第四章 热传导问题的数值解法
传热学第四章 热传导问题的数值解法

y 其中,规定:导入元体( m,n )的热 流量为正;导出元体( m,n )的热流 量为负。 在未知温度高低的情况下一律以周围 节点或流体温度都高于该节点温度来 列方程。
河海大学常州校区热能与动力工程系—传热学
x
2014年5月14日10时21分
杨祥花
说明: ① 上述分析与推导是在笛卡儿坐标系中进 行的; ② 热平衡法概念清晰,过程简捷; ③ 热平衡法与建立微分方程的思路与过程 一致,但不同的是前者是有限大小的元体, 后者是微元体。
控制容积:节点代表的区域
n
y
y x
x
m
2014年5月14日10时21分 杨祥花
M
河海大学常州校区热能与动力工程系—传热学
(3)建立节点物理量的代数方程(离散方程) 节点上物理量的代数方程称离散方程。其 过程如下: • 首先划分各节点的类型; • 其次,建立节点离散方程; • 最后,代数方程组的形成。 对节点 (m,n) 的代数方程,当 △x=△y 时,有:
2014年5月14日10时21分
杨祥花
• 数值解法的实质 对物理问题进行数值解法的基本思路可以概 括为:把原来在时间、空间坐标系中连续的物理量 的场,如导热物体的温度场等,用有限个离散点上 的值的集合来代替,通过求解按一定方法建立起来 的关于这些值的代数方程,来获得离散点上被求物 理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物 理量的数值解。
2014年5月14日10时21分
杨祥花
§4-1 导热问题数值求解的基本思想 2 2 2 t t t t ( 2 2 2) c x y z c 一、问题提出
1、对于一维稳态导热,可用理论法求解
2、若 H 不满足,二维导热,如图 3、二维稳态无内热源的导热微分方程式 2t 2t 2 0 2 x y ( a)
热传导-热传导问题的数值解法

1. 基本思想
传热学 Heat Transfer
分析解: 对导热微分方程在定解条件下的积分求解
数值解: 用求解区域上空间、时间坐标系中的离散点的温度 的集合代替连续的温度场,用大量的代数方程代替 微分方程
连续
离散
微分方程
8
传热学 Heat Transfer
5. 解的分析 温度场、热流密度分布等 热流量(或热流密度) 热应力分析 肋片效率
……
9
传热学 Heat Transfer
后 续 重 点 学 习 内 容
10
章名:热传导 节名:热传导问题的数值解法 视频知识点名称:内节点离散方程的建立
传热学 Heat Transfer
x
m,n
2t x 2
m,n
x2 2!
3t x3
m,n
x3 3!
o(x4 )
3
传热学 Heat Transfer
tm1,n
tm,n
t x
m,n
x
2t x2
m,n
x2 2!
3t x3
m,n
x3 3!
o(x4 )
t m 1, n
tm,n
t x
分析解具有普遍性,各种情况的影响清晰可见
5
传热学 Heat Transfer
2.2 数值解
近似解 弥补了分析法的缺点,适应性强,特别对于复杂问
题更显其优越性,原则上可以求解一切导热问题。 2D、3D、复杂几何形状、复杂BC、物性不均匀等
与实验法相比成本低
传热学-第四章22

50 × 0.02 Bi1 = = = 0.01 λ 100
hδ
400 × 0.02 Bi 2 = = =1 λ 8
hδ
第四章 热传导问题数值解法
(i ) N
式中 Fo∆ =
a∆τ 网格傅里叶数 ∆x 2
h∆τ λ ∆τ h∆x = = Fo∆ ⋅ Bi∆ 2 ρc∆x ρc ∆x λ
( ( ( ) t Ni +1) = t Ni ) (1 − 2 Fo∆ ⋅ Bi∆ − 2 Fo∆ ) + 2 Fo∆ t Ni −1 + 2 Fo∆ ⋅ Bi∆ t f
∆τ
从第二式得出
∂t ∂τ
=
n ,i
( ( t ni ) − t ni −1)
∆τ
+ O ( ∆τ ) ≈
( ( t ni ) − t ni −1)
∆τ
difference。 向后差分 back difference。
∂t 二级数相减: 二级数相减: ∂τ
( ( ( ( t ni +1) − t ni −1) t ni +1) − t ni −1) 2 = + O(∆τ ) ≈ 2∆τ 2∆τ
n ,i
( 显式格式
explicit finite difference scheme )
如扩散项用( +1)时层的值来表示 如扩散项用(i+1)时层的值来表示
( ( ( ( ( tni +1) − tni ) tni++1) − 2tni +1) + tni−+1) 1 =a 1 ∆τ ∆x 2
(隐式格式 implicit finite difference scheme) )
第四章热传导问题的数值解法

导热问题数值求解的基本思想
4.1.2 导热问题数值求解基本步骤
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否 是否收敛?
是 解的分析
7
导热问题数值求解的基本思想
以下图所示的二维矩形域内的稳态、无内热源、常物性的导热问题 为例,对数值求解过程的六个步骤进一步说明。
i点的中心差分
35
内节点离散方程的建立方法
当给出一个导数的差分表达式时必须明确是对哪一点建立的; 上面的分析对柱坐标与极坐标都适用;
对于非均分网格,其中心差分表达式较复杂,适用于热平衡法。
36
内节点离散方程的建立方法
4.2.2 热平衡法
采用热平衡法时,对每个节点所代表的元体用傅里叶导热定律直 接写出其能量守恒表达式。此时把节点看成是元体的代表。
M
17
导热问题数பைடு நூலகம்求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
18
导热问题数值求解的基本思想
设立节点物理量的代数方程
节点上物理量的代数方程成为离散方程(discretization equation)。当△x=△y时,有
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
20
导热问题数值求解的基本思想
设立迭代初场
代数方程组 的解法
直接解法 迭代解法
有限差分法
预设初场
热传导方程的建立、数值解法及应用

推导物体的热传导方程时,需要利用能量守恒定律和关于热传导的
Fourier定律:
热传导的Fourier定律定律(用自己的语言组织):
d t 时间内,沿某面积元d s 的外法线方向流过的热量d q 与该面积元两
u 侧的温度变化率 n 成正比,比例系数为k .自然条件下温度趋于减少,所
以等式右边有个负号d.即q: k
2u y2 xix
ui, j1
2ui, j y2
ui, j1
O(y2 )
y jy
上式误差之所以为x2的高阶无穷小可以通过泰勒公式来证明。
泰勒公式展开为佩亚诺余项形式:
u ui1, j =ui, j + x
xix
x
1 2!
2u x2
xix
x2 O(x2 )
y jy
y jy
同理:ui1, j =ui, j
uin, j,k (1 2rx
2ry
2rz ) rx (uin1, j,k
un i 1,
j,k
)
ry
(uin,
j 1,k
uin, j1,k ) rz (uin, j,k 1 uin, ) j,k 1
这样的处理还没有完,由于边界的情况未知,所以我们需要对边界进行 特殊处理。 边界条件一般分为三类:边界温度已知、边界温度的法向梯度已知、两 者的线性组合已知。 • 第一种最简单,只要设定一个初始温度ui0, j ,之后的每一次迭代过程
热传导方程的数值 解法及应用
主讲人: 陈鹏
主要内容
1.热传导方程的建立 2.用有限差分法建立热差分模型 3.双层玻璃中的一维热传导 4.利用PDE工具箱设计面包烤盘 5.利用差分模型研究浴缸水温的变化规律
杨世铭《传热学》考研考点讲义

辐㊀射㊀传㊀热
一 热辐射的基本概念 1 . 电磁波谱 2 . 吸收、 反射、 透射 3 . 黑体的概念和作用 4 . 黑体辐射的基本定律 S t e f a n - B o l t z m a n n 定律 P l a n c k 定律㊀㊀㊀ Wi e n 位移定律 L a m b e r t 定律 5 . 实际物体的辐射吸收特性 漫射表面 灰体的概念 基尔霍夫定律 实际物体表面简化的可行性 6 . 温室效应 二 辐射传热的计算 1 . 角系数 2 . 投入辐射、 有效辐射 3 . 任意两表面之间辐射传热 4 . 多表面系统辐射传热 表面辐射热阻和空间辐射热阻 画网络图的方法 表面净辐射传热量和任意两表面之间的辐射传热量 两种特殊情形 黑体、 重辐射面 5 . 遮热板 遮热板的工作原理 遮热板的应用: 如何进一步提高遮热板的遮热效果, 提高测温精度
换㊀热㊀器
一 传热过程的分析和计算 传热过程 总传热系数
㊀4
杨世铭《 传热学》 考点精讲及复习思路
①传热过程的辨析 圆筒壁 \ 肋壁的传热 ②总传热系数的计算㊀㊀ 通过平壁 \ 强化传热的突破口㊀㊀ 强化传热应从热阻最大的环节入手 临界热绝缘直径 二 换热器的型式及平均温差 换热器的定义、 型式、 特点 简单顺流和逆流的平均温差的计算 简单顺流和逆流的定性温度分布 其它复杂流动布置的平均温差的计算 三 换热器的热计算 设计计算和校核计算 利用平均温差法进行换热器的设计计算 ①所依据的方程㊀㊀ ②步骤 1 . T U法 -N ①有关概念㊀㊀㊀ ②与平均温差法比较 2 . 污垢热阻 二、 杨世铭《 传热学》 考点精讲及复习思路课程安排 第一章 概论— — —1讲 第二章 稳态热传导— — —3讲 第三章 非稳态热传导— — —2讲 第四章 热传导问题的数值解法— — —2讲 第五章 对流传热的理论基础— — —2讲 第六章 单相对流传热的实验关联式— — —2讲 第七章 相变对流传热— — —2讲 第八章 热辐射基本定律和辐射特性— — —2讲 第九章 辐射传热的计算— — —2讲 第十章 传热过程分析与换热器的热计算— — —2讲 第十一章 传质学简介 三、 考试题型 名词解释 如: 1 . 大容器沸腾; 2 . 流动边界层; 3 . 辐射传热; 4 . 传热过程; 5 . 稳态温度场; 填空 如: 第一类边界条件是㊀㊀㊀㊀㊀㊀。
《传热学》课程教学大纲-蔡琦琳

《传热学》课程教学大纲一、课程基本信息二、课程目标(-)总体目标:《传热学》是研究由温差引起的热能传递规律的科学,是建筑环境与能源应用工程专业的一门基础课程和学位课程。
在制冷、热能动力、机械制造、航空航天、化工、材料加工、冶金、电子与电气和建筑工程等生产技术领域中存在大量的传热问题,课程旨在使学生掌握传热的基本概念、基本原理和计算方法,使学生对热量传递这一普遍存在的现象有理性的认识,并能熟练运用基础知识来思考、分析和解决实际传热问题。
(二)课程目标:本课程旨在使学生掌握热量传递的三种基本方式及其物理机制,掌握传热基础理论与计算方法;掌握传热学的基本实验,具备分析工程传热问题的能力,能够解决增强传热、削弱传热和温度控制等工程传热问题;了解传热学的前沿知识及其在科学技术领域的应用,培养学生分析问题和解决问题的能力,以及团队合作意识。
课程目标1:系统深入学习,掌握传热基础理论与计算方法。
1.1 掌握传热的基本概念、理论、机理及影响因素;1.2 掌握热传导、热对流和热辐射三种传热模式的基本公式,能够进行各种工况下传热量的计算,并能对工程传热问题进行描述和分析。
课程目标2:掌握传热实验,应用传热学知识,解决工程传热问题。
2.1 掌握传热学中的实验研究方法,使学生对热量传递这一普遍存在的现象有理性的认识。
2.2 根据所学传热理论和实验知识,熟练掌握增强或削弱热能传递过程的方法,能够在工程应用中对热能有效利用、热力设备效率的提高、节能降耗技术等问题从传热学角度进行思考、分析和解决问题。
课程目标3:培养学生的自主学习意识、团队合作能力、口头和书面表达能力,探索传热学前沿科学知识。
3.1 通过课堂分组讨论等方式培养团队合作意识、沟通交流能力和对工程问题进行清清晰表达的能力;3.2 通过课外文献调研并撰写课程报告,提升文献查阅能力和书面表达能力。
(H)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章结论1 .教学目标(1)了解传热的定义;了解传热学的研究内容及其在生活和工程中的应用;(2)掌握热量传递的三种基本方式及其物理机理;(3)掌握傅里叶定律、牛顿冷却定律及斯忒藩定律,并能应用这三个定律分析基础传热问题;(4)了解传热过程的特点以及电.热模拟的作用和意义;(5)掌握热流密度、热阻和综合传热系数的计算方法。
第4章-热传导问题的数值解法(1)

y 2
y 2
m,n
将差分表达式代入控制方程
2t x 2
2t y 2
0
得:
tm1,n
tm1,n x2
2tm,n
tm,n1
tm,n1 y 2
2tm,n
0
如果 x y 则有:
tm,n
1 4
tm1,n tm1,n tm,n1 tm,n1
第4章 热传导问题的数值解法
4.1 导热问题数值求解的基本思想 4.2 内节点离散方程的建立方法 4.3 边界节点离散方程的建立及代数方程的求解 4.4 非稳态导热问题的数值解法
4.1 导热问题数值求解的基本思想
4.1.1 基本思想 4.1.2 导热问题数值求解的基本步骤
返回
4.1.1 基本思想
2、边界上的外部角点
边界节点D代表的区域为1/4个普通元体大小 的面积。对该外部节点元体应用能量平衡
y
2
tm1,n tm,n x
x tm,n1 tm,n 2 y
xy 4
.
m,n
x y 2
qw
0
如 x y ,则有:
在均分网格中,一、二阶导数常见的差分表达式如下表所示:
返回
4.2.2 热平衡法(热力学第一定律)
n
热平衡法不是在控制方程的基础上进行离
散,而是直接对元体应用热力学第一定律
和傅里叶定律,从而得到该节点温度的离 w
e
散方程。
二维稳态常导热系数无内热源的稳态导热
问题,对元体(m,n)列出能量守恒方程:
在空间-时间坐标系中对所研究的空间区域 和时间区域进行离散
第4章_热传导问题的数值解法

式中,Fo=
a h x 网格傅里叶数, Bi 网格毕渥数 x 2
14
4.4.5 一维平板非稳态导热显式格式离散方程及稳定性分析 以第三类边界条件下厚度为2的大平板的数值计算问题作一归纳。如图4-10.
i+1 i i i tn =Fo (t n 1 t n 1 ) (1 2 Fo t n ) 0 tn t0
i+1 i i i i tn tn tn 1 t n 1 2t n a x 2 上式可改写为 i+1 tn =
a i a i i ( t t ) ( 1 2 t ) n 1 n 1 2 2 n x x
求解非稳态导热方程就是从已知的初始温度分布出发,根据 边界条件以次求得以后各个时间层上的温度值,由上式可知, 一旦i时层上各节点的温度已知,可立即求得i+1时层上各节点 的温度,而不必联立方程,因而上式所代表的格式称为显式 差分格式。
4.2 内节点离散方程的建立方法 建立内节点离散方程的方法有: 泰勒级数展开法 热平衡法 考察图4-3。
5
4.2.1 泰勒级数展开法 以节点(m,n)处的二阶偏导数为例,对节点(m+1,n)及(m-1, n)分别写出函数t对(m,n)点的泰勒级数展开式:
t m1,n t m,n t m1,n t m,n t x t x 2t x 2 x m,n 2t x 2 x m,n x 2 3t 3 2 x x 2 3t 3 2 x x 3 (a) 6 x 3 (b) 6
9
(2)外部角点 如图4-5所示。节点(m,n)的离散方程为
y t m1,n t m,n y x x t m,n1 t m,n x y qw qw Φm,n 0 2 x 2 2 2 y 2 2
热传导问题的数值解法

1. 空间离散化
01
将求解区域划分为一系列小的网格或节点,用离散的差分代替
微分。
2. 时间离散化
02
将时间轴划分为一系列小的时段,用离散的差分代替微分。
3. 初始条件和边界条件的离散化
03
将初始条件和边界条件转化为离散形式。
差分方程的求解
01
1. 迭代法
2. 直接法
02
03
3. 松弛法
通过迭代逐步逼近解,常用的有 Jacobi迭代法和Gauss-Seidel迭 代法。
02
根据问题的几何特性和求解精度要求,选择合适的单元类型和
划分方式。
单元划分应尽量保证求解精度和计算效率。
03
建立系统方程
01
根据热传导的物理定律和边界条件,建立每个单元的热平衡 方程。
02
将各个单元的方程联立起来,形成整个求解域上的系统方程 。
03
系统方程通常为线性方程组,可以使用不同的求解方法进行 求解。
步骤
首先将求解区域划分为一系列离散点,然后根据泰勒级数展开,将偏微分方程 中的导数项用离散点上的函数值之差代替,从而得到离散化的差分方程。
特点
有限差分法简单直观,适用于规则区域,但对不规则区域 处理较为复杂。
有限元法
定义
有限元法是一种将连续的求解区域离散化为有限个小的子域(即有限元),然后在每个子 域上应用数学方法进行求解的方法。
热传导定律也称为傅里叶定律,指出热流密度与温度梯度成正比,方向由高温指向低温。数学表达式为:q = -k * grad(T),其中 q为热流密度,k为导热系数,T为温度,grad表示梯度。
热传导定律是热传导过程的基本规律,描述了热量传递的方向和大小,是数值解法的基础。
传热学课件:第四章 数值解法

(2)高斯—赛德尔迭代法
①选初值;
②一次次的直接计算t1,t2,…,tn ,注意计算tn 时, tn前面的温度全部用新值代替。如知道t1后, 求t2时,用t1代替原设的初值。
例题:有一正方形截面,边界长为1m,边 界上的温度已知,求t1,t2,t3,t4。
解(1)列节点方程式
100℃
500℃
12
3 4 100℃
100℃
迭代法
n
t1
t2
t3
t4
0
300
300
200
200
1
275 268.75 168.75 159.38
2 259.38 254.69 154.69 152.35
3 252.35 251.26 151.18 150.61
4 250.61 250.31 150.31 150.15
由(a)可得:
cw 1 说明热源与管子中心不重合。
由(a)、(b)可得:
将(c)代入(b)可得:
从而只能选正号,所以有: 等温线为一圆。
2 具有偏心空腔的圆柱体
由于是稳定导热,从而流过每一等温面的热流量是 相同的
对于等温面 1
y0
h2 h1
ε
对于等温面 2
热阻: 但h1和h2是未知的
2. 间接法(迭代法)经过有限次的迭代,求出近似解, 对于计算机来说,存储量较少。
松弛法(余数调节法)
高斯—赛德尔迭代法
(1)松弛法 ①设初值; ②求R1,R2,…,Rn,找Rmax;(余数) ③如设R4为最大,改变t4,使R4 ≈0,t4=t4+R4/4: ④重新计算有关节点的余数;
⑤重复步骤③ ④ ,直到全部余数为零。
热传导和导热系数的计算方法

热传导和导热系数的计算方法热传导是指热量在物体内部由高温区向低温区传递的过程,其本质是物体内部粒子(如电子、原子、分子)的振动和碰撞引起的能量传递。
热传导的计算方法主要包括傅里叶定律、导热系数的概念及其计算方法。
1.傅里叶定律傅里叶定律是热传导的基本定律,表述为:物体内部的热流密度q与温度梯度dT/dx之间存在以下关系:[ q = -k ]其中,q表示热流密度,单位为瓦特每平方米(W/m^2);k表示导热系数,单位为瓦特每米·开尔文(W/m·K);dT/dx表示温度梯度,单位为开尔文每米(K/m)。
2.导热系数导热系数是描述材料导热性能的一个物理量,定义为:在稳态热传导条件下,1米厚的物体,在两侧表面温差为1开尔文时,单位时间内通过单位面积的热量。
导热系数用符号k表示,其单位为瓦特每米·开尔文(W/m·K)。
导热系数的计算方法主要有:(1)实验测定:通过实验方法,如热线法、热板法等,测定材料的导热系数。
(2)理论计算:根据材料的微观结构和组成,运用热力学和物理学原理,计算导热系数。
例如,对于均匀多晶材料,导热系数可通过以下公式计算:[ k = ( k_1 + k_2 + k_3 ) ]其中,k1、k2、k3分别为材料三个方向上的导热系数。
3.热传导的计算方法热传导的计算方法主要包括以下步骤:(1)建立热传导模型:根据实际问题,假设物体为均匀、各向同性或各向异性,简化模型以便于计算。
(2)确定边界条件和初始条件:如物体表面的温度、热流密度等。
(3)选择合适的数学方法求解:如有限差分法、有限元法、解析法等。
(4)分析结果:根据计算得到的温度分布、热流密度等,分析问题的热传导特性。
总之,热传导和导热系数的计算方法是热力学和物理学中的重要知识点,掌握这些方法有助于我们更好地理解和解决实际中的热传导问题。
习题及方法:1.习题:一长方体铜块的尺寸为2m×1m×0.5m,左表面温度为100℃,右表面温度为0℃。
传热学-第四章-热传导问题的数值解法

23
判断迭代是否收敛的准则:
迭代次数,表示第k次迭代
Monday, March 30, 2020
表示第k次迭代所得计算域内的最大值 当有温度t接近于零的时,选此准则较好
24
例题:
Monday, March 30, 2020
25
Monday, March 30, 20day, March 30, 2020
27
1. 一维非稳态导热的数值求解: 第三类边界条件下,常物性、无内热源无 限大平壁的一维非稳态导热问题为例。
1) 求解域的离散
2) 节点温度差分方程的建立
运用热平衡法可以建立非稳态导热物体内部节点和 边界节点温度差分方程。
Monday, March 30, 2020
29
➢ 两点结论:
(a) 任意一个内部节点n在(i+1)时刻的温度都可以由该节点及 其相邻节点(n-1) 、(n+1)在i 时刻的温度由上式直接求出,不必联 立求解方程组,这是显式差分格式的优点。这样就可以从初始温 度出发依次求出各时刻的节点温度;
(b) 必须满足显式差分格式的稳定性条件,即
物理意义:
15
§4-3 边界节点离散方程的建立及代数方程的求解
第一类边界条件:已知全部边界的温度,作为已知值加入到内节点的离散方程中, 组成封闭的代数方程组,直接求解。
n=N
封闭
(m,n+1)
第二类边界条件或第三类边界 条件:部分边界温度未知。
不封闭
w (m-1,n)
n e
(m,n) s
(m,n-1)
(m+1,n)
y
n=1
m=1
m
x
m=M
Monday, March 30, 2020
传热学-第4章-热传导问题的数值解珐

若步长∆x=∆y,有: , 若步长
t m ,n = 1 ( 2 t m −1 , n + t m , n + 1 + t m , n −1 + 4 ∆2 x Φ m , n
λ
+
2 ∆ xq w
λ
)
2. 外部角点 控制容积的热平衡为: 控制容积的热平衡为:
∆y tm−1,n − tm,n ∆x tm,n−1 − tm,n ∆x∆y ∆x + ∆y λ +λ + Φ m, n + qw = 0 ∆x 2 2 ∆y 4 2
4. 边界热流密度的三种情况
q (1)绝热边界: w = 0 )绝热边界:
(2) qw 值不为零:代入给定的 qw 值。 ) 值不为零: (3)对流边界:qw = h(t f )对流边界: 平直边界节点: 平直边界节点:
2( h∆x
− t m n = 2 t m − 1 , n + t m , n + 1 + t m , n −1 +
第一类边界条件 — 边界温度已知 m-1,n 第二类边界条件 需建立边界节点温度 ∆y 第三类边界条件 的差分方程 n 1. 位于平直边界上的节点
λ∆y
tm−1,n − tm,n ∆x +λ
m m,n+1
qw
m,n m,n-1
∆x
∆x tm,n+1 − tm,n ∆x tm,n−1 − tm,n ∆x∆y +λ + Φm,n + ∆yqw = 0 2 ∆y 2 ∆y 2
若步长∆x=∆y,有: , 若步长
t m ,n = 1 ( t m −1 , n + t m , n −1 + 2
传热传质学概念汇总

《传热传质学》概念汇总第一章绪论1.传热学:研究热量传递规律的科学。
2.热量传递的基本方式:导热、对流、辐射。
3.热传导:物体的各部分之间不发生相对位移,依靠微观粒子的热运动产生的热量传递现象。
4.纯粹的导热只能发生在不透明的固体之中。
5.热流密度:单位时间内通过单位面积的热流量(W/m2)。
6.常温下导热系数(W/m℃):银:427;纯铜:398;纯铝:236;普通钢:30~50;水:0.599;空气:0.0259;保温材料:0.14;水垢:1~3;烟垢:0.1~0.37.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。
8.热对流只发生在流体之中,并伴随有导热现象。
9.自然对流:由于流体密度差引起的相对运动。
10.强制对流:由于机械作用或其它压差作用引起的相对运动。
11.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。
12.辐射:物体通过电磁波传播能量的方式。
13.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。
14.辐射换热:不直接接触的物体之间,由于各自辐射与吸收的综合结果所产生的热量传递现象。
15. 传热过程:热流体通过固体壁面将热量传给另一侧冷流体的过程。
16. 传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1℃时,单位面积上的热流量(W/m 2℃)。
17. 单位面积上的传热热阻:kR K 1= 18. 单位面积上的导热热阻:λδλ=R 19. 单位面积上的对流换热热阻:hR 1=α 20. 对比串联热阻大小可以找到强化传热的主要环节。
21. 单位:物理量的度量标尺。
22. 基本单位:基本物理量的单位。
23. 导出单位:由物理含义导出,以基本单位组成的单位。
24. 单位制:基本单位与导出单位的总和。
25. 常用单位换算:Wh kcal kJ kcal Nkgf Pa atm 163.1/1;1868.4180665.91;1013251====第二章 导热基本定律及稳态导热26. 温度场:物体中温度分布的总称。
内科大传热学课程教学大纲

传热学课程教学大纲英文名称:Heattransfer课程编号:62000208学时数:64其中实验学时数:8课外学时数:0学分数:4.0适用专业:热能与动力工程一、课程的性质、目的和任务本课程为热能与动力工程专业的专业技术基础课之一,必修课,总学时为64学时,4.0学分。
课程分为课堂教学与实验两部分。
本课程的任务是使学生明确传热研究对象,掌握传热传质基本原理、基本规律,为后续专业课的学习提供充分的理论准备;也为学生以后应用基本规律解决生产实际问题、将来从事科学研究打下必要的理论基础。
在教学中要注重培养学生运用技术基础课的能力,培养其分析和解决实际问题的综合素质。
二、课程教学内容的基本要求、重点和难点第1章绪论重点:传热过程的基本概念及其传热量的计算公式1.1 热能传递的三种基本方式了解传热学的发展简史、现状及发展方向和趋势掌握热量传递的三种基本方式及传热过程1.2 传热过程和传热系数理解传热系数的物理意义第2章稳态热传导重点:导热的基本定律和稳态导热问题的分析解法难点:稳态导热问题的分析解法1.1导热基本定律理解温度场、等温面(线)、热扩散率、导热系数、热流密度等基本概念的物理意义及特点1.2导热问题的数学描写掌握导热的基本定律及导热微分方程2.3 典型一维稳态导热问题的分析解熟练掌握工程中常见的三种典型几何形状物体的热流量及温度分布的计算方法3.4 通过肋片的导热理解肋片导热的分析方法和肋片效率2.5 具有内热源的一维导热问题理解具有内热源的导热问题的分析解法第3章非稳态热传导重点:非稳态导热的基本概念难点:非稳态导热问题的分析解法3.1 非稳态导热的基本概念理解毕渥数、傅立叶数等准则数和非稳态导热、半无限大物体等基本概念的物理意义3.2集总参数法掌握集总参数法的分析解法3.3 典型一维物体非稳态导热的分析解理解一-维非稳态导热稳态的分析解法3.4 半无限大物体的非稳态导热了解半无限大物体非稳态导热问题的分析解法第4章热传导问题的数值解法重点:导热问题数值解法的基本思想和基本方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
导热问题数值求解的基本思想
(2)区域离散化
N n △y
步长
m,n
△x
m
2、步长(step length): 相邻两节点之间的距离称
为步长。记为△x、 △y。
M
15
导热问题数值求解的基本思想
(2)区域离散化
N n
△y
m,n
△x
m
3、均分网格
x方向和y方向是各自均分的, 称为均分网格。根据实际问 题的需要,网格的划分常常
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
20
导热问题数值求解的基本思想
设立迭代初场
代数方程组 的解法
直接解法 迭代解法
有限差分法
预设初场 (initial field)
21
导热问题数值求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
导热问题数值求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
18
导热问题数值求解的基本思想
设立节点物理量的代数方程
节点上物理量的代数方程成为离散方程(discretization equation)。当△x=△y时,有
上节回顾
能量守恒方程
傅里叶导热定律
稳态导热 非稳态导热
导热微分方程 边界条件 初始条件
数值解法
典型一维稳态 肋片导热 有内热源的导热
集中参数法 Bi数Fo数的影响
1
引述
对于工程中遇到的许多几何形状或边界条件复杂的导热问 题,由于数学上的困难目前仍为得到其分析解。
随着计算机技术的迅猛发展,对物理问题进行离散求解的 数值方法发展十分迅速,在求解复杂导热问题上得到了广 泛应用。
N n
1
tm,n 4 tm1,n tm1,n tm,n1 tm,n1
m,n
△y △x
上式即为△x=△y时位于计算区域内
M
m
部的节点(内节点)的代数方程。
19
导热问题数值求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
5
导热问题数值求解的基本思想
4.1.1 数值求解的基本思想
基本思想: 把原来在时间、空间坐标系中连续的物理量的场,如导热
物体的温度场,用有限个离散点上的值的集合来代替,通过求 解按一定方法建立起来的关于这些值的代数方程,来获得离散 点上被求物理量的值。
这些被求物理量的值的集合称为该物理量的数值解。
6
导热问题数值求解的基本思想
4.1.2 导热问题数值求解基本步骤
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否 是否收敛?
是 解的分析
7
导热问题数值求解的基本思想
以下图所示的二维矩形域内的稳态、无内热源、常物性的 导热问题为例,对数值求解过程的六个步骤进一步说明。
h2
t tf
y
0,
t y
h1
t tf
y
W
,
t y
h3
t tf
11
导热问题数值求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
12
导热问题数值求解的基本思想
(2)区域离散化
N n
△y
m,n
△x
m
需要掌握的概念:
1、节点(结点,node) 2、步长(step length) 3、均分网络 4、元体(element )或 M 控制容积(control volume)
13
导热问题数值求解的基本思想
(2)区域离散化
节点 N
n m,n
△y
△x
m
1、节点(结点):用一系 列与坐标平行的网格线把求 解区域划分成许多子区域, 以网格线的交点作为需要确 定温度值的空间位置,称为 节点(也称为结点,node) M 节点位置以该点在两个方向
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
22
导热问题数值求解的基本思想
求解代数方程组
W
h3,tf
t0 y
N n △y
x h1,tf
m,n
△x
m
左图中,除m=1的左边界
上各节点的温度为已知外,
h2,tf 其余(M-1)×N个M-1)×N个代数方程,
构成了一个封闭的代数方
是不均匀的。
M
16
导热问题数值求解的基本思想
(2)区域离散化
N n
△y
m,n
△x
m
4、元体(element)或控制容积 (control volume)
每个节点按都可以看做是以它为 中心的一个小区域的代表,它由 相邻两节点连线的中垂线构成。 这样节点所代表的小区域称为元 M 体或控制容积。
17
W
h3,tf
t0 y
x h1,tf
h2,tf
H
8
导热问题数值求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否 是否收敛?
是
解的分析
9
导热问题数值求解的基本思想
(1)建立控制方程及定解条件
控制方程:描写物理问题的微分方程。
程组。
M
23
导热问题数值求解的基本思想
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
否
是否收敛
是 解的分析
24
导热问题数值求解的基本思想
讨论是否收敛
是否收敛的判断是指判断本次迭代计算所得之解与上一次 迭代计算所得之解的偏差时候小于允许值。 代数方程一经建立,其中各项的系数在整个求解过程中不 再变化,称为线性问题。 如果物性为温度系数,在迭代过 程中系数要相应地不断更新。这种 问题称为非线性问题。
2
引言
数值方法主要有:有限差分法、有限元法及边界元法。 有限差分法具有物理概念明确、实施方法简便的特点。 本章以理论介绍为主,为今后数值计算(也称数值模拟)
做理论准备。
3
第四章 热传导问题的数值解法
主讲人:郭智群
4
目录
导热问题数值求解的基本思想 内节点离散方程的建立方法 边界节点离散方程的建立及代数方程的求解
导热问题的控制方程即为导热微分方程。 二维、稳态、
无内热源、常物性的导热问题的导热微分方程为:
2t x 2
2t y 2
0
请同学写出边界条件
10
导热问题数值求解的基本思想
四个边界条件:
W
h3,tf
t0 y
x h1,tf
h2,tf
H
x 0, t t0
x
H ,
t x