经典控制理论——第五章2new资料
第五章5_2 Bode图 自动控制原理 浙江大学考研资料
5
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
Bode图(对数频率特性曲线): 对数频率特性曲线由对数幅频曲线和对数相频曲线组成 对数频率特性曲线的横坐标:按logω分度,单位为弧度/秒(rad/s) 对数幅频曲线的纵坐标:按LmG(jω)=20log|G(jω)|线性分度,单位是分贝 对数相频曲线的纵坐标:按Φ(ω)线性分度,单位为度
Lm j 20 log j 20 log
dB
Angle 90º jω
对数幅频曲线为一条斜线,其斜率为 6dB/octave 或者 20dB/decade. 相角恒等于 +90º.
-90º (jω)-1
ω
10
Bode plots (Logarithmic plots )
2 1 1 1 2 Lm 1 j 2 j Lm Lm n 1 jT1 1 jT2 n
1
(1+j (1 jωT1)-1 (1 (1+j jωT2)-1
1
Angle 1/T1 -90º -180º
17
1/T2 ω
2 1 1 1 2 Angle1 j 2 j Angle Angle n 1 jT1 1 jT2 n
Wintersweet
2
Bode plots (Logarithmic plots )
Bode图(对数坐标图)
对数坐标图的优点 1) 将乘积和除法的数学操作转化为加法和减法; 2) 传递函数的获取大多采用图表法,而不是分析法; 3) 半对数坐标扩展了低频段 首先运用直线近似的方法来获得系统的近似特性,然后修正直线, 提高精度. 对数坐标图 足够多的数据 极坐标图
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
现代控制理论习题解答(第五章)
第五章 状态反馈和状态观测器3-5-1 已知系统结构图如图题3-5-1图所示。
(1)写出系统状态空间表达式;(2)试设计一个状态反馈矩阵,将闭环极点特征值配置在j 53±-上。
)(t y题3-5-1图【解】:方法一:根据系统结构直接设状态变量如题3-5-1图所示,写状态空间表达式:[]x y u x x 10112101=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--= 23111=⎥⎦⎤⎢⎣⎡--=c c U rank U系统能控,可以设计状态反馈阵。
设状态反馈阵为][21k k K = 状态反馈控制规律为:Kx r u -= 求希望特征多项式:34625)3()(*22++=++=s s s s f求加入反馈后的系统特征多项式:)22()3()(1212k s k k s bK A sI s f ++-++=+-=依据极点配置的定义求反馈矩阵:]1316[131634)22(6)3(21112=⎩⎨⎧==⇒⎩⎨⎧=+=+-K k k k k k 方法二:[][][]1316)346(311110)(*10211=++⎥⎦⎤⎢⎣⎡--==--I A A A f U K c方法三:(若不考虑原受控对象的结构,仅从配置极点位置的角度出发)求系统传递函数写出能控标准型:2321)111()()(2++-=+-+=s s ss s s U s Y []xy u x x 10103210-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--= 求系统希望特征多项式:34625)3()(*22++=++=s s s s f求状态反馈矩阵K ~:[][][]33236234~21=--==k k K [][][][]5.05.031111010111=⎥⎦⎤⎢⎣⎡--==--Ab bP⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=105.05.011A P P P []1316~==P K K依据系统传递函数写出能控标准型ss s s s s s U s Y 2310)2)(1(10)()(23++=++= []x y u x x 0010100320100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=求系统希望特征多项式:464]1)1)[(2()(*232+++=+++=s s s s s s f求状态反馈矩阵:[][][]144342604321=---==k k k K 。
课件-现代控制理论-刘豹第三版-第5章
能控性与能观性的判别方法
能观性判别方法
能控性判别方法
表示系统是否可以通过输入控制实现任意状态转移。若系统完全能控,则可以通过设计合适的控制器实现任意状态轨迹的跟踪或镇定;若部分能控或不能控,则存在状态无法被有效控制的风险。
能控性的物理意义
表示系统状态是否可以通过输出完全反映出来。若系统完全能观,则可以通过观测输出信号来准确估计系统状态;若部分能观或不能观,则存在状态无法被准确观测的风险,进而影响控制性能的实现。
控制系统稳定性分析是控制理论的核心内容之一,对于确保控制系统的正常运行具有重要意义。
章节内容结构
稳定性概念及定义
介绍稳定性的基本概念和定义,包括Lyapunov稳定性和BIBO稳定性等。
线性系统稳定性判据
详细阐述线性系统稳定性的判据,如Routh-Hurwitz判据、Nyquist判据和Bode图等。
图解法
状态转移矩阵的计算方法
1
2
3
状态转移矩阵反映了系统在时间间隔内从初始状态到最终状态的动态变化过程。
描述系统状态的动态变化过程
若系统稳定,则状态转移矩阵将逐渐趋于零,表示系统状态将逐渐趋于稳定。
反映系统稳定性
状态转移矩阵是进行系统分析和设计的重要工具,可用于研究系统的稳定性、能控性、能观性等性质。
非线性系统稳定性分析
介绍非线性系统稳定性分析方法,如相平面法、Lyapunov直接法等。
熟练掌握线性系统稳定性的判据和分析方法,能够应用所学知识分析和设计线性控制系统。
了解非线性系统稳定性分析方法的基本原理和应用范围,能够运用所学知识分析和设计简单的非线性控制系统。
掌握稳定性的基本概念和定义,理解不同稳定性定义之间的联系与区别。
自动控制原理--第五章-频率特性法
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
现代控制理论基础_周军_第五章状态反馈与状态观测器
5.1状态反馈与极点配置一、状态反馈系统的动态方程以单输入-多输出受控对象动态方程为例:(5-1)将对象状态向量通过待设计的参数矩阵即状态反馈行矩阵,负反馈至系统的参考输入,于是存在(5-2)这时便构成了状态反馈系统,见图5-1。
图5-1 状态反馈系统结构图(5-3)(5-4)式中v为纯量,为维向量,为维矩阵,为维向量,为维行矩阵,为维向量,为维矩阵。
为闭环状态阵,为闭环特征多项式。
二、用状态反馈使闭环极点配置在任意位置上的充要条件是:受控对象能控证明若式(5-1)所示对象可控,定可通过变换化为能控标准形,有若在变换后的状态空间内引维状态反馈矩阵:(5-5)其中分别为由状态变量引出的反馈系数,则变换后的状态反馈系统动态方程为:(5-6)(5-7)式中(5-8)该式与仍为能控标准形,故引入状态反馈后,系统能控性不变。
特征方程为:(5-9)显见,任意选择阵的个元素,可使特征方程的个系数满足规定要求,能保证特征值(即闭环极点)任意配置。
将逆变换代入式(5-6),可求出原状态空间内的状态反馈系统状态方程:(5-10)与式(5-3)相比,式(5-10)所示对象应引入状态反馈阵为:(5-11)需指出,当受控对象可控时,若不具有能控标准形形式,并不必象如上证明那样去化为能控标准形,只要直接计算状态反馈系统闭环特征多项式,这时,其系数为的函数,与给定极点的特征多项式系数相比较,便可确定。
能控的多输入-多输出系统,经如上类似分析可知,实现闭环极点任意配置的状态反馈阵K为维。
若受控对象不稳定,只要有能控性,完全可由状态反馈配置极点使系统稳定。
状态变量受控情况下,引入状态反馈表示增加一条反馈通路,它能改变反馈所包围环节的传递特性,即通过改变局部回路的极点来改变闭环极点配置。
不能控状态变量与控制量无关,即使引入状态反馈,对闭环极点位置也不会产生任何影响,这是因为传递函数只与系统能控、能观测部分有关的缘故。
若不能控状态变量是稳定的状态变量,那么系统还是能稳定的,否则,系统不稳定。
机械工程控制基础(第5章_系统的稳定性)
(5.2.3)
武科大城市学院
机电学部
比较式(5.2.2)与式(5.2.3)可看出根与系数有如下的关系:
n an1 si an i 1
n a n2 si s j an i j
i 1, j 2
an3 an
i jk
s s s
i
n
j k
(5.2.4)
i 1, j 2 , k 3
n a0 n 1 si i 1 an
武科大城市学院
机电学部
从式(5.2.4)可知,要使全部特征根 s1 , s2 , , sn 均具有负实部,就必 须满足以下两个条件,即系统稳定的必要条件: (1)特征方程的各项系数 ai (i 0,1, 2,, n 1, n) 都不等于零,因为若有一 系数为零,则必出现实部为零的特征根或实部有正有负的特征根,才 能满足式(5.2.4)中各式。 (2)特征方程的各项系数 ai的符号都相同,这样才能满足式(5.2.4)中各式。 按习惯,一般取 ai 为正值,因此,上述两个条件可归结为系统稳定 的一个必要条件,即
E 来越小,系统最终趋于稳定; ( s )
若反馈的结果,加强了E(s)的作用(即正反馈),则使 Xo(s) 越来越 大,此时,此闭环系统是否稳定,则视 Xo( s ) 是收敛还是发散而定。
武科大城市学院
机电学部
第三,控制理论中所讨论的稳定性其实都是指自由振荡下的稳定性。
即讨论输入为零,系统仅存在有初始状态不为零时的稳定性,即
武科大城市学院
机电学部
5.2.2 系统稳定的充要条件
1. Routh表
(1)将系统的特征方程式(5.2.1)的系数按下列形式排成两行:
an
an1ห้องสมุดไป่ตู้
现代控制理论第五章
定理 5.3.2 设 x(k 1) Gx(k )
x Rn , G Rnn , G1
则系统在原点为渐近稳定的充分必要条件是方程
GT PG P Q,
Q 0
存在唯一正定对称解 P 0 如果 V x(k ) V x(k 1) V x(k ) xT Qx 沿任一解 的序列不恒等于零,则 Q 可取半正定的。
定理5.2.4 如果 V ( x, t ) 0 V ( x, t ) 0则原点不稳定
例5.2.2
已知系统
x1 x2 x1 ( x12 x2 2 ) x2 x1 x2 ( x12 x2 2 )
试用李雅普诺夫第二方法判断其稳定性。
解: 显然,原点 xe 0 是唯一平衡点, 取 V ( x) x12 x22 0 ,则
5.2.3 几点说明
1)对于一给定系统,李雅普诺夫函数不是唯一的。 2)对于非线性系统能给出在大范围内稳定性的信息。 3)关于稳定性的条件是充分的,而不是必要的。 4)若不能找到合适的李雅普诺夫函数就不能得出该
系统稳定性方面的任何结论。
5)李雅普诺夫函数只能判断其定义域内平衡状态的稳 定性。 6)如果系统的原点是稳定的或渐近稳定的,那么具有
定义5.1.8 不稳定: 对于某个实数
内始终存在状态
和
,在超球域
,使得从该状态开始的
受扰运动要突破超球域 定义5.1.9 正定函数:
1)
时, 则称
存在 2)
3)当
是正定的(正半定的)。
如果条件3)中不等式的符号反向,则称 是负定的(负半定的)。
例5.1.1
1)
2)
正定的
半正定的
3)
自动控制理论期末复习(知识点总结第四章-第五章)
Automatic Control Theory自动控制理论第四章 线性系统的根轨迹法根轨迹法是一种图解方法,它是经典控制理论中对系统进行分析和综合的基本方法之一。
由于根轨迹图直观地描述了系统特征方程的根(即系统的闭环极点)在s 平面上的分布,因此,用根轨迹法分析自动控制系统十分方便,特别是对于高阶系统和多回路系统,应用根轨迹法比用其他方法更为方便,因此在工程实践中获得了广泛应用。
1、根轨迹的基本概念闭环系统的稳定性取决于闭环系统的极点分布,其它性能取决于其零极点分布。
因此,可以用系统的零极点分布来间接研究控制系统的性能。
伊万思在1948年提出了一种在复平面上由开环零极点确定闭环零极点的图解方法——根轨迹法。
将开环系统的某一个参数(比如开环放大系数)的全部值与闭环特征根的关系表示在一张图上。
根轨迹定义开环系统传递函数的某一个参数从零变到无穷时,闭环系统特征方程的根在复平面上变化的轨迹。
研究根轨迹的目的:分析系统的各种性能(稳定性、动态和稳态性能) 相关术语:*01210121()()()()()()()()()()mim i nn jj s z b s z s z s z G s H s K a s p s p s p s p ==----==----∏∏❖ 开环零点:指系统开环传递函数中分子多项式方程的根 ❖ 开环极点:指系统开环传递函数中分母多项式方程的根 ❖ 根轨迹增益:K *为开环系统根轨迹增益❖ 闭环零点:指系统闭环传递函数中分子多项式方程的根 ❖闭环极点:指系统闭环传递函数中分母多项式方程的根1*11()()()()1()()()()nj j n mjij i G s s p G s s G s H s s p K s z ===-Φ==+-+-∏∏∏闭环零点由前向通道的零点和反馈通道的极点构成。
对于单位反馈系统,闭环零点就是开环零点。
闭环极点与开环零、极点以及根轨迹增益K*均有关。
控制工程基础第五章——校正
三 系统常用校正方法(2)
前馈校正 (复合控制)
对输入的
对扰动的
系统校正的基本思路
系统的设计问题通常归结为适当地设计串 联或反馈校正装置。究竟是选择串联校正还是 反馈校正,这取决于系统中信号的性质、系统 中各点功率的大小、可供采用的元件、设计者 的经验以及经济条件等等。
一般来说,串联校正可能比反馈校正简单, 但是串联校正常需要附加放大器和(或)提供隔离。 串联校正装置通常安装在前向通道中能量最低的地方。 反馈校正需要的元件数目比串联校正少,因为反馈校 正时,信号是从能量较高的点传向能量较低的点,不 需要附加放大器。
显然不满足要求。
令 20lgG(j0)0 或 G0(j0) 1 可求得ω0,再求得γ。
☆ 超前校正设计的伯德图
☆ 超前校正设计⑵
☆ 超前校正设计⑶
⒊确定超前校正装置的最大超前相位角
m4 52 75 23
⒋确定校正装置的传递函数
①确定参数α ②确定ωm
1 1 s sii n n m m1 1 s sii2 2n n 3 32.28
PID 传递 函数
G c(s)U E ((s s))K PK I1 sK D s
Gc(s)KP(1T1IsTDs)
KP——比例系数;TI——积分时间常数; TD——微分时间常数
二 PID控制器各环节的作用
比例环节 积分环节 微分环节
即时成比例地反映控制系统的偏差 信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。
为了充分利用超前装置的最大超前相位角,一般取校正后系统的
开环截止频率为 0 m 。故有 Lc(m)L(0 ' )0d B
于是可求得校正装置在ωm处的幅值为
2 lG 0 g c (jm ) 1 l0 g 1 l2 0 g .2 3 8 .5 d8 B最后得校正装置
经典控制理论——第五章2
1型系统 1型系统的开环频率特性有如下形式
K k ( j T i 1) G ( j )
i 1
m
j ( j T j 1)
j 1
n 1
对数幅频特性的低频部分如下图所示
这一特性的特点:
在低频段的渐进线斜率为-20dB/十倍频; 低频渐进线(或其延长线)与0分贝的 交点为ω k=Kk,由之可以确定系统的稳 态速度误差系数kv= Kk ; 低频渐进线(或其延长线)在ω =1时的 幅值为20lgKkdB。
m in
具体步骤: 1.开环传递函数典型环节分解; 2.确定一阶环节、二阶环节的交接频率,将各交 接频率标注在半对数坐标轴的 轴上; 3.绘制低频段渐近线特性,在 频段内, 开环系统幅频渐近线特性的斜率取决于 K , 因而直线斜率为 2 0 vd B / d ec 。 4.在 频段,系统幅频渐近线表现为分段折 线。每两个相邻交接频率之间为直线,在每个 交接频率点处,斜率发生变化,变化规律取决 于该交接频率对应的典型环节种类。
图5-34 例5-8的极坐标曲线
从图看出:当ω由-∞→+∞变化时, 当T
KT1T2
1
T2
1
时,G(jω) (ω从-∞→+∞)
曲线顺时针包围(-1,j0)点两圈,即N=-2, 而开环系统稳定,即P=0,所以闭环系统右 极点个数 Z=P-N=2 闭环系统不稳定,有两个闭环右极点。
当T 当
KT1T2
L ( c ) 0 或 A ( c ) 1
时的频率 c 称为穿越频率。穿越频率 c 是开环对数 相频特性的一个很重要的参量。
– 绘制开环系统对数相频特性时,可分环节绘出
自动控制理论第五章
kg K 2K s (0.5s 1) s ( s 2) s ( s 2)
k g 2K
开环有两个极点: p1= 0, p2=-2 开环没有零点。 闭环特征方程为: D(s) = s2 +2s + kg = 0 s 解得闭环特征根(亦即闭环极点) s1 1 1 k g ;2 1 1 k g 可见,当kg 变化,两个闭环极点也随之连续变化。 当kg 从0→∞变化时,直接描点作出两个闭环极点的变化轨迹
(1)当 kg = 0时,s1 = 0、s2 = -2,此时闭环极点 就是开环极点。 (2)当0<kg<1时,s1、s2均为负实数,且位于负 实轴的(-2,0) 一段上。 (3)当kg = 1时,s1 = s2 = -1,两个负实数闭环极 点重合在一起。 (4)当1<kg<∞时,s1,2 =-1± j k g 1 ,两个闭 环极点变为一对共轭复数极点。s1、s2的实部不随kg 变化,其位于过(-1,0)点且平行于虚袖的直线 上。 (5)当kg=∞时, s1 = -1+ j∞、s2 = -1-j∞, 此时s1、s2将趋于无限远处。
例:求上例中根轨迹上
s2 (0.5, j1)
点对应的kg 。
k 解 :g s2 p1 s2 p2 0.5 j 0 0.5 j 1 1.118 1.118 1.25 s2 p1 、 s2 p2 也可以用直尺测量向量的长度。
5.2 绘制根轨迹的基本规则
不符合相角条件, s1不在根轨迹上。
满足相角条件, s2在根轨迹上。
2. 用幅植条件确定kg的值 幅值条件:
n
kg
s p
j 1 m i 1
j
s zi
第五章稳定性理论
稳定性理论5.1 外部稳定性和内部稳定性运动稳定性分为基于I/O 描述的外部稳定性和基于状态空间描述的内部稳定性。
内容包括外部稳定性内部稳定性内部稳定性和外部稳定性关系(1)外部稳定性考虑以I/O 描述的线性因果系统,假定初始条件为零(保证系统输入输出描述的唯一性),外部稳定性定义如下:(t时刻输出仅取决于t时刻及之前的输入) 定义5.1 称一个因果系统为外部稳定,如果对任意有界输入u (t ),对应输出y (t )均有界,即102(),[,]()u t t t y t ββ∀≤<∞∈∞⇒≤<∞外部稳定也称为BIBO 稳定。
(有界输入-有界输出)β为有界常数。
1范数:向量各元素绝对值之和;2范数:向量各元素平方之和的1/2次方。
性质1: 非负性;齐次性;三角不等式。
定理5.1 对零初始条件线性时变系统,t 0时刻BIBO 稳定的充分必要条件是(设H(t,τ)为系统脉冲响应矩阵,hij(t,τ)一个元) 01212(,),,,,;,,,tij t h t d i q j pττβ≤<∞==∫L L 证明:先证SISO 情形。
充分性,已知脉冲响应函数绝对可积,证明系统BIBO 稳定。
由基于脉冲响应的输出关系式,有 ττβττττττd u d u t h d u t h t y tt t t t t ∫∫∫≤⋅≤=000)()(),()(),()(因此,对任意有界输入u (t )∞<≤1β)(t u∞<≤≤⇒∫10ββττβd u t y tt )()( 即系统BIBO 稳定。
再证必要性,已知系统BIBO 稳定,反设有t 1,使得∞=∫ττd t h t t 101),(构造有界输入(分段函数)⎪⎩⎪⎨⎧<−=>+==010*******),(,),(,),(,),(sgn )(ττττt h t h t h t h t u∞===⇒∫∫τττττd t h d u t h t y tt t t 1010111),()(),()(这与系统BIBO 稳定矛盾,必要性得证。
现代控制理论第五章
148第五章 线性定常系统的综合控制系统的综合任务是设计控制器,寻求改善系统性能的各种控制规律,,以保证系统的各项性能指标都得到满足。
§5-1线性反馈控制系统的基本结构及其特性 控制系统是由受控对象和反馈控制器两部分构成闭环系统。
现代控制理论采用状态反馈,状态反馈能提供更丰富的状态信息和可供选择的自由度,因而使用系统容易获得更为优异的性能。
一、状态反馈状态反馈是将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入。
如图所示,其表达式:Du CX y Bu AX X+=+= (5-1)149多输入多输出系统式中:nR X ∈,TR u ∈,mRy ∈,n n A ⨯,r n B ⨯,n m C ⨯,r m D ⨯若0=D ,则受控系统X AX Buy C X ∙⎧⎪=+⎨=⎪⎩简记为:)=(C B A ,,0∑状态反馈控制规律:u kX v =+ (5-3) 其中:v -1⨯r 维参考输入;k-n r ⨯维状态反馈系数或状态反馈增益阵。
把式(5-3)代入式(5-1)得到状态反馈闭环系统表达式()()()()X AX Bu AX B kX v AX BkX Bv A Bk X Bv y C X D u C X D kX v C X D kX D v C D k X D v∙=+=++=++=++=+=++=++=++ 若=D ,()X A Bk X Bv y CX ∙⎧⎪=++⎨=⎪⎩简记为:])[(C B Bk A k ,,+=∑闭环系统的传递函数矩阵BBk A sI C s W k 1)]([)(-+-=状态反馈阵k 的引入,并不增加系统的维数,通过k 的选择自由地改变闭环系统的特征值,从而改变系统获得所要求的性能。
二、输出反馈150输出反馈是采用输出矢量y 构成线性反馈律,如图所示,受控系统)=(D C B A ,,,0∑为:X AX Bu y C X D u∙=+=+ (5-7)=D 时为X AX Bu y C X∙=+=输出线性反馈控制律为: v Hy u += (5-9)式中:H —m r ⨯维输出反馈增益阵,对单输出系统H 为1⨯r 维列矢量。
第五章 稳定性理论
4.不稳定性
对于某个和任意个,不管有多小、有多
大,只要由S() 内的x0 出发的轨迹超出S()
以外,则xe不稳定
17
(a)稳定平衡状态及一条典型轨迹 (b)渐近稳定平衡状态及一条典型轨迹 (c)不稳定平衡状态及一条典型轨迹
在经典控制理论稳定的概念与李亚普诺夫意义下稳定不完全一
致。
经典控制理论 (线性定常系统)
李亚诺夫意义下
不稳定 (Re(s)>0)
不稳定
临界情况 (Re(s)=0)
稳定
稳定 (Re(s)<0) 渐近稳定
18
5.2.3 Lyapunov间接法
基本思路是:首先将非线性系统线性化,然后计算线性化方
程的特征值,最后根据特征值判定原非线性系统的稳定性。
与以前介绍的线性定常系统的方法类似。
线性及线性化系统稳定性的特征值判据:
为向量的2范数或欧几里德范数 15
且
x(t, x0 , t0 ) xe
t t0
球域S()
则称xe 是李氏意义下的稳定。
当与t0无关时,称为一致稳定
2.渐近稳定
1)是李氏意义下的稳定
2) lim t
x(t,
x0 , t0 )
xe
0
当与t0无关时,称为一致渐近稳定
球域S()被称为平衡状态xe=0的吸引域。
x x1 x2 xn T
P11 P12 P1n
P
P21
P22
P2
n
Pij Pji
那么称V(x)为二次型。
Pn1
Pn 2
Pnn
二次型V(x)的正定性可用赛尔维斯特准则判断。
二次型V(x)为正定的充要条件是矩阵P的所有主子行列式均为正值。
《自动控制理论》参考答案第五章
第五章一、单项选择题1-5:D 、B 、D 、A 、B 6-10:B 、D 、C 、A 、C 11-13:D 、A 、B二、分析计算题5-1解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-= 系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω)452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ )4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-4解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0ϕωπ()=-2幅频特性如图解5-4(a)。
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nyquist稳定判据的理论基础是复变函数 理论中的幅角定理,也称映射定理。
Nyquist稳定判据
当 系 统 的 开 环 传 递 函 数 G(s)H(s) 在 s 平 面 的 原点及虚轴上无极点时,Nyquist稳定判据可表 示 为 : 当 ω 从 -∞→+∞ 变 化 时 的 Nyquist 曲 线 G(jω)H(jω),逆时针包围(-1,j0)点的次数N, 等于系统G(s)H(s)位于右半s平面的极点数P,即 N=P,则闭环系统稳定,否则(N≠P)闭环系统不稳 定。闭环系统右极点数Z= P - N 。
这一特性的特点:
▪ 在低频段,斜率为0dB/十倍频; ▪ 低频段的幅值为20lgKk,由之
可以确定稳态位置误差系数。
1型系统 1型系统的开环频率特性有如下形式
m
Kk ( jTi 1)
G( j)
i 1 n1
j( jTj 1)
j 1
对数幅频特性的低频部分如下图所示
这一特性的特点:
▪ 在低频段的渐进线斜率为-20dB/十倍频; ▪ 低频渐进线(或其延长线)与0分贝的
记 min为最小交接频率,称 min的频率范围为
低频段。
具体步骤:
1.开环传递函数典型环节分解;
2.确定一阶环节、二阶环节的交接频率,将各交
接频率标注在半对数坐标轴的 轴上;
3.绘制低频段渐近线特性,在 min 频段内,
开环系统幅频渐近线特性的斜率取决于 K ,
因而直线斜率为 20vdB / dec。
开环对数频率特性曲线
(对数幅频渐近线特性曲线的绘制)
对于任意的开环传递函数,可按典型环节分
解,将组成系统的各典型环节分为三部分:
1.
K sv
或
K sv
K
0;
2.一阶环节,包括惯性环节、一阶微分环节以及对应 的非最小相位环节,交接频率为 1 。
T
3.二阶环节,包括振荡环节、二阶微分环节以及对应 的非最小相位环节,交接频率为 n 。
由Nyquist曲线G(jω)H(jω) (ω从0→+∞)判别 闭环系统稳定性的Nyquist判据为G(jω)H(jω)曲
20 lg K 20 lg 20 lg (T1)2 1 20 lg
() 0 (90 ) arctan(T1) arctan(T2)
(T2)2 1
– 绘制步骤:
确定交接频率 1,2 标在角频率ω轴上。
在本例中,1
1 T1
,2
1 T2
,
在ω=1处,量出幅值20lgK,其中K为系统开环 放大系数。(上图中的A点)
标相加,就可以得到系统的开环对数相频特性。
– 系统类型与开环对数频率特性
不同类型的系统,低频段的对数幅 频特性显著不同 。
0型系统
1型系统
2型系统
0型系统 0型系统的开环频率特性有如下形式
m
Kk ( jTi 1)
G( j)
i 1 n
( jTj 1)
j 1
对数幅频特性的低频部分如下图所示
通过A点作一条-20vdB/十倍频的直线,其中v为系统的无差阶数(对于本例,v=1),直到第一 个频交渐接进频线率的延1 长T11线(经图过中BA点点)。。如果 1 1,则低
以后每遇到一个交接频率,就改变一次渐进线斜率。 每当遇到 1 环节的交接频率时,
jT j 1
渐进线斜率增加-20dB/十倍频;
在交接频率的二倍频和1/2倍频处的修正值为±1dB。
对于二阶项,在交接频率处的修正值可由公式求出。
系统开环对数幅频特性L(ω)通过0分贝线,即
L(c ) 0 或 A(c ) 1
时的频率 c 称为穿越频率。穿越频率 c 是开环对数 相频特性的一个很重要的参量。
–绘制开环系统对数相频特性时,可分环节绘出 各分量的对数相频特性,然后将各分量的纵坐
解 系统的开环频率特性
G( j)
10(1 j0.01)
j(1 j0.1)(1 j0.2)
系统由5个典型环节组成:
转折频率 1 5,2 10,3 100 ;且 1时 L(ω)=20lgK=20dB 或 c K 10 L(ω)=0作对数幅
频特性渐近线。
过ω=1,L(ω)=20dB或ω=10,L(ω)=0dB作一
v
4.在 min频段,系统幅频渐近线表现为分段折 线。每两个相邻交接频率之间为直线,在每个 交接频率点处,斜率发生变化,变化规律取决 于该交接频率对应的典型环节种类。
Bode图的绘制
例
一系统开环传递函数为
G(s)
s(T1s
K 1)(T2 s
1) ,T1
T2
求得频率特性为
L() 20 lg A()
这一特性的特点:
▪ 低频渐进线的斜率为-40dB/十倍频; ▪ 低频渐进线(或其延长线)与0分贝
的交点为k Kk ,由之可以确定加 速度误差系数 ka= Kk ; ▪ 低频渐进线(或其延长线)在ω=1 时的幅值为20lgKkdB。
例 系统开环传递函数为 G(s) 10(0.01s 1) 试绘制系统的对数幅频特性。 s(0.1s 1)(0.2s 1)
条斜率为-20dB/dec直线作为低频段直线;
过第一个转折 频率1 5 后,特性 斜率按环节性质变 化,对数幅频特性 渐近线,如图所示。
在各转折频率
附近按误差曲线加 以修正,得对数幅 频特性的精确曲线 ,如图虚线所示。
对数频率特性
5-4 频率域的稳定判据
本节介绍另一种重要且实用的方法——乃 奎斯特(Nyquist)稳定判据,是由H. Nyquist于 1932年提出的 。
交点为ωk=Kk,由之可以确定系统的稳 态速度误差系数kv= Kk ; ▪ 低频渐进线(或其延长线)在ω=1时的 幅值为20lgKkdB。
2型系统 2型系统的开环频率特性有如下形式
m
Kk ( jTi 1)
G( j)
i 1 n2
( j)2 ( jTj 1)
j 1
对数幅频特性的低频部分如下图所示
每当遇到 ( jTi 1) 环节的交接频率时, 斜率增加+20dB/十倍频;
每当遇到
( j)2
2 n
2n
j
2 n
环节的交接频率时,
斜率增加-40dB/十倍频。
– 绘出用渐进线表示的对数幅频特性以后,如果需要, 可以进行修正。通常只需在交接频率处以及交接频率 的二倍频和1/2倍频处的幅值就可以了。 对于一阶项,在交接频率处的修正值为±3dB;