相对静止光滑,弹力为零7.如图示物理模型,刚好脱离时。

弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析简谐振动至最高点在力F 作用下匀加速运动在力F8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大9.超重:a方向竖直向上;(匀加速上升,匀减速下降)失重:a方向竖直向下;(匀减速上升,匀加速下降)四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tgα方向水平,指向圆心2.飞机在水平面内做匀速圆周飞车走壁3.竖直面内的圆周运动:HR 2mαF1m2mαFm1α1m2mF1m2mαFg aFFaFFBB火车R、V、m1) 绳,内轨,水流星最高点最小速度gR ,最低点最小速度gR 5,上下两点拉压力之差6mg2)离心轨道,小球在圆轨道过最高点 v min= 要通过最高点,小球最小下滑高度为2.5R 。

3)竖直轨道圆运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg ,a =2g ,与绳长无关。

“杆”最高点v min =0,v 临 = ,v > v 临,杆对小球为拉力v = v 临,杆对小球的作用力为零v < v 临,杆对小球为支持力4)重力加速度, 某星球表面处(即距球心R ):g=GM/R 2距离该星球表面h 处(即距球心R+h 处) :22)('h R GMr GM g +==5)人造卫星:'422222mg ma r T m r m r v m r Mm G =====πω 推导卫星的线速度 ;卫星的运行周期 。

卫星由近地点到远地点,万有引力做负功。

第一宇宙速度 V Ⅰ= = = 地表附近的人造卫星:r = R = m ,V 运 = V Ⅰ ,T= =84.6分钟6)同步卫星 T=24小时,h=5.6R=36000km ,v = 3.1km/s 7)重要变换式:GM = GR 2(R 为地球半径)8)行星密度:ρ = 3 /GT2 式中T 为绕行星运转的卫星的周期,即可测。

三、机械能1.判断某力是否作功,做正功还是负功 ① F 与S 的夹角(恒力)② F 与V 的夹角(曲线运动的情况) ③ 能量变化(两个相联系的物体作曲线运动的情况)2.求功的六种方法① W = F S cosa (恒力) 定义式 ② W = P t (变力,恒力) ③ W = △E K (变力,恒力) ④ W = △E (除重力做功的变力,恒力) 功能原理 ⑤ 图象法 (变力,恒力) ⑥ 气体做功: W = P △V (P ——气体的压强;△V ——气体的体积变化) 3.恒力做功的大小与路面粗糙程度无关,与物体的运动状态无关。

4.摩擦生热:Q = f ·S 相对 。

Q 常不等于功的大小(功能关系) 动摩擦因数处处相同,克服摩擦力做功 W = µ mg S 四、静电场:1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心。

2.3.匀强电场中,等势线是相互平行等距离的直线,与电场线垂直。

4.电容器充电后,两极间的场强:SkQ E επ4=,与板间距离无关。

五、恒定电流1.串连电路:总电阻大于任一分电阻;R U ∝,2111R R UR U+=;R P ∝,2111R R R P P+⋅=2.并联电路:总电阻小于任一分电阻;R I /1∝;2121R R IR I +=;R P /1∝;2121R R R P P +⋅=3.和为定值的两个电阻,阻值相等时并联值最大。

4.估算原则:串联时,大为主;并联时,小为主。

5.路端电压:纯电阻时rR R Ir U +=-=εε,随外电阻的增大而增大。

6.并联电路中的一个电阻发生变化,电路有消长关系,某个电阻增大,它本身的电流小,与它并联的电阻上电流变大。

7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大。

8.画等效电路:始于一点,电流表等效短路;电压表,电容器等效电路;等势点合并。

9.R =r 时输出功率最大rP 4ε=。

gR gR61046⨯⋅gR R GM /s km /97⋅g R /2ππrGM v =GM r T 324π=10.21R R ≠,分别接同一电源:当221r R R =时,输出功率21P P =。

串联或并联接同一电源:并串=P P 。

11.纯电阻电路的电源效率:rR R +=η。

12.含电容器的电路中,电容器是断路,其电压值等于与它并联的电阻上的电压,稳定时,与它串联的电阻是虚设。

电路发生变化时,有充放电电流。

13.含电动机的电路中,电动机的输入功率UIP =入,发热功率r I P 2=热,输出机械功率r I UI P 2-=机六、直流电实验1.考虑电表内阻影响时,电压表是可读出电压值的电阻;电流表是可读出电流值的电阻。

2.电表选用测量值不许超过量程;测量值越接近满偏值(表针的偏转角度尽量大)误差越小,一般大于1/3满偏值的。

3.相同电流计改装后的电压表:V gR U ∝;并联测同一电压,量程大的指针摆角小。

电流表:A g R I /1∝;串联测同一电流,量程大的指针摆角小。

4.电压测量值偏大,给电压表串联一比电压表内阻小得多的电阻; 电流测量值偏大,给电流表并联一比电流表内阻大得多的电阻; 5.分压电路:一般选择电阻较小而额定电流较大的电阻1)若采用限流电路,电路中的最小电流仍超过用电器的额定电流时;2)当用电器电阻远大于滑动变阻器的全值电阻,且实验要求的电压变化范围大(或要求多组实验数据)时;3)电压,电流要求从“零”开始可连续变化时,分流电路:变阻器的阻值应与电路中其它电阻的阻值比较接近;分压和限流都可以用时,限流优先,能耗小。

相关文档
最新文档