二次回归正交组合_正交旋转试验的程序设计

合集下载

二次回归正交旋转组合设计优化大肥蘑菇液体培养基

二次回归正交旋转组合设计优化大肥蘑菇液体培养基

二次回归正交旋转组合设计优化大肥蘑菇液体培养基杨琴;张桂香;杨建杰;王英利【摘要】为优化大肥蘑菇液体培养基,通过单因子试验确定大肥蘑菇最佳碳源(葡萄糖)、最佳氮源(蛋白胨)及矿物质的适宜浓度(用量)范围,采用二次回归旋转组合设计研究3个参数对大肥蘑菇菌丝生物量的影响,建立数学模型,以获得适宜的配方组合.结果表明,葡萄糖浓度、蛋白胨浓度对大肥蘑菇菌丝体生物量的影响达极显著水平,矿物质添加剂用量达显著水平.最优培养基参数为葡萄糖浓度33.26 g/L、蛋白胨浓度4.24 g/L、矿物质添加剂1.82 mL/L,在该参数组合下,28℃振荡培养8 d,菌丝干重可达16.44 g/L,且经反复试验验证可行.【期刊名称】《甘肃农业科技》【年(卷),期】2017(000)011【总页数】6页(P12-17)【关键词】大肥蘑菇;培养基;二次回归旋转组合;优化【作者】杨琴;张桂香;杨建杰;王英利【作者单位】甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070;甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070;甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070;甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070【正文语种】中文【中图分类】S646.9博斯腾湖位于巴音郭楞蒙古自治州焉耆盆地的博湖县境内,总面积1 228 km2,蓄水量8.0×109m3,是开都河的归宿,孔雀河的源头,更是一座天然的大型调节水库,也是新疆最大的内陆淡水湖。

大肥蘑菇(经ITS序列分析确定[1])是在新疆博斯腾湖特殊环境条件下形成的极为珍贵的野生食用菌,在分类上隶属于担子菌纲(Basidiomycetes)伞菌目(Agaricales)蘑菇科(Agaricaceae)蘑菇属(Agaricua),其子实体硕大、菌肉肥厚细嫩,通过营养成分、氨基酸组成、矿物质、脂肪酸营养成分的测定[2-3],发现大肥蘑菇具有极高的风味物质、营养价值和保健作用。

二次回归正交旋转组合设计优化21~42日龄肉仔鸡胆碱和蛋氨酸需要量

二次回归正交旋转组合设计优化21~42日龄肉仔鸡胆碱和蛋氨酸需要量

汤建平
( 中国农 业科学院饲 料研究所 , 家禽 营养与饲料 研究室, 北京 10008 1)
要: 本试验以低胆碱 � 低蛋氨酸饲粮为基础饲粮, 通过两因子二次回归正交旋转组合设计, 对 21 42 日龄肉仔鸡胆碱和蛋氨酸需要量进行研究� 试验选用 21 日龄爱拔益加( A A ) 肉仔鸡 摘 48 0 只 , 9 12 组为 中心组 , 随机分为 12 个组 , 其中 1 8 组为试验组 , 每组 4 个重复 , 每个重复 10 只鸡, 公母各占 1/ 2� 分别以胆碱和蛋 氨酸为自变量, 以反映 肉仔鸡生长性能 和屠宰性能的 各项指标为因变量 拟合回 归方 程, 估计 21 42 日 龄肉 仔鸡 胆碱和 蛋氨 酸的 需要 量� 试验期 21 d� 结果表明 : 胆碱和蛋氨酸水平对 21 42 日龄肉仔鸡的平均日采食量 � 料重比 � 腹脂率和肝 kg 时 , 脂率有显著影响( P < 0.05) � 当胆碱水平在 8 60 1 120 m g / 肉仔鸡平均日采食量随着蛋 氨酸水平的增加而升高, 蛋氨酸水平增至 0.40% 后, 继续增 加对平均日采食量的改善作用不明 0.42% , kg 时 , 显 ; 蛋氨酸水平在 0.35% 胆碱水平在 8 6 0 1 120 m g / 肉仔鸡的料重比达到最 0.47 % 时 , 低值 ; 蛋氨酸水平在 0.30% 随着胆碱水平的增加肉仔鸡腹脂率呈下降趋势 ; 当蛋氨 酸水平在0.30% 0.40% , 胆碱水平在 1 000 1 400 m g / kg 时, 肉仔鸡肝脂率随着胆碱水平的 增加和蛋氨酸水平的降低呈下降趋势 � � 在本试验条件下, 当 胆碱水平为 99 0 1 030 m g / kg , 蛋 0.40% � 0. 43% , ; 1 7 8 0 氨酸 水 平 为 时 肉 仔 鸡 可 达到 最 佳 生 长性 能 当胆 碱 水 平 为 1 8 8 0 mg / kg , 蛋氨酸水平为 0.37 % 中图分类号 : S8 31 0.38 % 时 , 肉仔鸡可达到最佳屠宰性能 � 关键词: 胆碱 ; 蛋氨酸 ; 肉仔鸡; 二次回归正交旋转组合设计 ; 响应面 文献标识码 : A 文章编号 : 1006 267 X ( 2012) 06 1019 11 数都是围绕胆碱与其他营养物质的 相互关系进行 的

回归正交试验设计

回归正交试验设计
4
-1
-1
1
1
1
1/3
1/3
5
1
0
0
1
0
1/3
-2/3
6
-1
0
0
1
0
1/3
-2/3
7
0
1
0
0
1
-2/3
1/3
8
0
-1
0
0
1
-2/3
1/3
9
0
0
0
0
0
-2/3
-2/3
二元二次回归正交组合设计编码表
因素水平编码
01
试验因素的水平被编为-γ,-1,0,1,γ
02
变化间距:Δj=上水平-零水平=零水平-下水平
第8章 回归正交试验设计
Orthogonal Regression Design
演讲人姓名
正交设计:优方案只能限制在已定的水平上,而不是一定试验范围内的最优方案 回归正交设计(orthogonal regression design) : 可以在因素的试验范围内选择适当的试验点 用较少的试验建立回归方程 能解决试验优化问题 不适合非数量性因素
8.1 一次回归正交试验设计及结果分析
建立试验指标(y)与m个试验因素x1,x2,…,xm之间的一次回归方程 例:m=3时,一次回归方程: y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3 其中x1,x2,x3表示3个因素;x1x2,x1x3,x2x3表示交互作用 若不考虑交互作用,为三元一次线形回归方程: y=a+b1x1+b2x2+b3x3
二次项偏回归平方和:
一次项偏回归平方和:

第六章 §6 二次回归的旋转设计

第六章 §6 二次回归的旋转设计

五,k>2 实现旋转设计借助于组合设计思想
1.中心组合思想
(1)m c 个点布置在半径 R c = k的球面上 (2 )2k个点布置在半径 R = r的球面上,通常位于 (3)m 0 个点布置在因子区域的 中心
n = m c + 2k + m 0 坐标轴上,称 r为星号臂
2. k = 2 D = 1 1 1 1 r r 0 0 0 0 1 1 1 1 0 0 r r 0 0
§6 二次回归的旋转设计
一,问题
y = β 0 + ∑ βi x i + ∑ βij x i x j + ∑ β ii x i2 + ε
i i< j i
要寻找旋转设计 D, X′X满足旋转性条件 0 第 (0,)元素为 n x 2 = λ 2 n i = 1, , k ∑ ji j ∑ x 4 = 3∑ x 2 1 x 2 2 = 3λ 4 n i1 ≠ i 2 ji ji ji j j k λ4 ≠ 2 λ2 k + 2
∑x
j j
ji
= ∑ x ji1 x ji 2 = ∑ x x ji 2 = 0
2 ji1 j j
x 2 = 4 + 2r 2 ∑ ji x21x2 2 = 4 ∑ ji ji
j
x 4 = 4 + 2r 4 ∑ ji
j
为满足旋转性条件
∑x
j
4 ji
= 3∑ x x
2 ji1 j
2 ji 2
∴ 4 + 2 r 4 = 12 r =
2
3.k ≥ 3
∑x
j j
ji
= ∑ x ji1 x ji 2 = ∑ x 2 1 x ji 2 = 0 ji

4、高级实验设计—回归的旋转设计(Regressional Rotary Design)

4、高级实验设计—回归的旋转设计(Regressional Rotary Design)
2 i 2 j
x
i,j =1,2„P;
待定参数
以上为 P 元二次回归旋转设计的旋转性条件。
此外,为了使旋转设计成为可能,还必须使信
息矩阵 A 不退化,为此,必须有不等式:
4 p 2 2 P 2
上式为 P 元二次回归的非退化条件。 已证明,只要使 N 个试验点不在同一个球面上, 就能满足非退化条件。或者说只要使 N 个试验点至少 分布于两个半径不等的球面上,就有可能获得旋转设
P 2 2 ˆ D y P 2 4 PN
4 1 2 P 1 4 P 1 4 1 2 2 4 P 2 4 4
(4.11) 由式(4.11)经研究表明,只有采用恰当的方法 确定 4 ,才能满足通用性的要求。如何确定 4 ?对 4 有什么要求呢?总的来说,它必须使上式中 i处的
ˆ 的 二次旋转组合设计具有同一球面预测值 y
方差相等的优点,但回归统计数的计算较繁琐,
若使它获得正交性就能简化计算手续。
在二次旋转组合计划中,一次项和交互项的 回归系数 bj ,bij 仍保持正交,但 b0 与 bjj 之间,
以及 bii 与 bjj 之间都存在相关,即不具正交性,
它们之间的相关矩分别为:
计方案。
为了获得 P 元二次旋转设计方案,就要求既要
满足非退化条件式,又要满足旋转性条件式。
如何才能满足这两方面的条件呢?这主要借助
于组合设计来实现,因为组合设计中 N 个试验点:
N mc m m0
分布在三个半径不相等的球面上:
mc 个点分布在半径为 P 的球面上; c m 个点分布在半径为 的球面上; m0 个点分布在半径为 0 0 的球面上;

第九章_回归的旋转设计

第九章_回归的旋转设计

因此,采用组合设计选取的试验点,完全能够满足非退化条件式 (13- 30) ,即信息矩阵 A 不会退化。此外,采用组合设计,其信息矩阵 A 的 元素中 2 x j xi x j xi x j 0

m 的球面上; 的球面上; mγ个点分布在半 m0个点分布在半径 0 的球面上;
4 2 ( ) f 1( 4) i f 2 4 i 最小
2
(13-35)
式中
f
4
m 2 (m 2) m N
4 4
f
2
4
4
(m1) (m1) 2 (m 2)
4 2 4
f 1
1

4

cov (b ,b ) 2 t N cov (b ,b )=( )t N
2 jj 2 4 2 2 2 ii jj 4

(13-32)
其中
t
2 (m 2) 2 4 m 2 4
1
§1 旋转设计的基本原理
对于 m 个因素的二元旋转组合设计,式(13-33)中的m、mc和 γ 都是固 定的。因此,只有适当地调整 N 才能使 λ4 /λ22 =1 ,而试验处理数 N = mc+mγ +m0 同样,对于 m 元二次旋转组合设计,上式中的 mc 和 mγ 也都是固定的。这 样就只能通过调整中心点的试验处理数 m0 使 λ4 /λ22 =1。由此可见,适当 地选取 m0 ,就能使2次旋转组合设计具有一定的正交性。为了方便设计, 已将 m 元不同实施的 m0 和 N 列入表13-24中。 综上所述,只要对平方项施行中心化变换,并适当调整 就能获得二次 正交旋转组合设计方案,这方面的计划见表13-27和表13-28。

二次正交旋转组合设计优化明胶微球的合成工...

二次正交旋转组合设计优化明胶微球的合成工...
关键词:明胶微球;二次正交旋转组合设计;合成;优化 中图分类号:TQ464.8 文献标识码:A 文章编号:1008-0511(2008)01-o001-04
明胶微球是一种基于三螺旋无规则链状蛋白 结构通过化学方法合成的明胶人造衍生物[1 ̄3】。 明胶微球作为药物载体,具有很多优点:如可包裹 吸附药物;在生物体内具有一定的可变形性,根据 血管丛的微环境来改变自己的形状[41;降解时,微 球的骨架崩解前其载药能力可保持相当长时 间[5],有效延长所载药物的释放时间,提高药效。 同时,明胶微球表面存在大量的一NHo和 一COoHc6]可实现对部分金属离子的吸附,有望 成为一种新型的吸附剂。
水平 雕2以平均粒镪为指标的主因子效应
2.3双网子效应分析 囱式(2>篱诧回IEl努纛,得裂X2X3蘸因子互
作效应最显著,得到图3。从图3可看出,随着交 联剂质甓分数和W/O体积比增加,微球溶胀度 都保持先升后降。
豳5以平均粒檄为指标的X1与鹣数因子互作效应

\o
豫S以溶胀度为撮标瓣X2与x3双匿子夏镎效_畿
嬲--2.45躬一1.39嬲
(4)
y2=16.75+O.53 Xl--0.12 X2--0.55 Xs一
0.24 X1X2+0.09 XlXs—O.36 X2 x3+O.49嬲
(5)
通过优化又得到了如下合成工艺:pH=4.5,
交联剂质量分数为o.7,w/O体积比为3,相应的
微球溶胀度及平均粒径的预测值分别为: 380.35%和16.61 pm。试验检验表明,该优化工 艺是可行的。
作者采用w/O型乳化一固化法r8]合成了明胶 微球,考察了pH值、交联剂质量分数、w/0体积
收稿日期:2007—10.15 作者简介:余丽丽(1983一),女,浙江衢州人,陕西科技大学 硕士生.主要从事天然产物改性等方面的研究。 *基金项目:国家自然科学基金资助项目(50573046);陕 西省教育厅产业化培育项目(02JC05);陕西省星火计划 (2004kx3—10)。

第5章 回归正交试验设计

第5章 回归正交试验设计
本例中,零水平试验次数m0=3,进行失拟行检验。
第一节 一次回归正交试验设计
(4)失拟性检验
本例中,零水平试验次数m0=3,进行失拟行检验。
FLf

SSLf / dfLf SSe1 / dfe1

0.0963/ 5 0.00667/ 2

5.775

F0.1(5,2)

9.29
表明失拟不显著,回归模型与实际情况拟合得很好。
第一节 一次回归正交试验设计
4 回归方程及偏回归系数的方差分析 4.1 无零水平试验 4.1.2 计算自由度
第一节 一次回归正交试验设计
4 回归方程及偏回归系数的方差分析 4.1 无零水平试验 4.1.3 计算均方
MSj

SS j df j
MSkj

SSkj dfkj
j k,k 1,2,...,(m 1)
n i 1
yi

y
n
z ji yi
bj

i 1
mc
n
(zk z j )i yi
bkj i1 mc
j k,k 1,2,...,(m 1)
第一节 一次回归正交试验设计
3 一次回归方程的建立 通过计算得到回归系数之后,可以直接根据它们绝对值的大
小来判断各因素和交互作用的相对重要性,而不用转换成标准 回归系数。
n
z ji 0
i 1
n
z ji zki 0 ( j k )
i 1
这些特点说明了转换之后的正交表同样具有正交性。
第一节 一次回归正交试验设计
2.4 试验方案的确定
确定试验方案时,将规范变量zj安排在一次回归正交编码表 相应的列中,即进行表头设计。

第九章回归旋转试验设计

第九章回归旋转试验设计

9回归旋转试验设计本章要点:主要介绍了回归旋转设计的基本原理、实现条件、组合设计的步骤和统计分析方法,并给出二次回归正交旋转试验设计的计算案例。

重点:回归正交旋转设计的实现条件、组合设计的方法、方程的建立及显著性检验。

难点:回归正交旋转设计正交和旋转的实现条件及其统计分析。

9.1回归旋转试验设计的基本原理前面所介绍的“回归正交设计”,具有试验处理数比较少,计算简便、消除回归系数之间的相关性等优点。

但它也存在一定的缺点,即二次回归预测值的方差随试验点在因子空间的位置不同而呈现较大的差异。

由于误差的干扰,就不易根据预测值寻找最优区域。

为了克服这个缺点,人们通过进一步研究,提出了回归旋转设计(whirly design )。

所谓旋转性是指试验因素空间中与试验中心距离相等的球面上各处理组合的预测值的方差具有几乎相等的特性,具有这种性质的回归设计称回归旋转设计。

这种设计的意 义在于可以直接比较各处理组合预测值的好坏,从而找出预测值相对优良的区域。

9.1.1回归设计旋转性条件旋转设计包括一次、二次和三次旋转设计,但研究中最常见的设计是二次回归旋转设计。

下面以三元二次回归方程来讨论回归正交的旋转性问题。

二次正交多项式方程的估计值为: 如果以三因素二次回归正交设计的数学模型为例:因此其信息矩阵A 为:T A=x x=ˆy ˆy332011ˆj j ij i j jj jj i jj y b b x b x x b x ===+++∑∑∑2220112233121213132323111222333ˆy b b x b x b x b x x b x x b x x b x b x b x =+++++++++1231213231231121312131231121322222232a a a a a a a a a a a aa a a a a a a a a a a a a a a a a n x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑223121232312223312313231322222322222a a a a a a a a a a a a a a a a a a a a a a a a a x x x x x x x x x x x x x x x x x x x x x x x x x ∑∑∑∑∑∑∑∑∑∑∑∑∑ 对233121231231212123232222332a a a a a a a a a a a a a a a a a a x x x x x x x x x x x x x x x x x x∑∑∑∑∑∑∑∑∑称13123131231323123232322232322233a a a a a a a a a a a a a a a a a a a a a x x x x x x x x x x x x x x x x x x x x x ∑∑∑∑∑∑∑∑∑ 1121342222a a a a a x x x x x ∑∑∑ 部223422a a a x x x ∑∑ 分34a x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎝⎭∑上述信息矩阵中的各个元素可用一般形式表达为: ,其中x 的指数1Q 、2Q 、3Q 分别可取0、1、2、3、4等非负整数。

一次回归正交设计、二次回归正交设计、二次回归旋转设计说明

一次回归正交设计、二次回归正交设计、二次回归旋转设计说明

一次回归正交设计某产品的产量与时间、温度、压力和溶液浓度有关。

实际生产中,时间控制在30~40min,温度控制在50~600C,压力控制在2*105~6*105Pa,溶液浓度控制在20%~40%,考察Z1~Z2的一级交互作用。

因素编码Z j(x j) Z1/min Z2/o C Z3/*105Pa Z4/%下水平Z1j(-1)30 50 2 20上水平Z2j(+1)40 60 6 40零水平Z0j(0)35 55 4 30变化间距 5 5 2 10编码公式X1=(Z1-35)/5 X2=(Z2-55)/5X3=(Z3-4)/2 X4=(Z4-30)/1选择L8(27)正交表因素x1,x1,x3,x4依次安排在第1、2、4、7列,交互项安排在第3列。

试验号X0 X1(Z1) X2(Z2) X3(Z3) X4(Z4) X1X2 Yi1 1 1 1 1 1 1 9.72 1 1 1 -1 -1 1 4.63 1 1 -1 1 -1 -1 10.04 1 1 -1 -1 1 -1 11.05 1 -1 1 1 -1 -1 9.06 1 -1 1 -1 1 -1 10.07 1 -1 -1 1 1 1 7.38 1 -1 -1 -1 -1 1 2.49 1 0 0 0 0 0 7.910 1 0 0 0 0 0 8.111 1 0 0 0 0 0 7.4 Bj=∑xjy 87.4 6.6 2.6 8.0 12.0 -16.0aj=∑xj2 11 8 8 8 8 8bj = Bj7.945 0.825 0.325 1.000 1.500 -2.00/aj393 5.445 0.845 8.000 18.000 32.000Qj =Bj2 /aj可建立如下的回归方程。

Y=7.945+0.825x1+0.325x2+x3+1.5x4-2x1x2显著性检验:1、回归系数检验回归关系的方差分析表变异来源SS平方和Df自由度MS均方F显著水平x1 5.4451 5.44576.250.01 x20.84510.84511.830.05 x38.00018.000112.040.01 x4 18.000118.000252.100.01 x1x2 32.000132.000448.180.01 回归64.29 5 12.858180.080.01 剩余0.357 5 0.0714失拟0.097 3 0.0323 0.25 <1 误差e 0.2620.13总和64.64710经F检验不显著的因素或交互作用直接从回归方程中剔掉,不必再重新进行回归分析。

二次回归正交设计000

二次回归正交设计000

1201111p p ppj j kj k j jj jj k j k j y b b X b X X b X -===+==+++∑∑∑∑三、二次回归正交设计二次回归正交设计是一种具有正交、回归、均匀和较好饱和程度的一种试验设计方法,其特点是能以较少的试验获得较大量的信息,并可得出试验目标与各试验因素之间的一次效应、一次交互效应和二次项之间的关系,能够满足一般非线性问题的要求,从而使统计分析的结果更加完善。

同时利用该方法还可根据求出的回归方程,寻求最正确的工艺条件或搭配方案,使试验设计到达最优化。

当用一次回归正交设计描述某一实际问题得到的回归方程经检验为不显著时,就需考虑用二次或更高次的回归方程来描述。

〔一〕二次回归数学模型假设影响试验目标的因素〔自变量〕有p 个,那么所求的二次回归方程的一般形式为其中:〔1〕j X 、k j X X 、2j X 分别是一次项、一次交互作用项与二次项的编码因素;〔2〕0,,,j kj jj b b b b 分别是与之相对应的回归系数,显然,回归系数的个数q 为12112221112(1)(2)2p p p p p p q C C C C C Cp p +=+++=++==++根据编码空间的试验设计方案和试验结果,即可求得回归系数,且试验的次数就不能小于q ;同时,每个变量至少要取3个水平。

如果因素水平多,那么需做的试验次数就增多,必如:假设考虑4个因素,每个因素3个水平,那么各种搭配组合的试验都要做的话,那么需做34=81次试验,而待确定的回归系数有C24+2=15个,如此多的试验与待定参数在实际中是难以实现的,如果设计得不合理,那么试验次数与待定参数就会更多,因而很有必要对试验进行设计,有很多设计可用于二次回归数学模型,而二次回归正交设计那么是一种非常有效的处理方法.2. 二次回归正交组合设计〔1〕组合设计所谓组合设计就是在一次回归设计的组合点〔各试验点〕的根底上,再增加一些特定的试验点,把它们组合起来形成试验方案。

第四节 二次回归正交设计

第四节  二次回归正交设计

第四节二次回归正交设计在应用一次回归正交设计时,如果经过假设检验,发现一次回归方程不合适,就需要用二次或更高次回归方程描述。

通常情况下,使用二次回归一般即可满足要求。

一、二次回归正交试验的组合设计方法二次回归设计就是采用二次多项式作为回归方程。

当变量数为P 时,二次回归模型的一般形式为(3-3-18) 在二次回归模型中,共有q个待估计参数因此,要建立有p个变量的二次回归方程,试验次数应大于q。

而且为了估计未知参数,每个变量所取得的水平不应小于3。

在三水平上做p个变量的全因素试验,试验次数为3p。

当p=4时,三水平的全因素试验次数数量是81次,比p=4时的二次回归系数要多4倍以上,以致剩余度过大。

为了有效地减少不必要的试验次数,提出一种组合设计法。

这种方法是在因素空间中选择几类具有不同特点的点,把它们适当组合成为一个试验计划,此计划应尽量减少试验次数,并且有正交性。

以p=2为例,在有两个变量x1,x2场合下,组合设计由以下9个试验点组成(见表3-3-13):表3-3-13这9个试验点在平面图上的位置如图3-3-2所示。

图3-3-2当p=3,即有三个变量时,组合设计由15个试验点组成,见表2-14。

这15个试验点在空间的位置,如图3-3-3所示。

表3-3-14一般地,p个变量的组合设计由下列三类试验点组成:第一类点为二水平(-1和1)全因素试验的试验点,这类试验点共有2p个,如果采用1/2或1/4 实施法,则为2p-1或2p-2个试验点。

第二类点为分布在p个坐标轴上的星号点,这类试验点共有2p个,它们与中心点的距离为,称为星号臂。

是待定系数,可根据不同的要求确定值。

第三类试验点为中心点,即各变量都取零水平的试验点。

在中心点上的试验可以只做一次,也可以重复做若干次。

若以N0表示第一类试验点个数,以m0表示第三类试验点个数,则p个变量的组合设计试验点数N为:N=N0+2p+m0用组合设计安排的试验计划有一系列优点:首先,它的试验点比三水平的全因素试验少得多,但仍保持足够的剩余度。

二次回归正交组合设计及其统计分析

二次回归正交组合设计及其统计分析

二次回归正交组合设计及其统计分析一、组合设计(一)组合设计的概念组合设计:在自变量(因素,也称因子)空间中选择几种类型的点,组合成的试验计划。

(P.31 )由于组合设计可选择多种类型的点,而且有些类型的点的数目(试验处理数)又可适当调节,因此组合设计在调节试验处理数N (从而在调节剩余自由度)方面,要比全面试验灵活得多。

(二)组合设计的组成二次回归正交组合设计试验方案由三种类型的点组成,即:式中:N为处理组合数;为二水平析因点,(P为因素个数);为轴点,;为中心区(或原点)。

①二水平析因点():这些点的每一个坐标(自变量)都各自分别只取1或;这些试验点的数目记为。

当这些点组成二水平全面试验时,。

而若这些点是根据正交表配制的二水平部分实施(1/2或1/4等)的试验点时,。

调节了这个,就相应地调节了剩余自由度。

②轴点():这些点都在坐标轴上,且与坐标原点(中心点)的距离都为。

也就是说,这些点只有一个坐标(自变量)取或,而其余坐标都取零。

这些点在坐标图上通常用星号标出,故又称星号点。

其中称为轴臂或星号臂,是待定参数,可根据下述正交性或旋转性要求而确定。

这些点的数目显然为2P,记为。

③原点():又称中心点,即各自变量都取零水平的点,该试验点可作1次,也可重复多次,其次数记为。

调节,显然也能相应地调节剩余自由度。

(三)试验点(处理)的分布情况1 ' P=2 (二因素)的分布情况(1 )处理组合数:若=1,处理组合数为9,即(2)处理组合表221 o (P.32)(3)处理组合分布图221 o (P.31)二因素(X1、X2)二次回归组合设计的结构矩阵如表 2.2.2。

(P.32 )2、P=3 (三因素)的分布情况(1)处理组合数:若■,处理组合数为15,即(2)处理组合表:P=3 (X1、X2、X3 )二次回归正交组合设计,由15个试验点组成。

如表223 所示。

(P.33)(3)处理组合分布图222。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档