代数式单元测试

合集下载

代数式单元测试卷(含答案解析)

 代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.4.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

七年级上册数学第三章《代数式》单元测试(含答案)

七年级上册数学第三章《代数式》单元测试(含答案)

七上第三章《代数式》单元测试班级:___________姓名:___________得分:___________ 一、选择题1.有下列各式:x−y3,−15a2b2,1y,1π,√x.其中单项式有()A. 1个B. 2个C. 3个D. 4个2.已知a,b为自然数,则多项式12x a−y b+2a+b的次数应当是()A. aB. bC. a+bD. a,b中较大的数3.某校七年级1班有学生a人,其中女生人数比男生人数的45多−(−2)人,则女生的人数为().A. 4a+159B. 4a−159C. 5a−159D. 5a+1594.若代数式x2+ax+9y−(bx2−x+9y+3)的值恒为定值,则−a+b的值为()A. 0B. −1C. −2D. 25.已知代数式x+2y+1的值是3,则代数式−2x−4y+2的值是()A. −2B. −4C. −6D. 不能确定6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=ax3+bx+1,当x=1时,f(1)=6,那么f(−1)等于()A. 0B. −3C. −4D. −57.若(a+b)2017=−1,a−b=1,则a2017+b2017的值是()A. −1B. 0C. 1D. 28.边长为a的正方形,将边长减少b以后得到一个较小的正方形,所得较小正方形的面积比原来正方形的面积减少了().A. b2B. –b2+2abC. 2abD. a2–b29.有这样一道题,“当x=1213,y=−0.78时,求多项式7x3−6x3y+3x2y+3x3+6x3y−3x2y−10x3的值”.同学甲计算时用x=−1213,y=0.78代入,同学乙计算时用x=1213,y=0.78代入,结果两人的计算结果都正确,则原因是()A. 这个代数式的值只跟x,y的绝对值大小有关与符号无关B. 代数式化简结果只含有x,y的偶次项的原因C. 代数式化简结果x,y中其中一项系数为零,还有一项刚好与符号无关D. 代数式化简结果为零,与x,y的大小均无关系10.如图,若|a+1|=|b+1|,|1−c|=|1−d|,则a+b+c+d的值为()A. 0B. 2C. −2D. −1二、填空题11.一艘轮船沿江逆流航行的速度是28km/ℎ,江水的流速是2km/ℎ,则该轮船沿江顺流航行的速度是________.12.已知a2−2b−1=0,则多项式4b−2a2+5的值等于 ___ .13.一组按照规律排列的式子:x,x34,x59,x716,x925,⋯,其中第8个式子是_________.14.一个多项式与m2+m−2的和是m2−2m.这个多项式是______.15.一个两位数的个位数字为a,十位数字为b,这个两位数可表示为__.16.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为________。

代数式单元测试卷(含答案)

代数式单元测试卷(含答案)

代数式单元测试卷(含答案)第三章代数式综合测试卷一、选择题1.2014年我国启动“家电下乡”工程,国家对购买家电补贴13%。

若某种品牌彩电每台售价a元,则购买时国家需要补贴( B )。

A。

XXXB。

13%a元C。

(1-13%)a元D。

(1+13%)a元2.代数式2(y-2)的正确含义是 ( C )。

A。

2乘y减2B。

2与y的积减去2C。

y与2的差的2倍D。

y的2倍减去23.下列代数式中,单项式共有 ( D )。

312322,x+y,x+y,-1,abcx2A。

2个B。

3个C。

4个D。

5个4.下列各组代数式中,是同类项的是 ( A )。

1121A。

5xy与xyB。

-5xy与XXXC。

5ax与XXXD。

8与x5.下列式子合并同类项正确的是 ( C )。

22A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=0D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有( C )。

A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是 ( B )。

A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3 cm,高为2 cm,则它的体积为( B )。

2222A。

97πcmB。

18πcmC。

3πcmD。

18πcm9.下面选项中符合代数式书写要求的是 ( D )。

a2b12A。

2cbaB。

ay·3C。

D。

a×b+c4310.下列去括号错误的共有 ( B )。

①a+(b+c)=ab+c②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c④a-[-(-a+b)]=a-a-bA。

1个B。

2个C。

3个D。

4个11.a、b互为倒数,x、y互为相反数,且y≠,则(a+b)(x+y)-ab-ax的值是 ( A )。

A。

B。

1C。

-1D。

不确定12.随着计算机技术的迅速发展,电脑价格不断降低。

某品牌电脑按原价降低m元后,又降价20%,现售价为n元,那么该电脑的原价为 ( D )。

第四单元《代数式》单元测试卷(较易)(含解析)

第四单元《代数式》单元测试卷(较易)(含解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷 考试范围:第四章;考试时间:120分钟;总分:120分 第I 卷(选择题) 一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14 C. 73x 2 D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72分。

代数式单元测试卷(初中数学)附答案

代数式单元测试卷(初中数学)附答案

代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。

七年级上册数学 第三章 代数式 单元测试卷

七年级上册数学   第三章   代数式   单元测试卷

七年级上册数学第三章代数式单元测试卷一.选择题1.下列代数式符合规范书写要求的是()A.-1x B.116xy C.0.8÷x D.−72a2.“m与n差的3倍”用代数式可以表示成()A.3m−n B.m−3n C.3(n−m)D.3(m−n)3.若a+3b−2=0,则代数式1+2a+6b的值是()A.5B.4C.3D.24.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()元.A.100a+50b B.100a−50b C.50a−100b D.50a+100b5.一个两位数,十位上的数为a,个位上的数为b,若把这个两位数的十位上的数和个位上的数交换位置,计算所得的数和原数的和,用a,b可以表示为()A.11a+11b B.11ab C.10a+10b D.10ab6.已知a1=3,a2=11−a1,a3=11−a2,a4=11−a3,⋅⋅⋅,依此类推,则a2024等于()A.−12B.12C.23D.33,则输出的数为()A.−16B.92C.−92D.1168.如果a=2,b2=9,且a<b,那么a−b的值为()A.1或5B.1或−5C.−1或−5D.−1或5二.填空题9.用已知3m2−2m=1,则代数式9m2−6m−5的值是.10.代数式表示“x的2倍与y的差”为.11.某种商品原价每件a元,现打6折出售,这时的售价是元.12.已知a2=4,|b|=5,ab>0,那么a+b=.13.2023长春马拉松于5月21日在南岭体场鸣枪开跑,某同学参加了7.5公里健康跑项目.他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)三.计算题14.当a=6,b=-2时,求下列代数式的值.(1)a2+2ab+b2(2)2ab四.解答题15.按如图所示方式摆放桌子和椅子,照这样的方式继续排列桌子,摆4张桌子可坐多少人?摆n张桌子呢?摆100张桌子呢?16.已知a和b互为相反数,c与d互为倒数,m的绝对值为2023,求代数式|a+b|m−cd−m的值.17.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的药品让我们卖,可卖得3500元”零售部经理对批发部经理说:“如果把你们分到的药品让我们卖,可卖得7500元”若假设零售部分到的药品是a箱,则:(1)该药品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批药品一共能卖多少元?。

七年级数学上册第三章 代数式 单元测试卷(人教版 2024年秋)

七年级数学上册第三章 代数式  单元测试卷(人教版 2024年秋)

七年级数学上册第三章代数式单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A.b×12B.4÷(a+b)C.225xD.3n 2.[母题教材P71例2]用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A.a与b的差的12B.a与b的一半的积C.a与b的12的差D.a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/-7元/-7的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2]下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为()A.a元B.0.918a元C.0.972a元D.0.96a元7.[2023·雅安]若m2+2m-1=0,则2m2+4m-3的值是()A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为()A.ab-π16b2B.ab-π8b2C.ab-π4b2D.ab-π2b29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a1,a2,a3,…,a n满足如下关系:a2=1+11-1,a3=1+21-2,a4=1+31-3,…,a n+1=1+1-,若a1=2,则a2025的值是()A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n个图形中共有棋子()A.2n枚B.(n2+1)枚C.n(n-1)枚D.n(n+1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是.(填序号)①2x-1;②a=1;③S=πR2;④π;⑤72m;⑥12>13. 12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m+n”可以赋予其实际意义:一个篮球的价格是m元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m+n)元,请你给式子“2a”赋予一个实际意义:.13.[情境题生活应用]房间面积一定时,每块砖的面积和铺砖的块数(填“满足”或“不满足”)反比例关系.14.把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.[2024·南京期末]如果|m|=2,那么代数式1-m+2m2的值为.16.将长为30cm的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2cm.(1)3张白纸黏合后的总长度为cm;(2)x张白纸黏合后的总长度为cm.(用含x的代数式表示)三、解答题(共72分)17.(6分)用代数式表示:(1)m的3倍与n的一半的和;(2)比a与b的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求+2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x >y)的长方形铁皮的四个角上,分别截去半径都为2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1.D 2.C 3.A4.C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2.5.C6.C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7.A 【点拨】因为m 2+2m -1=0,所以m 2+2m =1.所以2m 2+4m =2.所以2m 2+4m -3=2-3=-1.8.B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×=ab -π8b 2.9.D 【点拨】因为a 1=2,所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现.因为2025÷4=506……1,所以a 2025=a 1=2.10.D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子.二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1000m+n15.7或11【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,+2+cd-m=032+1-3=-2,当m=-3时,+2+cd-m=0(−3)2+1-(-3)=4.综上,+2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80km.20.【解】(1)水池的容积是500+20×35=1200(升).(2)依题意得TQ=1200或T=1200,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-34×82=48.答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。

《代数式》单元测试

《代数式》单元测试

第2章 代数式 单元测试姓名: 班次:一、选择题(30分)1.下列说法正确的是( ) A .x 的指数是0B .x 的系数是0C .x -的指数是1-D .x -的系数是1-2.当3a =,1b =时,代数式22a b-的值是( ) A .2B .0C .3D .523.下面的式子中正确的是( ) A .22321a a -=B .527a b ab +=C .22322a a a -=D .22256xy xy xy -=-4.a b c -+的相反数是( ) A .a b c -+B .b a c -+C .c a b -+D .b a c --5.代数式9616a-的值一定不能是( ) A .6B .0C . 8D .246.一个有理数的相反数与自身绝对值的和( ) A .可能是负数B .必为正数C .必为非负数D .必为07.下列运算中,结果为负值的是( ) A .(5)(2)-⨯-B .0(6)(8)⨯-⨯-C .6(20)-+-D .(6)(20)---8.当n 为正整数时,212(1)(1)n n+---的值是( )A .0B .2C .2-D .不能确定9.若k 为有理数,则|k |-k 一定是( ) A .0B .负数C .正数D .非负数10.已知:a <0, b >0,且|a |>|b |, 则|b +1|-|a -b |等于( ) A .2b -a +1B .1+aC .a -1D .-1-a二、填空题 (30分)1.若4x y +=,a b ,互为倒数,则1()52x y ab ++的值是 .2.若2a =,20b =,200c =,则()()()a b c a b c b a c +++-++-+= .3.一个长方形的一边为34a b +,另一边为a b +,那么这个长方形的周长为 .4.去括号:3264(5)x x x ⎡⎤---+=⎣⎦ .5.若-7x m +2y 与-3x 3y n 可做化简,则m = , n = .6.一个长方体的箱子放在地面上且紧靠墙角,它的长、宽、高分别是a b c ,,,则这个箱子露在外面的面积是 .(友情提示:先想象一下箱子的放置情景吧!) 7.当242a ba b -=+时,则代数式3(2)3(2)4(2)2a b a b a b a b-+++-的值是 . 8.一个学生由于粗心,在计算35a -的值时,误将“-”看成“+”,结果得63,则35a -的值应为 .9.y 与10的和的平方,用代数式表示为 . 10.当a =-2时,-a 2-2a +1=三、计算题(40分) 1.化简:(10分)(1)5(43)(3)m n m m n +---+;(2)222(25)(32)2(41)a a a -+-----.2.求2120.752x x -+与2103x x --+的差.(6分)3.一种蔬菜x 千克,不加工直接出售每千克可卖y 元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x 千克这种蔬菜加工后可卖多少钱;(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?(10分)4.已知321A a a =-+,3342B a a =--+,计算当1a =-时,3A B -的值.(7分)5.已知2a =-,3b =-,1c =,求代数式222232()(2)a b a b a c abc a b abc -----的值.(7分)。

初中数学代数式的运算单元测试

初中数学代数式的运算单元测试

初中数学代数式的运算单元测试一、选择题1. 下列运算式中,计算结果为6的是()A. 3 × 2 + 1B. 4 × 3 - 2C. 5 × 2 + 1D. 6 × 3 ÷ 22. 若x = -2,则下列运算结果为正数的是()A. x^2 + 3x - 2B. x^2 - 3x - 2C. x^2 + 3x + 2D. x^2 - 3x + 23. 已知a = 3,b = -4,c = 7,则a(b - c)的结果为()A. 33B. -33C. 19D. -194. 单项式2x^2 - 3xy - y^2 + xz简化后的结果是()A. 2x^2 - 3xy - y^2 + xzB. 2x^2 - 3xy - y^2 - xzC. 2x^2 + 3xy - y^2 + xzD. 2x^2 - 3xy + y^2 + xz5. 若(x - 2)(x + 1) = 0,则x的值为()A. -1和2B. 1和-2C. 2和-1D. 1和2二、填空题1. 12xy ÷ 6xy的结果为__________。

2. (3a^2 - 4ab + 2b^2) - (a^2 - 2ab - b^2)的结果为__________。

3. 若x = -2,则x^3 - 3x^2 + 2x的结果为__________。

4. 若(x + 2)(x - 3) = 0,则x的值为__________。

5. 2(3x + 4) - (5 - 2x)的结果为__________。

三、解答题1. 计算并化简:(3x^2 - 2xy + y^2) + (4xy + 5y^2 - x^2)。

2. 若(a - 3)(a + 2) = 0,求a的值。

3. 将4x(x - 3) - 2(x^2 - 2x)化简并写成一般式。

4. 若x = 2,计算并求出下列表达式的值:2x^2 - 3(2 - x) + 4(x^2 + 1)。

人教版数学七年级上册 第三章 代数式 单元测试

人教版数学七年级上册 第三章 代数式 单元测试

人教版数学七年级上册第三章代数式单元测试一、单选题1.如图是一个简单的运算程序,如果输入的x值为﹣2,则输出的结果为()A.6B.﹣6C.14D.﹣142.下列说法中,正确的是()A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a是负数D.0的相反数是它本身3.已知x,y满足方程组,则的值为()A.B.0C.1D.54.在中,代数式有几个()A.3个B.4个C.5个D.6个5.若,则()A.B.C.3D.6.已知,与,都是方程的解,则和的值分别为()A.,B.,C.,D.,7.若时,则代数式的值为()A.17B.11C.D.108.若代数式y2-2y+1的值是5,则代数式2y2-4y-5的值是()A.-3B.25C.-25D.39.将正方形①,正方形②,长方形③,长方形④按如图所示放入长方形ABCD中(相邻的长方形,正方形之间既无重叠,又无空隙),且BE=DP.若已知长方形ABCD的周长,则不能确定周长的图形是()A.正方形①B.正方形②C.长方形③D.长方形④10.如图,正方形OABC的顶点A,C在坐标轴上,将正方形绕点O第1次逆时针旋转45°得到正方形,依此方式,连续旋转至第2023次得到正方形.若点A的坐标为,则点的坐标为()A.B.C.D.二、填空题11.如图,这是一个简单的数值运算程序,当输入的值为3时,输出的结果为.12.若有理数满足,则的值为.13.已知,则的值是.14.若,则的值为.15.若,,则.16.已知:,,代数式.17.若,则=.18.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:;(2)直接写出下列各式的计算结果:;(3)探究并计算:.三、解答题19.如图,一个花坛由两个半圆和一个长方形组成,半圆的半径为,长方形的长为(1)求花坛的面积S;(2)当,时,计算花坛的面积.(取3)20.已知整式.(1)当,求整式的值;(2)若整式比整式大,求整式.21.昨天,小明把老师布置的作业题忘记了,只记得式子是.小军告诉小明,已知是最大的负整数,互为相反数,负数的绝对值是2,请你帮小明解答下列问题.求的值.22.已知x=1,求代数式3x+2的值.23.如图,某小区有一块长为米,宽为米的长方形地块,物业公司计划在小区内修一条平行四边形小路,小路的底边宽为米,将阴影部分进行绿化.(1)用含有、的式子表示绿化的总面积;(2)若,,求出此时绿化的总面积.24.如果互为相反数,互为倒数,没有倒数,的绝对值等于2,求代数式的值.25.水果商贩小王到水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.小王购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)小王有甲、乙两家店铺,每售出一箱草莓和苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店.由于他口碑良好,两家店都很快卖完了这批水果.①若小王在甲店获利600元,则他在乙店获利多少元?②若小王希望获得总利润为1000元,则__▲_.(直接写出答案)答案解析部分1.【答案】C2.【答案】D【解析】【解答】解:A、因为没有最小的有理数,所以A选项错误;B、因为0的绝对值是0,不是正数,所以B选项错误;C、因为当a为负数时,-a是正数,所以C选项错误;D、因为0的相反数就是0,所以D选项正确.故答案为:D.【分析】由没有最小的有理数;0的绝对值是0;当a为负数时,-a是正数;0的相反数就是0,逐个判断即可得到说法正确的选项.3.【答案】D4.【答案】C【解析】【解答】解:属于代数式的有:1,,共5个故答案为:C.【分析】用基本的运算符号(加、减、乘、除、乘方、开方、括号等)把数、表示数的字母连结而成的式子就是代数式,单独的一个数或字母也是代数式,从而即可一一判断得出答案.5.【答案】D6.【答案】D【解析】【解答】解:∵,与,都是方程的解,∴代入得:,解得:,,故答案为:D.【分析】将,与,分别代入方程中,可得关于k、b 的方程组,解之即可.7.【答案】A【解析】【解答】因为3-2x+10y=3+2(5y-x),又5y-x=7,所以3-2x+10y=3+2×7=17.故答案为:A.【分析】把代数式3-2x+10y变形为3+2(5y-x)后,再整体代入求解.8.【答案】D【解析】【解答】解:∵y2-2y+1=5,∴y2-2y=4,∴原式=2(y2-2y)-5=2×4-5=8-5=3.故答案为:D.【分析】由题意可求y2-2y=4,将原式变形为2(y2-2y)-5,然后代入计算即可.9.【答案】B【解析】【解答】解:设长方形ABCD的周长为C,AE=x,DP=y,则C=2(AD+AB)=2[(AE+BE)+(AG+GD)]=2[(AE+DP)+(AE+PQ)=2[(AE+DP)+(AE+AE-DP)]=2[(x+y)+(x+x-y)]=6x.所以.正方形①的周长=4AE=,故能确定周长;长方形③的周长=2(GD+DP)=2(PQ+PD)=2(AE-DP+DP)=2AE=,故能确定周长;长方形④的周长=2(BC+BE)=2(AE+AE-DP+DP)=4AE=,故能确定周长.故A、C、D均不符合.故答案为:B.【分析】分别计算四个图形的周长,看是否能用长方形ABCD的周长表示,找出不能的即可. 10.【答案】C【解析】【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴点B的坐标为(1,1),连接OB,如图所示:由勾股定理可得:OB=,由旋转的性质可得:OB=OB1=OB2=OB3=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=45°,∴B1(0,),B2(-1,1),B3(,0),B4(-1,-1),B5(0,),B6(1,-1),B7(,0),……,∴点B的坐标是按8次一循环的规律进行,∵2023÷8=252……7,∴点的坐标为,故答案为:C.【分析】先求出点B的坐标,连接OB,再求出OB=OB1=OB2=OB3=,再利用旋转的性质求出B1(0,),B2(-1,1),B3(,0),B4(-1,-1),B5(0,),B6(1,-1),B7(,0),……,点B的坐标是按8次一循环的规律进行,再结合2023÷8=252……7,求出点的坐标为即可.11.【答案】34112.【答案】202813.【答案】14.【答案】15.【答案】1【解析】【解答】∵abc<0,∴a、b、c有1个负数或3个负数.∵a+b+c=0,∴a、b、c只有1个负数,不妨设a为负数,∴b+c=﹣a,a+c=﹣b,a+b=﹣c,∴++=﹣1+1+1=1.故答案为1.【分析】先求出a、b、c有1个负数或3个负数,再求出b+c=﹣a,a+c=﹣b,a+b=﹣c,最后计算求解即可。

《第3章 代数式》单元测试及答案

《第3章 代数式》单元测试及答案

《第3章代数式》单元测试一、填空题(共8小题,每小题3分,满分24分)1.商店运来一批苹果,共8箱,每箱n个,则共有个苹果.2.去年某公司的利润为a万元,今年增长了x%,今年的利润为万元.3.铅笔每支x元,钢笔每支y元,小明买了a支铅笔和若干支钢笔,共用去了23元,则钢笔买了支.2x³y4.单项式- 2x³y3的系数是,次数是.5.多项式3x3-2x3y-4y2+x-y+7是次项式,次数最高的项是.6.计算:(1)-a-a-2a= ;(2)-2a2b2-3b2a2=7.当a=4,b=12时,代数式a2- ba的值是.8.一个两位数,十位上的数字是2,个位上的数字是x,这个两位数是.二、选择题(共10小题,每小题3分,满分30分)9.下列语句正确的是()A.0是代数式B.S=2πR是一个代数式C.单独的一个数12不是代数式D.单独一个字母a不是代数式10.有一个两位数,十位数字为a,个位数字为b,若将十位数字和个位数字调换,那么新的两位数可表示为()A.ba B.10b+b C.10b+a D.10a+b 11.x是最大的负整数,多项式x n+1+x n的值为(其中n为自然数)()A.-2 B.2 C.0 D.不能确定12.某学校食堂有煤m吨,计划每天用煤n吨,实际每天节约a吨,节约后可多用的天数为()n+a m+a n-aA.mn+a- mn B.mn-mm+a C.mn-a-mn D.mn-mn-a13.已知代数式ax+bx合并后的结果是零,则下列说法正确的是()A.a=b=0 B.a=b=x=0 C.a+b=0 D.a-b=014.代数式a2+b2的值()A.大于或等于0 B.等于0C.大于0 D.有可能小于015.下列计算正确的是()A.5mn-5nm=0 B.3x2-x2=2 C.2a+2b=4ab D.a+a=a2 16.把2(a+b)-5(b+a)+a+b,合并同类项等于()A.a-b B.-(a+b)C.-2(a+b)D.-a+b 17.某同学自己装订笔记本,第一本用了a张纸,第二本用的纸张数是第一本的78,两本共用了()张纸.A.a+78a B.a - 18a C.a+18a D.a+7818.已知x2+2xy=3,y2=2,则代数式2x2+4xy+y2的值为()A.8 B.9 C.11 D.12三、解答题(共7小题,满分46分)19.计算:(2x2-3xy+6)-2(3y2x-xy-3)20.先化简,再求值:-5+x2-5x-x2+3x+4,其中x=-1221.请写出一个含x的代数式,要求:无论x取什么有理数,代数式的值总是非负数.22.先列出式子,再求结果:一个代数式加上5x2+4x-1得6x-8x2+2,求这个代数式.23.如图,用代数式表示阴影部分的面积.24.某物体运动的速度与时间的关系如下表:时间(秒)t 1 2 3 4 5 …速度(米/秒)0.2+0.5 0.4+0.5 0.6+0.5 0.8+0.5 1+0.5 …y(1)请你用含t的代数式来表示该物体运动速度y;(2)当该物体运动的时间为20秒时,此时物体的速度是多少?25.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度0.60元收费.(1)若某住户四月份的用电量是a度(a≤140),这个用户四月份应交多少电费?(2)若该住户五月份的用电量是a度(a>140),则他五月份应交多少电费?(3)若该住户六月份的用电量是200度,那么他六月份应交多少电费?四、用代数式表示:(每题 5 分,共20 分)26、x 和y 两数的和的平方27、一张贺卡的价格为2 元,元旦前,小明用自已的零花钱买了m 张贺卡送给同学,则小明一共花了多少钱?28、一个长方形的周长是30cm,若长方形的一边长为acm,则该长方形的面积是多少?29、某工厂第一个月的生产量是a,以后平均每月增长10%,问第三个月的产量是多少?五、求代数式的值:(每题 6 分,共18分)30、已知:a =12,b =3,求 的值。

第4章 代数式单元测试卷(含答案)

第4章 代数式单元测试卷(含答案)

第四章代数式单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数2.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣3.已知﹣2m6n与5m2x n y是同类项,则()A.x=2,y=1 B.x=3,y=1 C.D.x=3,y=0 4.3x2y﹣5yx2=()A.不能运算B.﹣2 C.﹣2yx2D.﹣2xy5.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个6.代数式a+b2的意义是()A.a与b的和的平方B.a与b两数的平方和C.a与b的平方的和D.a与b的平方7.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b8.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.89.用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A.104 B.108 C.24 D.2810.如果x﹣y=5,y﹣z=5,那么z﹣x的值是()A.5 B.10 C.﹣5 D.﹣10二.填空题(共10小题,满分30分,每小题3分)11.0.4xy3的系数是,次数为.12.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为;第n个单项式为.13.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=.14.已知关于x的多项式(m﹣2)x2﹣mx+3中的x的一次项系数为﹣2,则这个多项式是次项式.15.已知2a x b n﹣1与同3a2b2m(m为正整数)是同类项,那么(2m﹣n)x=.16.若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=.17.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是平方米.18.若4x+3y+5=0,则3(8y﹣x)﹣5(x+6y﹣2)的值等于.19.已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为cm.20.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…猜想:(1)1+3+5+7…+99=;(2)1+3+5+7+…+(2n﹣1)=.结果用含n的式子表示,其中n=1,2,3,…).三.解答题(共6小题,满分40分)21.(6分)已知:M=3x2+2x﹣1,N=﹣x2﹣2+3x,求M﹣2N.22.(6分)若(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,试求a,b的值.23.(6分)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.24.(6分)先化简再求值2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=2,b=﹣1.25.(8分)某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:时间(h)057x 甲车位置(km)190﹣10流动加油车位置(km)170270由上面表格中的数据,解决下列问题:(1)甲车开出7小时时的位置为km,流动加油车出发位置为km;(2)当两车同时开出x小时时,甲车位置为km,流动加油车位置为km (用x的代数式表示);(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.26.(8分)如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有盆花,图5中,应该有盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.2.解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选:B.3.解:由同类项的定义可知2x=6,x=3;y=1.故选:B.4.解:3x2y﹣5yx2=﹣2yx2故选:C.5.解:根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.6.解:代数式a+b2的意义是a与b的平方的和.故选:C.7.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.8.解:第一次:3×449+5=1352,第二次:,根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.故选:D.9.解:设最小的代数式是x,则其它三个数分别是x+1,x+7,x+8,四数之和=x+x+1+x+7+x+8=4x+16.A、根据题意得4x+16=104,解得x=22,正确;B、根据题意得4x+16=108,解得x=23,而x+8=31,因为四月份只有30天,不合实际意义,故不正确;C、根据题意得4x+16=24,解得x=2,正确;D、根据题意得4x+16=28,解得x=3,正确.故选:B.10.解:∵x﹣y=5,y﹣z=5,∴(x﹣y)+(y﹣z)=x﹣z=10,∴z﹣x=﹣10.故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:∵单项式0.4xy3的数字因数是0.4,所有字母指数的和=1+3=4,∴此单项式的系数是0.4,次数是4.故答案为:0.4,4.12.解:由题意可知第n个单项式是(﹣1)n﹣12n﹣1x n,即(﹣2)n﹣1x n,第7个单项式为(﹣1)7﹣127﹣1x7,即64x7.故答案为:64x7;(﹣2)n﹣1x n.13.解:(1+2)(1+22)(1+24)(1+28)…(1+2n),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),=(2n﹣1)(1+2n),=22n﹣1,∴x+1=22n﹣1+1=22n,2n=128,∴n=64.故填64.14.解:∵多项式(m﹣2)x2﹣mx+3中的x的一次项系数为﹣2,∴﹣m=﹣2,m=2,把m=2代入多项式(m﹣2)x2﹣mx+3中,m﹣2=0,∴二次项系数为0,多项式为一次二项式.15.解:由同类项的定义可知x=2,2m=n﹣1,即2m﹣n=﹣1,所以(2m﹣n)x=(﹣1)2=1.16.解:∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得:m=3,n=1,∴m﹣n=3﹣1=;故答案为:.17.解:如图所示,将四块草坪平移到一块儿整体计算;草坪的面积S=(a﹣x)(b﹣x)=ab﹣(a+b)x+x2.18.解:3(8y﹣x)﹣5(x+6y﹣2)=24y﹣3x﹣5x﹣30y+10=﹣8x﹣6y+10=﹣2(4x+3y)+10=﹣2×(﹣5)+10=20.19.解:如图,当圆环为3个时,链长为3a+×2=2a+b(cm),∴当圆环为50个时,链长为50a+2×=49a+b(cm),故答案为(49a+b).20.解:通过找规律可知,每项的结果为等式左边项数的平方,即n2,而1+3+5+7…+99共有50项,所以结果是502=2500.三.解答题(共6小题,满分40分)21.解:M﹣2N=(3x2+2x﹣1)﹣2(﹣x2﹣2+3x)=3x2+2x﹣1+2x2+4﹣6x=5x2﹣4x+3.22.解:∵(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)=(2﹣2b)x2+(a+3)x﹣6y+b+1,又∵(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1.23.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.24.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=2,b=﹣1时,原式=2×(﹣1)2=2.25.解:(1)根据题意得:甲车开出7小时时的位置为:190﹣7×(200÷5)=﹣90(km),流动加油车出发位置为:270﹣(270﹣170)÷2×7=﹣80(km);故答案为:﹣90,﹣80;(2)根据题意得:当两车同时开出x小时时,甲车位置为:190﹣40x,流动加油车位置为:﹣80+50x;(3)当x=3时,甲车开出的位置是:190﹣40x=70(km),流动加油车的位置是:﹣80+50x=70(km),则甲车能立刻获得流动加油车的帮助.26.解:(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…∴第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;∴图4中,应该有12×(4﹣1)+1=37盆花,图5中,应该有15×(5﹣1)+1=61盆花;(2)第n个图形中花盆的盆数为3n(n﹣1)+1.故答案为:37,61;3n(n﹣1)+1.。

代数式单元测试题及答案

代数式单元测试题及答案
16. 代数式 \( 3x^2 - 6x + 2 \) 可以分解为 \( 3x(x - 1) +
代数式单元测试题及答案
一、选择题(每题2分,共20分)
1. 下列代数式中,不是单项式的是:
A. -3x²
B. 5y
C. 7z
D. xy
2. 代数式 \( a^3b^2 - 2ab^3 + 5 \) 可以分解为:
A. \( a^2b - ab^2 + 5 \)
B. \( a^2b + ab^2 - 5 \)
D. \( 3x(x - 1) - 2 \)
8. 若 \( a = 2 \),\( b = 3 \),代数式 \( a^2 - b \) 的值为:
A. 1
B. 4
C. 5
D. 7
9. 代数式 \( 4x^3 - 27 \) 可以分解为:
A. \( (2x - 3)(2x^2 + 3x + 9) \)
13. 代数式 \( 2x^2 - 5x + 3 \) 的次数是 _________。
14. 代数式 \( 4x^3 - 8x^2 + 6x - 1 \) 的项数是 _________。
15. 若 \( a = -1 \),\( b = 2 \),代数式 \( a^2 - b \) 的值为 _________。
C. \( a^2b - ab^2 - 5 \)
D. \( a^2b + ab^2 + 5 \)
3. 若 \( x = -2 \) 时,代数式 \( 3x - 2 \) 的值为:
A. 4
B. -4
C. 6
D. -6
4. 下列代数式中,是同类项的是:

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)一、选择题(每小题3分,共24分)1.下列各式中,符合代数式书写要求的是( )A . x ·5B .-12abC .123xD .4m ×n2.下列计算正确的是( )A .4a -2a =2B .2ab +3ba =5abC . a +a 2=a 3D .5x 2y -3xy 2=2xy3.[2024常州期中]下列去括号正确的是( )A . a -(-3b +2c )=a -3b +2cB .-(x 2+y 2)=-x 2-y 2C . a 2+(-b +c )=a 2-b -cD .2a -3(b -c )=2a -3b +c 4.长方形菜地长a m ,宽b m ,如果长增加x m ,那么新菜地增加的面积为( )A . a (b +x )m 2B . b (a +x )m 2C . ax m 2D . bx m 25.[2023南通]若a 2-4a -12=0,则2a 2-8a -8的值为( )A .24B .20C .18D .166.计算3+3+…+3⏟ m 个3+4×4×…×4⏟ n 个4的结果是( )A .3m +n 4B . m 3+4nC .3m +4nD .3m +4n7.[2024江阴期末]下列说法正确的是( )A .单项式-23πa 2b 的系数是-23 B .单项式-12ah 2的次数是3 C .2x 2+3xy -1是四次三项式D .25与x 5是同类项8.[2024盐城大丰区期中]已知有2个完全相同的边长为a ,b 的小长方形和1个边长为m ,n 的大长方形,小明把这2个小长方形放置在大长方形中,如图,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a ,b ,m ,n 中的一个量即可,则要知道的那个量是( )A . aB . bC . mD . n二、填空题(每小题3分,共30分) 9.单项式-5πx 2y 6的系数是 .10.多项式3x 2+2xy 2-1的次数是 .11.若一个代数式与-2a +b 的和是a +2b ,则这个代数式是 . 12.若-5x a +1y 4与8x 4y 2b 是同类项,则ab 的值为 .13.[新考法·整体代入法2023·泰州]若2a-b+3=0,则2(2a+b)-4b的值为.14.[2024苏州期末]当k=时,多项式x2+(k-1)xy-3y2-2xy-5中不含xy项.15.[真实情境题体育赛事]2024年4月21日,安阳马拉松赛燃情开跑.为防止选手个人信息泄露,马拉松参赛选手随身穿戴的计时芯片会把选手参赛号码利用公式加密后上传.某选手参赛号码为1 626,如果加密公式为选手参赛号码乘n再加6,则利用公式加密后上传的数据为.16.[新考法定义计算法]对于两个非零数x,y,定义一种新的运算:x*y=ax+by,若1*(-1)=2,则(-3)*3的值为.17.[新考法·程序计算法2024·淮安期末]根据如图的计算程序,若输入x的值为-5,则输出的值为.18.[新视角规律探究题] 如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有个白色圆片(用含n的代数式表示).三、解答题(共66分)19.(6分)[母题教材P101复习题T3]化简:(1)2a2+3ab-a2-4ab;(2)(3m2-n2)-2(m2-2n2).20.(5分) [母题教材P101复习题T4]先化简,再求值:3(4a2b-ab2)-2(-ab2+3a2b),其,b=-3.中a=1621.(8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:+2(a2+4ab+4b2)=5a2+2b2.(1)求手掌捂住的多项式;|=0,请求出所捂住的多项式的值.(2)若a,b满足(a+1)2+|b-1222.(8分)[2024苏州工业园区期中]如图,从一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示,单位:米),留下一个“T”形图形(阴影部分).(1)用含x,y的代数式表示“T”形图形的周长;(2)若将此图作为某施工图,“T”形图形的周边需围上单价为每米20元的栅栏,原长方形周边的其余部分需围上单价为每米15元的栅栏.若x=1,y=3,请计算整个施工所需的造价.23.(9分)[2024连云港期中]已知代数式A=6x2+3xy+2y,B=3x2-2xy+5x.(1)求A-2B;(2)当x=-3,y=-6时,求A-2B的值;4(3)若A-2B的值与x的取值无关,求y的值.24.(9分)[新考法类比法] 阅读材料:我们知道,5x-x+2x=(5-1+2)x=6x,类似地,我们把(a+b)看成一个整体,则4(a +b)+3(a+b)-5(a+b)=(4+3-5)(a+b)=2(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,化简3(a-b)2-6(a-b)2+2(a-b)2的结果是;(2)若x2-2y=4,求3x2-6y-23的值;(3)若a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.25.(9分)[2024南京雨花台区月考]观察下表回答问题:x…-2 -1 0 1 2 …2x+1 …-3 m 1 3 5 …-x-3 …-1 -2 -3 -4 n…(1)根据表中信息可知m=,n=;(2)表中2x+1的值的变化规律是x的值每增加1,2x+1的值就增加2;类似地,-x-3的值的变化规律是x的值每增加1,-x-3的值就;(3)当x的值从a增加到a+1时,猜想关于x的代数式kx-4(k为一次项的系数,且k≠0)的值会怎样变化,请通过计算加以说明.26.(12分)[2024盐城大丰区期末]如果a+b=10,那么我们称a与b是关于10的“圆满数”.(1)7与是关于10的“圆满数”,8-x与是关于10的“圆满数”(用含x的代数式表示);(2)若a=2x2-4x+3,b=1-2(x2-2x-3),判断a与b是否是关于10的“圆满数”,并说明理由;(3)若c=kx-1,d=5-2x,且c与d是关于10的“圆满数”,x与k都是正整数,求k的值.参考答案一、1.B 2.B 3.B 4.D 5.D 6.D 7.B8.D 点拨:如图,由图和已知可知AB =a ,EF =b ,AC =n -b ,GE =n -a ,所以阴影部分的周长之和=2(AB +AC )+2(GE +EF )=2(a +n -b )+2(n -a +b )=2a +2n -2b +2n -2a +2b =4n ,所以要求出图中阴影部分的周长之和,只需知道n 一个量即可.故选D .二、9.-5π6 10.3 11.3a +b 12.6 13.-6 14.315.1 626n +6 16.-6 17.22 18.2(n +1) 三、19.解:(1)原式=a 2-ab .(2)原式=(3m 2-n 2)-(2m 2-4n 2) =3m 2-n 2-2m 2+4n 2 =m 2+3n 2.20.解:原式=12a 2b -3ab 2+2ab 2-6a 2b =6a 2b -ab 2.当a =16,b =-3时,原式=6×136×(-3)-16×9=-12-32=-2.21.解:(1)根据题意得(5a 2+2b 2)-2(a 2-4ab +4b 2) =5a 2+2b 2-2a 2+8ab -8b 2=3a 2+8ab-6b 2,故手掌捂住的多项式为3a 2+8ab -6b 2.(2)因为(a +1)2+|b -12|=0,所以a +1=0,b -12=0,解得a =-1,b =12.将a =-1,b =12代入3a 2+8ab -6b 2,得3a 2+8ab -6b 2=3-4-32=-2. 5,故手掌捂住的多项式的值为-2.5.22.解:(1)“T”形图形的周长为2×[(2x +y )+(y +y +x )]=6(x +y )米.(2)20×6(x +y )+15×4y =120x +120y +60y =120x +180y . 当x =1,y =3时,原式=120×1+180×3=660. 所以整个施工所需的造价为660元. 23.解:(1)A -2B=6x 2+3xy +2y -2(3x 2-2xy +5x ) =6x 2+3xy +2y -6x 2+4xy -10x =7xy +2y -10x .(2)当x =-34,y =-6时,A -2B =7×(-34)×(-6)+2×(-6)-10×(-34)=632-12+152=27. (3)A -2B =7xy +2y -10x =(7y -10)x +2y .因为A -2B 的值与x 的取值无关,所以7y -10=0. 所以y =107. 24.解:(1)-(a -b )2(2)因为x 2-2y =4, 所以3x 2-6y -23 =3(x 2-2y )-23 =3×4-23 =-11.(3)因为a -2b =3,2b -c =-5,c -d =10, 所以(a -c )+(2b -d )-(2b -c ) =a -c +2b -d -2b +c =(a -2b )+(2b -c )+(c -d ) =3+(-5)+10=8. 25.解:(1)-1;-5 (2)减小1(3)因为k (a +1)-4-(ka -4)=ka +k -4-ka +4=k ,所以当k >0,x 的值从a 增加到a +1时,关于x 的代数式kx -4的值增加k ; 当k <0,x 的值从a 增加到a +1时,关于x 的代数式kx -4的值减少|k |(或减少-k ).26.解:(1)3;2+x(2)a 与b 是关于10的“圆满数”.理由如下: 因为a +b =2x 2-4x +3+1-2(x 2-2x -3) =2x 2-4x +3+1-2x 2+4x +6 =10,所以a 与b 是关于10的“圆满数”. (3)因为c 与d 是关于10的“圆满数”, 所以c +d =10,即kx -1+5-2x =10,整理得(k -2)x =6. 因为x 与k 都是正整数,所以当k =3时,x =6;当k =4时,x =3; 当k =5时,x =2;当k =8时,x =1.所以k的值为3,4,5,8.。

初一代数式单元测试卷

初一代数式单元测试卷

初一代数式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,是代数式的是()A. x + y = 5B. 4>3C. 0D. a^2+b^2≠ 02. 用代数式表示“a的3倍与b的平方的差”为()A. 3a - b^2B. (3a - b)^2C. 3(a - b^2)D. 3a^2-b^23. 当a = 2,b=-1时,代数式a^2+2ab + b^2的值是()A. 1B. - 1C. 9D. 44. 代数式1 - (1)/(x)中x不能取的值是()A. 0B. 1C. 2D. - 15. 已知一个长方形的长为a,宽为b,则这个长方形的周长为()A. a + bB. 2a + bC. 2(a + b)D. ab6. 若x + 3 = y + 5,则x与y的关系是()A. x=yB. x>yC. xD. 无法确定。

7. 化简-2(3x - 1)的结果是()A. -6x+1B. -6x - 1C. -6x + 2D. -6x-28. 已知m - n = 3,则2m - 2n + 5的值为()A. 11B. 1C. -1D. 69. 一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数可表示为()A. abcB. 100a + 10b + cC. a + b + cD. 100c+10b + a10. 若a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a - b + c 的值为()A. 0B. -2C. -1D. 2二、填空题(每题3分,共15分)1. 用代数式表示“x与y的和的平方”为_(x + y)^2。

2. 当x = - 2时,代数式(1)/(2)x^2-x+1的值是_3。

3. 单项式-(3)/(2)x^2y的系数是_-(3)/(2),次数是_3。

4. 若3x^ny^3与-2x^2y^m是同类项,则m=_3,n = _2。

5. 化简:3a+2b - 5a - b=_-2a + b。

第四单元《代数式》单元测试卷(标准难度)(含解析)

第四单元《代数式》单元测试卷(标准难度)(含解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地的东边3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为( )A. (12n+5)kmB. (12n+2)kmC. (12n−7)kmD. (12n−10)km2.为了贯彻“房住不炒”要求,加快回笼资金,我市甲、乙、丙三家原售价相同的楼盘在年终前搞促销活动,甲楼盘售楼处打出在原价基础上先降价15%,再降价15%;乙楼盘打出一次性降价30%;丙楼盘打出先九折,再降价20%,如果此时小容的父亲想在上述三家楼盘中选择每平米实际售价最低的一处购买,他应选择的楼盘是( )A. 甲B. 乙C. 丙D. 都一样3.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A. 先打九五折,再打九五折B. 先提价50%,再打六折C. 先提价30%,再降价30%D. 先提价25%,再降价25%4.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地的东边3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为( )A. (12n+5)kmB. (12n+2)kmC. (12n−7)kmD. (12n−10)km5.按如图所示的运算程序,能使输出y的值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=16.当x=1时,代数式4−3x的值是( )A. 1B. 2C. 3D. 47.多项式12x|m|−(m−4)x+7是关于x的四次三项式,则m的值是( )A. 4B. −2C. −4D. 4或−48.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有( )A. 5个B. 6个C. 7个D. 8个9.合并同类项m−3m+5m−7m+⋯+2013m的结果为( )A. 0B. 1007mC. mD. 以上答案都不对10.单项式−12a2n−1b4与3ab8m是同类项,则(1+n)5(m−1)7=( )A. 14B. −14C. 4D. −411.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为( )A. 2a−3bB. 4a−8bC. 3a−4bD. 4a−10b12.对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A. 0B. 1C. 2D. 3第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 为了表述方便,本题取0.ba 表示小数.其中a 、b 只在1、2、3、…、9这9个数字中选取,例如当a 取2,b 取3时,0.ba 就表示0.32.我们知道无限循环小数可以化为分数,一般地,0.a ⋅=a9,那么0.32⋅=______,0.ba ⋅=______. 14. 已知非零实数x ,y 满足y =xx+1,则x−y+3xyxy的值等于______ . 15. 写出两个多项式,使它们的和为4ab ,这两个多项式分别为________、________. 16. 小宇在计算A −B 时,误将A −B 看成A +B ,得到的结果为4x 2−2x +1,已知B =2x 2+1,则A −B 的正确结果为 .三、解答题(本大题共9小题,共72分。

专题03 代数式单元测试(解析版)

专题03 代数式单元测试(解析版)

2021-2022学年七年级数学上册同步课堂专练(苏科版)专题03代数式单元测试【挑战满分】一、单选题1.购买1个单价为a元的面包和2瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.2(a+b)元C.(a+2b)元D.(2a+b)元【答案】C【详解】买1个面包和2瓶饮料所用的钱数:(a+2b)元;故选:C.、对应的数分别为1 和0.若正方形ABCD绕着点C 2.正方形ABCD在数轴上的位置如图所示,点B C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕点D翻转第2次;继续翻转,则翻转2020次后,数轴上数2020所对应的点是()A.点A B.点B C.点C D.点D【答案】C【详解】解:由题意可得:点C对应0,点D对应1,点A对应2,点B对应3,点C对应4,...,∵每4次翻转为一个循环组依次循环,∵2020÷4=505,∵翻转2020次后,数轴上数2020所对应的点是点C .故选:C .3.当2x =时,代数式31px qx ++的值为2020,则当2x =-时,代数式31px qx ++的值为( ) A .2020-B .2019C .2019-D .2018-【答案】D【详解】解:当x =2时,代数式px 3+qx +1的值为2020,即8p +2q =2019.当x =-2时,代数式的px 3+qx +1=-8p -2q +1=-(8p +2q )+1=-2019+1=-2018.故选:D .4.下列化简正确的是( )A .87x y xy -=B .2222a b ab ab -=-C .541m m -=D .222945a b ba a b -=【答案】D【详解】解:A 、8x 与-7y 不是同类项,所以不能合并,故本选项不合题意;B 、a 2b 与-2ab 2不是同类项,所以不能合并,故本选项不合题意;C 、5m -4m =m ,故本选项不合题意;D 、9a 2b -4ba 2=5a 2b ,正确,故本选项符合题意.故选:D .5.下列计算正确的是( )A .2233x x -=B .22232a a a --=-C .2(1)22x x -+=--D .3(1)31a a -=-【答案】C【详解】A. 222323x x x -=≠,故错误;B. 2222325a a a a --=-≠-,故错误;C. 2(1)22x x -+=--,故正确;D. 3(1)3331a a a -=-≠-,故错误,故选:C .6.有理数,a b 在数轴上的位置如图所示,则化简代数式3a b a --的结果是()A .2a b -+B .4a b -+C .4a b --D .2b a--【答案】B【详解】解:由数轴可得:0,0a b <>,∵0a b -<, ∵334a b a b a a b a --=--=-;故选B .7.如果长方形的一边长为(3a+2b),另一边长比它短(a -b)(a>b),那么这个长方形的周长为()A .5a+5bB .10a+10bC .10a+6bD .14a+6b【答案】B【详解】长方形的一边长为3a+2b, 另一边长比它短a -b,则另一边为3a 2b a b 2a 3b +-+=+.长方形的周长为:()()23222364461010a b a b a b a b a b +++=+++=+故选B8.下列去括号正确的是( )A .()a b c a b c +-+=++B .()a b c a b c +-+=-+-C .()a b c a b c --+=-+=D .()a b c a b c --+=-++【答案】C【详解】解:A 、为a -b+c ,错误;B 、为a -b+c ,错误;C 、正确;D 、为a -b+c ,错误,故选:C.二、填空题9.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则m=_________.【答案】24(1%)(1%)m a b =--【详解】已知1月份鸡的价格为24元/千克,2月份鸡的价格比1月份下降a%,则二月份鸡蛋价格为()241%a -,3月份比2月份下降b%,则三月份鸡蛋价格为()()241%1%a b --,故答案为()()241%1%a b --10.如图,它是由,,,A B E F 四个正方形,,C D 两个长方形拼成的大长方形,已知正方形F 的边长为8,大长方形周长为___________.【答案】64【详解】解:设A 正方形边长为a ,E 正方形边长为x则正方形F 的边长为a +x ,大长方形长为2x +3a ,宽为2x +a则大长方形周长为8x +8a ,因为a +x =8,所以8x +8a =8(a +x )=64.故答案为:64.11.单项式245a b -的系数是________,次数是__________;若1247m n a b -+与245a b -是同类项,则m n -=________. 【答案】45-3 4 【详解】 解:单项式245a b -的系数是45-,次数是3, ∵1247m n a b -+与245a b -是同类项, ∵m -1=2,n +2=1,∵m =3,n =-1,∵m -n =4, 故答案为:45-,3,4. 12.观察下列图形:它们是按一定规律排列的,依照此规律,第19个图形共有_____个∵.【答案】58【详解】解:观察发现,第1个图形∵的个数是,1+3=4,第2个图形∵的个数是,1+3×2=7,第3个图形∵的个数是,1+3×3=10,第4个图形∵的个数是,1+3×4=13,…依此类推,第n 个图形∵的个数是,1+3×n =3n+1,故当n =19时,3×19+1=58,故答案为58.三、解答题13.公园内有一半径为R 的圆形花坛,里面不重叠地摆放9个半径为r 的小圆形花盆,其余地方铺上草坪.(1)请用关于R r ,的多项式表示草坪的面积(阴影部分),并将结果分解因式.(2)当8.5R =米,0.5r =米,求草坪的面积(结果保留π)【答案】(1)()()33R r R r π+-;(2)70π平方米.【详解】解:(1)由题意可得:草坪的面积为:229R r ππ-=()()33R r R r π+-;(2)将8.5R =米,0.5r =代入,原式=()()8.5 1.58.5 1.5π+-=70π平方米,∵草坪的面积为70 平方米.14.小方家住房户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a的值为_______.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)已知卧室2的面积为21平方米,按市场价格,木地板单价为400元/平方米,地砖单价为10元/平方米,求铺设地面总费用.【答案】(1)3;(2)木地板(75-7x)平方米;地砖(7x+53)平方米;(3)25070元【详解】解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=(75-7x)平方米;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∵3[10+6-(2x-1)-x-2x]=21,∵3(17-5x)=21,∵x=2,∵铺设地面需要木地板:75-7x =75-7×2=61,铺设地面需要地砖:7x +53=7×2+53=67.铺设地面的总费用:61×400+67×10=25070(元).故铺设地面的总费用为25070元.15.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,124,6K K ==,……按此规律排列下去,第n 个图形中实心圆的个数表示为Kn .(1)n K =______(用n 表示):100K =_______(2)我们在用“*”定义一种新运算:对于任意有理数a 和正整数n . 规定*2n n a K a K a n -++=, 例如:223336|36|(3)*2322K K --+-+--+-+-===-. ∵计算:(26.6)*10-的值;∵比较:3*n 与(3)*n -的大小.【答案】(1)2(n +1),202;(2)∵-22;∵3∵n >(-3)∵n【详解】解:(1)第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,⋯ 2(1)n K n ∴=+;1002(1001)202K =⨯+=;(2)∵(26.6)-*10101026.6|26.6|2K K --+-+= 26.6(2102)|26.6(2102)|2--⨯++-+⨯+= 22=-; ∵n 是正整数, 224n K n ∴=+; 3∴*n 3|3|2n n K K -++= 332n n K K -++= 3=, (3)-*n 3|3|2n n K K --+-+= 332n n K K ---+= 3=-. 所以3*(3)n >-*n .。

人教版数学七上 第三章 代数式 单元测试(含答案)

人教版数学七上 第三章 代数式 单元测试(含答案)

人教版数学七上 第三章 代数式一、单选题1.下列代数式书写规范的是( )A .2m ×nB .256abC .a ÷bD .3x2.“x 的三分之一与y 的一半的差”用代数式表示正确的是( )A .3x−2yB .13x−yC .13x−2yD .13x−12y 3.为落实“双减”政策,某校利用课后服务时间开展读书活动.现需要购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8(100−x )元B .8x 元C .10(100−x )元D .8(100−10x )元4.买一个足球需m 元,买一个篮球需n 元,则买3个足球和2个篮球共需( )元A .5mnB .6mnC .(3m +2n )D .(2m +3n )5.如果2x +3y =7,那么8x +12y−1等于( )A .13B .27C .28D .不能确定6.若|x−4|+(y +13)2=0,则6xy 的值为( )A .43B .8C .−8D .−437.近年来,重庆作为网红城市,旅游业市场发展迅速:据调查,今年重庆5月份旅游旺季全市旅游业收入为x 亿元,6月份比5月份减少了25%,暑期如约而至,7月份比6月份增加了78%,则7月份重庆全市的旅游业收入是( )亿元.A .(1﹣25%+78%)xB .(1﹣25%)(1+78%)xC .(1﹣25%)x +(1+78%)xD .[1﹣25%(1+78%)]x8.若x 表示一个一位数,y 表示一个两位数,小明把x 放在y 的右边来组成一个三位数,你认为下列表达式中能表示这个数的是( )A .yxB .100x +yC .10x +yD .10y +x 二、填空题9.按照列代数式的规范要求重新书写:a ×a ×2−b ÷3,应写成 .10.一张贺卡的单价是a 元/张,小明买8张,用去 元.11.若代数式2y 2+3y +7的值是8,则代数式4y 2+6y−2023的值是 .12.足球上白色皮共有a 块,比黑色皮的2倍少4块,共有黑色皮 块.13.“a 的2倍与b 的差的平方”用式子表示为 ,当a =−2,b =−1时,此式子的值为 .14.如图,下列各图形中的三个数之间均具有相同的规律,根据此规律,用含有n 的代数式表示y = .15.单项式6a 2可以表述为“棱长为a 的正方体的表面积”,请再赋予它一个新的实际背景: .16.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,则第6个图案中有黑色棋子 个;第n 块图案中有黑色棋子 个.17.a 是为1的有理数,我们把11−a 称为a 的差倒数.例如:2的差倒数是11−2=−1,−1的差倒数 11−(−1)=12,已知a 1=−13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差的倒数,⋯,则a 4= ,依此类推a 2024= .三、解答题18.指出下列各代数式的意义:(1)2a +3; (2)(a +3)x ; (3)c ab ; (4)x x−y 19.已知a 是最小的正整数,b 比﹣1大3,c 的相反数还是它本身.(1)求出a 、b 、c 的值;(2)计算(2a +3c )×b 的值.20.如图,有一块长和宽分别为10和6的长方形纸片,将它的四角截去四个边长为a(0<a<3)的小正方形,然后将它折成一个无盖的长方体纸盒,解答下列问题:(1)求这个无盖长方体纸盒的表面积(用含a的代数式表示).(2)求这个无盖长方体纸盒的容积(用含a的代数式表示并化简).并求出当a=3时,此时纸2盒的容积.21.已知代数式ax2−x+1,请按照下列要求分别求值:(1)当a=2,x=1时,求代数式的值;(2)当a=1,5+x−x2=3时,求代数式的值;(3)当x=2023时,代数式ax2−x+1的值是m,则当x=−2023时,求ax2−x+1的值(结果用m表示).22.春暖花开,新学期伊始,某中学为了给学生提供充足的体育运动器材,准备购买一批某品牌的足球和跳绳,足球每个定价为150元,跳绳每条定价为25元.该品牌通过线下实体店和网店两种方式进行销售,线下实体店的销售方案为:买一个足球送一条跳绳;网店的销售方案为:足球和跳绳都按定价打九折.(1)如果购买足球60个,跳绳a条(a>60),若在实体店购买,共需付款元;若在网店购买,共需付款元(用含a的代数式表示).(2)如果购买足球60个,跳绳120条,通过计算说明怎样购买最合算.参考答案:1.D2.D3.A4.C5.B6.C7.B8.D9.2a2-b310.8a11.−202112.a+4213.(2a−b)2914.3n+115.6个边长为a的正方形的面积和(答案不唯一) 16.29 5n−117.−133 418.(1)a的2倍与3的和;(2)a与3的和的x倍;(3)c与a,b的积的商;(4)x 与x,y两数的差的商19.(1)a、b、c的值分别为1,2,0;(2)4.20.(1)60−4a2(2)4a3−32a2+60a,31.521.(1)2(2)3(3)m+404622.(1)(25a+7500),(22.5a+8100)(2)在实体店购买足球60个,送跳绳60条,在网店购买跳绳60条,购买方式最合算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(二) 代数式
(时间:45分钟 满分:100分)
题号 一 二
三 总分 合分人 复分人 得分
#
一、选择题(每小题31.下列代数式中符合书写要求的是( )
A .ab4
B .413m
C .x ÷y
D .-5
2
a
2.下列各式:-12mn ,m ,8,1a ,x 2+2x +6,2x -y 5,x 2
+4y π,y 3-5y +1
y 中,整式有( )
A .3个
B .4个
C .6个
D .7个
3.列式表示“比m 的平方的3倍大1的数”是( ) 【
A .(3m)2
+1 B .3m 2
+1 C .3(m +1)2
D .(3m +1)2
4.下列各组单项式中,不是同类项的是( )
A .12a 3
y 与2ya 3
3 B .6a 2mb 与-a 2bm C .23与32 x 3
y 与-12
xy 3
5.下列所列代数式正确的是( )
A .a 与b 的积的立方是ab 3
B .x 与y 的平方差是(x -y)2
C .x 与y 的倒数的差是x -1
y
D .x 与5的差的7倍是7x -5
6.多项式1+2xy -3xy 2
的次数及最高次项的系数分别是( )
A .3,-3
B .2,-3
C .5,-3
D .2,3
7.如果代数式2a 2+3a +1的值是6,那么代数式6a 2
+9a +5的值为( )
A .18
B .16
C .15
D .20
8.一根铁丝正好可以围成一个长是2a +3b ,宽是a +b 的长方形框,把它剪去可围成一个长是a ,宽是b 的长方形的一段铁丝(均不计接缝),剩下部分铁丝的长是( ) ,
A .a +2b
B .b +2a
C .4a +6b
D .6a +4b
9.有理数a ,b ,c 在数轴上对应的点如图所示,化简|b +a|+|a +c|+|c -b|的结果是( )
A .2b -2c
B .2c -2b
C .2b
D .-2c
10.一列数a 1,a 2,a 3,…,其中a 1=12,a n =1
1+a n -1(n 为不小于2的整数),则a 4的值为( )
二、填空题(每小题3分,共18分)
11.单项式-2πa 2b 3
c
3
的系数是________,次数是________.
12.把多项式x 2
y -2x 3y 2
-3+4xy 3
按字母x 的指数由小到大排列是________________________. 13.请你结合生活实际,设计具体情境,解释代数式30
a
的意义:
_______________________________________________________________________________________.
`
14.规定一种新运算:aΔb=a·b-a -b +1,如3Δ4=3×4-3-4+1,请比较大小: (-3)Δ4________4Δ(-3).(填“>”“=”或“<”)
15.某商品先按批发价a 元提高10%零售,后又按零售价90%出售,则它最后的单价是________________元.
16.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8
,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为________________. 三、解答题(共52分) 17.(16分)计算:
(1)3a 3-(7-12a 3)-4-6a 3;
(2)(5x -2y)+(2x +y)-(4x -2y);

(3)2(x 2-y )-3(y +2x 2
); (4)3x 2-[x 2+(2x 2-x )-2(x 2
-2x )].
18.(6分)若a ,b 满足(a -3)2+|b +13|=0,求代数式3a 2b -[2ab 2-2(ab -32a 2b)+ab]+3ab 2
的值.
19.(8分)已知,如图,长方形广场的四角都有一块边长为x 米的正方形草地,长方形的长为a 米,宽为b 米. *
(1)请用代数式表示阴影部分的面积;
(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.
20.(10分)小红做一道数学题“两个多项式A ,B ,B 为4x 2
-5x -6,试求A +2B 的值”.小红误将A +2B
看成A -2B ,结果答案(计算正确)为-7x 2
+10x +12. (1)试求A +2B 的正确结果;
(2)求出当x =-3时,A +2B 的值.

21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.
(1)写出第n排的座位数;
(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众

参考答案

1.D 11.-2π3 6 12.-3+4xy 3+x 2y -2x 3y 2
13.答案不唯一,如:某班级有a 名
学生参加考试,30名学生成绩合格,则合格人数占总人数的30a 14.= 15.0.99a -b 20
17.(1)-52
a 3-11.
(2)3x +y.
(3)-4x 2
-5y.
(4)2x 2
-3x.
18.因为(a -3)2
+|b +13|=0,所以a =3,b =-13.
又因为原式=3a 2
b -2ab 2
+2ab -3a 2
b -ab +3ab 2
=ab 2
+ab. 所以当a =3,b =-1
3
时,
原式=ab 2
+ab =3×(-13)2+3×(-13)=-23
.
19.(1)ab -4x 2
.(2)阴影部分的面积为:200×150-4×102
=29 600(m 2
). 20.(1)因为A -2B =-7x 2+10x +12,B =4x 2-5x -6,所以A =-7x 2+10x +12+2(4x 2-5x -6)=x 2
.所以
A +2
B =x 2+2(4x 2-5x -6)=9x 2-10x -12.(2)当x =-3时,A +2B =9×(-3)2
-10×(-3)-12=99. 21.(1)m +2(n -1).(2)①当m =20,n =25时,m +2(n -1)=20+2×(25-1)=68(个).②m+m +2+m +2×2+…+m +2×(25-1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).。

相关文档
最新文档