量子力学第五,第六章作业

合集下载

量子力学作业习题

量子力学作业习题

第一章量子力学作业习题[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明:( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射.[2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计:( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释.( 1 ) A 缝开启,B缝关闭;( 2 ) B 缝开启,A 缝关闭;( 3 )两缝均开启.[6]验算三个系数数值:(12;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=][2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。

量子力学第五章

量子力学第五章

pˆ12ψ (1,2) =ψ (2,1)
∴ pˆ12ψ (1,2) = λψ (1,2)
这就是交换算符的本征值方程. 且λ就是其本征值.
又有: pˆ12 pˆ12ψ (1,2) = pˆ12λψ (1,2) = λpˆ12ψ (1,2) = λ2ψ (1,2) ∴ pˆ122ψ (1,2) = λ2ψ (1,2)
问题: 量子力学中是否存在没经典对应量的力学量?
对由多个粒子组成的系统,量子力学中还有其它 新的基本假设吗?
能够举一些使用量子力学去解决实际问题的例子 吗?
§1、电子的自旋
一、实验与假设: 1) 斯特恩―盖拉赫实验 1921年,施忒恩(O.Stern)和盖拉赫(W.Gerlach)发现 一些处于S 态的原子射线束,在非均匀磁场中一束分为两束。
∵ pˆ122ψ (1,2) = pˆ12ψ (2,1) =ψ (1,2)
∴ λ2ψ (1,2) =ψ (1,2)
λ2 =1
λ =1
λ = −1
对λ=1有: 对λ=−1有:
pˆ12ψ (1,2) =ψ (1,2)
pˆ12ψ (1,2) = −ψ (1,2)
称为对称性波函数. 称为反对称性波函数.
可以证明: 全同粒子的波函数的这种交换对称性是不随时间 改变的.
2)自旋角动量算符的本征值与自旋量子数:
① 由于电子的自旋角动量它在空间任何方向的投影只取两个值 Sz=± /2.这就是说:
Sˆx,Sˆy,Sˆz 的所有可能的测得值只有+ /2和- /2.因此, 这就是它 们所有可能的本征值

S2的本征值:
S
2 x
=
S
2 y
=
S
2 z
=

量子力学第五章习题

量子力学第五章习题

第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知()()0ˆHU r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即()2004ze U r rπε=-()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为()204ze U r rπε=-在0r r <的区域, ()U r 可由下式()r U r e Edr ∞=-⎰其中电场为()()30233000002014,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε⎧=≤⎪⎪=⎨⎪>⎪⎩则有:()()()()22320002222222000330000001443848r rr r rr U r e Edr e EdrZe Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞∞=--=--=---=--≤⎰⎰⎰⎰因此有微扰哈密顿量为()()()()222200300031ˆ220s s Ze r Ze r r r r r H U r U r r r ⎧⎛⎫--+≤⎪ ⎪'=-=⎨⎝⎭⎪>⎩其中s e =类氢原子基态的一级波函数为()(321001000003202exp 2Zra R Y Z a Zr a Z ea ψ-==-⎫=⎪⎭按定态微扰论公式,基态的一级能量修正值为()()()00*00111110010032222222000000ˆ131sin 4422Zrr a s s E H Hd Ze Ze Z r d d e r dr a r r r ππψψτϕθθπ-''==⎡⎤⎛⎫⎛⎫=--+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰00322222430000031422ZrZr Zr r r r a a a s Z Ze e r dr e r dr erdr a r r ---⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎰⎰⎰ 完成上面的积分,需要作作三个形如0b m y y e dy -⎰的积分,用分部积分法,得00002220002222000000022112222Zr Zr r a a y Zr Zr a a a erdr ye dyZ a Zr a a a e e r Z a Z Z Z ----⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-=-++⎢⎥⎨⎬ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎰⎰00002222332200000002322000000222222222222Zr Zr Zrr a a a y Zr a a a Zr Zr er dr y e dy e Z Z a a a a a a er r Z Z Z Z ----⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥==-++-⎨⎬ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰0000225440002500000000040002222224242412422424222Zr Zrr a a y Zr a a er dr y e dyZ a Zr Zr Zr Zr e Z a a a a a a a Z Z Z ---⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥ ⎪=+--+++ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭⎛⎫⎛⎫⎛=-+ ⎪ ⎪⎝⎭⎝⎭⎰⎰0002325234000000025234432000000000023412424222233324222Zr a Zr a a a a r r r r e Z Z Z a a a a a a r r r r e Z Z Z Z Z Z --⎛⎫⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭我们可以计算11E ,0000003232122000010020025234432000000000032340203422222233312422222Zr a s Zr a Zr a a a a a Z E Ze e r r a r Z Z Z Z a a a a a a r r r r e r Z Z Z Z Z Z a e Z ---⎧⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪=--+++⎢⎥⎨ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩⎡⎤⎛⎫⎛⎫⎛⎫--+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎛⎫-- ⎝00200022222000223230000022333332222Zr a ssa a r Z Z a a a Z Ze e Ze r Zr Z r r Z r a -⎫⎡⎤⎛⎫⎛⎫⎪++⎢⎥⎬⎪⎪ ⎪⎭⎝⎭⎝⎭⎢⎥⎪⎣⎦⎭⎛⎫⎛⎫=-++--- ⎪ ⎪⎝⎭⎝⎭但是既然是近似计算,我们再适当地作一次近似.氢原子的半径约为13~10r cm -, 而80~10aa cm Z -=.所以有5213510821010~110r a r e e a ------=≈≈ 于是022223222212522001003333000004314311222232525rrs s s s s a s Ze Ze Ze r Ze Ze r r E er dr r Ze r a r r r a r r a -⎡⎤⎛⎫⎡⎤=--+=-++=⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰这就是基态能量的一级修正.而准确到一级近似的能量为()()222222222000011113220024411252525s s s s Ze Ze r Ze r Z e Z r E EEa a a a a a ⎛⎫⎛⎫=+=-+=--=-- ⎪ ⎪⎝⎭⎝⎭5.2 转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。

量子力学基础教程答案

量子力学基础教程答案

量子力学基础教程答案【篇一:量子力学课后答案】class=txt>????? 第一章绪论第二章波函数和薛定谔方程第三章力学量的算符表示第四章态和力学量的表象第五章微扰理论第六章弹性散射第七章自旋和全同粒子?301.1.由黑体辐射公式导出维恩位移定律:?mt?b,b?2.9?10m?c。

证明:由普朗克黑体辐射公式:8?h?31 ??d??d?, h3c ekt?1c c及??、d???2d?得?? 8?hc1?? ?5,hc?e?kt?1 d?hc令x?,再由??0,得?.所满足的超越方程为 ?d? ktxex 5?x e?1 hc x?4.97,即得用图解法求得?4.97,将数据代入求得?mt?b,b?2.9?10?3m?0c ?mkt1.2.在0k附近,钠的价电子能量约为3ev,求de broglie波长.0hh?10解:? ???7.09?10m?7.09a p2me # 3e?kt,求t?1k时氦原子的de broglie波长。

1.3. 氦原子的动能为 2h0hh?10??12.63?10m?12.63a 解:? ??p2me3mkt ?23?1其中m?4.003?1.66?10?27kg,k?1.38?10j?k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

绪论第一章b?10t,玻尔磁子?b?0.923?10?23j?t?1,求动能的量子化间隔?e,并与t?4k及已知外磁场t?100k 的热运动能量相比较。

p21解:(1)方法1:谐振子的能量e????2q2 2?2p2q2可以化为??1 22 ?2e?2e? ????2???2e 的平面运动,轨道为椭圆,两半轴分别为a?2?e,b?,相空间面积为 2 ??2?eepdq??ab???nh,n?0,1,2,? ?? e?nh?,n?0,1,2,? 所以,能量方法2:一维谐振子的运动方程为q????2q?0,其解为q?asin??t??? 速度为 q??a?cos??t???,动量为p??q??a??cos??t???,则相积分为 2222tta??a??t222pdq? a??cos??t???dt?(1?cos??t???)dt??nh,n?0,1,2,? 002222a??nh e???nh?,n?0,1,2,? 2t 2?v?v evb?(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

曾谨言量子力学习题解答 第六章

曾谨言量子力学习题解答 第六章

^ ^ ^ ^ ^ 1 1 1 ( p r ) [ r p p r ] 2 r r
1 ^ ^ 1 1 ^ ^ = (p r ( ) ( ) r p 2 r r ^ ^ 1 ^ ^ 1 1 ^ = [ p r r p ] p r 2 r r
2 2 2 2 x 2 px y2 py z 2 x 2 px y2 py z 2 p z2 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
得: ( r p ) ( r ) ( p ) ( r p ) 2i r p
2 2 2 2
^ ^
^
^
^ ^
2 2 2 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
^
^
^ ^
^
^
^ ^
+ (z px z p x x p z x p z z p x x pz )
2 2 2 ^
^
^
^ ^
^ ^
^ ^
^ ^
^ 2
^
+(x
^ 2
2 ^
利用以上结果,或者直接对 p r 取厄米共轭式,都证明 p r p r
^

因此可认为 p r 是厄米的,证明在后面,但是关于这问题学术上有争论, 因为它还需要满足另一些条件(Liboff)。 C f R L Liboff: American Journal of Physics 976(1973)
m1 m ) y )( 2 m m Z z
(Y
(Z
m m1 z )( 2 )} m Y y m

量子力学答案(第二版)苏汝铿第五章课后答案5.1-5#2

量子力学答案(第二版)苏汝铿第五章课后答案5.1-5#2
小,用微扰法求转子基态能量的二级修正。 解:取 的正方向为 Z 轴正方向建立坐标系,则转子的哈米顿算符为
ˆ2 1 2 ˆ L D ˆ D c o H L s 2I 2I
ˆ ( 0) 1 L ˆ2 , 取H 2I ˆ D cos ,则 H
(r r0 ) (r r0 )
ˆ H ˆ ( 0) 由于 r0 很小,所以 H
一级修正为(基态
2 2 U 0 (r ) ,可视为一种微扰,由它引起的 2
Z
(0) 1
r Z3 ( 3 ) 1 / 2 e a0 ) a0
* ˆ ( 0) d E1(1) 1( 0) H 1
5.3 转动惯量为 I、 电偶极矩为 D 的片面转子处在均匀电场在 中, 如果电场较小,
电场处在转子运动的平面上,用微扰法求转子基态能量的二级修正。
解:无外场作用时, H 0
2 2 2 E , ,本征方程为 2 I 2 2 I 2
2
解为
2 2 m 1 im e , (m 0, 1,…) , Em (0) 2I 2
D Y* m
D
4 1 Y10 sin d d 3 4
Y10 s i n d d
Y 3
1
* 0

D 3
2
E
( 2) 0


'
H 0
( 0) E0 E( 0)
'

D 2 2 2I 1 2 1 2 D 2 2 I 2 3( 1) 3
微扰哈密顿量为(选 x 方向为 方向) H ' cos 能量一级修正为 E 能量二级修正为 E

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

量子力学答案(第二版)苏汝铿第五章课后答案5.4-5#3

量子力学答案(第二版)苏汝铿第五章课后答案5.4-5#3
(0) 2
b2 (0) E1(0) E2
b2 a (0) E2 E1(0)
(3) '
(ii)严格求解法: 这就是根据表象理论,分立表象中,本征方程可以书写成矩阵方程式形式,并可以求得本征 值和本征矢(用单列矩阵表示) 。 我们设算符 H(1)具有本征矢
C1 ,本征值是 ,列矩阵方程式: C2
E1(0) 解 : (i)取 H 0 0 0
'
0 E1(0) 0
0 0 (0) E2
( 3)
0 a 0 0 b 则有: H H H 0 0 * * 0 b a
本题的微扰矩阵(3)是简并的波函数(零级)计算得来的,若像无简并微扰论那样计算二 级能量修正是可能的,但近似程度差,从(3)看出一级能量修正为零,准确到二级修正量 的能量本征值是:
1
, f n ,代入(1)式中,得
到与 En 相应的零级波函数的系数.从而给出零级波函数和能量本征值的一级修正,
0 0 n a n

En En En
0 1
考虑 的系数,讨论第 n 个能级.
2
当 m n 时,得到能级的二级修正 E
(5)
C1 C2 1
2
2
(6)
(5)式有 C1C2 非平凡解的条件是:
E1( 0) a b E
( 0) 2
b a
0
(0) ( E1( 0) a )( E 2 a ) b2 0 ( 0) (0) E ( 0) E 2 ( E1( 0) E 2 ) a 1 b2 2 2 2
0 0 1 2

量子力学典型例题解答讲解

量子力学典型例题解答讲解

量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。

2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。

[证]。

是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。

本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。

求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。

兰州大学量子力学习题

兰州大学量子力学习题

(a) 取试探波函数为 (, r)=Aexp(r);
(b) 取试探波函数为 (, r)=Bexp(2r2)。 6.11 质量为 的粒子在势场 V(x)=kx4 (k>0)中作一维运动。试用变分法求基态能量近似值。建议取试
探波函数 (, r)=Aexp(2r2)。 6.12 某量子力学体系处于基态 1(x)。t>0 后受到微扰作用,H’(x,t)=F(x)et/,试证明:长时间后(t)
0 1
10

Sˆy

2

0 i
i 0

的本征值和所属的本征函数。
7.4 求自旋角动量在(cos,cos,cos)方向的投影
Sˆn Sˆx cos Sˆy cos Sˆz cos
的本征值和所属的本征函数。
在这些本征态中,测量 Sˆz 有哪些可能值?这些可能值各以多大的几率出现? Sˆz 的平均值是多少?
-5-
7.5 设氢原子的状态是

1 2
R2
1(r
)Y11(
,
)


3 2
R2 1(r )Y1 0 (
, )
(1) 求轨道角动量 z 分量 Lˆz 和自旋角动量 z 分量 Sˆz 的平均值;
(2) 求总磁矩
Mˆ e Lˆ e Sˆ
2
(SI)
H’12=H’21=a, H’11=H’22=b; a, b 都是实数。用微扰公式求能量至二级修正值。 6.4 一电荷为 e 的线性谐振子受恒定弱电场 作用,设电场沿正 x 方向: (1) 用微扰法求能量至二级修正; (2) 求能量的准确值,并和(1)所得结果比较。 6.5 设在 t=0 时,氢原子处于基态,以后由于受到单色光的照射而电离。设单色光的电场可以近似地

量子力学答案第二版苏汝铿第五章课后答案

量子力学答案第二版苏汝铿第五章课后答案

为简便,记(110)=((10,)2)=
2 a
sin(
a
x) sin( 2 a
y)
(0)= (0)=
12
( 2,1)
2 a
sin(
2 a
x) sin( a
y)
所以:
H1,1

H, 11,11
(110)|
H
,
|(110)
a a xy[ 2 sin( x) sin( 2 y)]2 dxdy
1 ( 32
6 300 3 310
3 320 )
5.10
一个
粒子
处在
二维

限深


V
(
x,
y)

0
(0<x, y a)
中运动, 现加上 微扰
(其他)
H, xy(0 x, y a) ,求基态能量和第一激发态的能量修正值。
解:粒子的哈密顿量是
H H0 H,
H0


2
2m
2 ( x 2

2 y 2
)
V
(x,
(0) ( nlm )
, (0) (nl,m, )
e2
0
|
Rnl
(r
)
|2
rdr ll, mm,
故矩阵
H
,
只有对角线上的元素不为
0 ,其他元素均为
0。
根据 Rnl (r) 的性质,

|
0
Rnl (r) |2
rdr
只与 n
有关,而与 l
无关。
|
0
Rnl (r) |2

量子力学曾谨言习题解答第六章

量子力学曾谨言习题解答第六章

第六章:中心力场[1]质量分别为 m 1,m 2的两个粒子组成的体系,质心座标及相对座R标r为:R =212211m m r m r m ++ (1)r 12r r r-= (2)试求总动量21p p P+=及总角动量21l l L +=在R ,r表象中的算符表示。

1. [解] (a )合动量算符21p p P+=。

根据假设可以解出1r ,2r令21m m m +≡ : r m m R r121-= (3)r m m R r212+= (4)设各个矢量的分量是),,(1111z y x r ,),(22,22z y x r ,),,(z y x r和),,(Z Y X R 。

为了计算动量的变换式先求对1x , 2x 等的偏导数:xX m m x x x X x X x ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂1111 (5)xX m m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂2222 (6) 关于1y ∂∂,2y ∂∂,1z ∂∂,2z ∂∂ 可以写出与(5)(6)类似的式子,因而: )()(212^1^^2^1^x x i p p p p P x x x x ∂∂+∂∂=+=+==Xi x X m m x X m m i ∂∂=∂∂+∂∂+∂∂-∂∂ )(21 RiZ i k Y i j X i i P ∇=∂∂+∂∂+∂∂= ^(b)总角动量)(2211^2^1^∇⨯+∇⨯=+=r r il l Lx x r r iL )(2211^∇⨯+∇⨯==)()(2222111y z z y i z z y i ∂∂-∂∂+-∂∂ 利用(3),(4),(5),(6): ))({(12^zZ m m y m m Y i L x ∂∂-∂∂-=))((12y Y m m z m m Z ∂∂-∂∂-- ))((21zZ m m y m m Y ∂∂+∂∂++ )})((21yY m m z m m Z ∂∂+∂∂+- =)()({1y Z z Y Y Z Z Y m m i ∂∂-∂∂-∂∂-∂∂ )()(221y z z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂-)()(2yZ z Y Y Z Z Y m m ∂∂-∂∂+∂∂-∂∂+)}()(2221yz z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂+=)}(){(yz z y Y Z Z Yi∂∂-∂∂+∂∂-∂∂ =x r R r iR i )(∇⨯+∇⨯因而 r R r iR i L ∇⨯+∇⨯=^[2]证明r r r ∂∂+=∇1],[212,∇=∇],[212r(证明)第一式ψ)(2122∇-∇r r =))((21222222222ψz y x zy x ++∂∂+∂∂+∂∂ )(21222222222zy x z y x ∂∂+∂∂+∂∂++-ψψψ但xz y x z y x x z y x x∂∂+++++=++∂∂ψψψ222222222)( 22222222()(z y x x x z y x x ++∂∂=++∂∂ψψ+)222xzy x ∂∂++ψ =232222222)())((z y x x x xz y x ++-+∂∂++ψψψ+2222223222)(xz y x z y x x x∂∂+++++∂∂ψψ即2222222222x z y x z y x x ∂∂++-++∂∂ψψ=232222222)(2z y x x zy x x x++-+++∂∂ψψψ同样写出关于y,z 的式子,相加得:22222222{21)(21zy x zz y y x xr r ++∂∂+∂∂+∂∂=∇-∇ψψψψ+}3222zy x ++-ψψ=r z r z y r y x r x ψψψψ+∂∂+∂∂+∂∂ =ψ)1(rr +∂∂ 因ψ是任意函数,因而第一式得证。

曾谨言量子力学(卷1)习题答案

曾谨言量子力学(卷1)习题答案

目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。

1981 2.周世勋编:量子力学教程 人教。

19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。

19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。

1981 5.列维奇著,李平译:量子力学教程习题集 高教。

1958 6.原岛鲜著:初等量子力学(日文) 裳华房。

19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。

1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。

科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ∫∫−−=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax−+=∫ (3) =∫axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax a axdx x cos 1sin 1sin 2−=∫(5) =∫axdx x sin 2ax a xaax a x cos )2(sin 2222−+(6)ax a xax aaxdx x sin cos 1cos 2+=∫ (7) ax aa x ax a x axdx x sin )2(cos 2cos 3222−+=∫))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)∫=+dx c ax 2)arcsin(222x c a ac c ax x −−++ (a<0) ∫20sin πxdx n2!!!)!1(πn n − (=n 正偶数)(9) =∫20cos πxdx n!!!)!1(n n − (=n 正奇数) 2π(0>a )(10)∫∞=0sin dx xax2π− (0<a )(11))1!+∞−=∫n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=∫∞− (13) 121022!)!12(2++∞−−=∫n n ax n an dx e x π(14)1122!2+∞−+=∫n ax n an dx e x (15)2sin 022adx xax π∫∞= (16)∫∞−+=222)(2sin b a abbxdx xe ax (0>a )∫∞−+−=022222)(cos b a b a bxdx xeax(0>a )第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1

量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1

E E E E 1 2 2s c xc 1 2 2c s xs 2 2 4 4


E E 2c / s 2 x 1 s1 2 2s / c 2 x 1 c12 4 4
2 2

1 1 2 2 2 1 1 x 2 cos s c 4s 2c 2 cos E2 E3 t / 2 2 2 2 1 x 2

1 x 2 Et /

1
1 sin 2 1 x2

1 x 2 Et / 2
编辑者:霍团长 6.13、讨论一个中性粒子,它的内禀角动量是 S ( S 1) ,其中 S ,即它是一个自旋为 1 的
2
2
粒子。假设这粒子有一磁矩 M S , 是一个常数。这个粒子的量子态可用自旋空间描述。它的 基矢是 S x 的两个本征态 和 ,分别代表其自旋方向平行和反平行于 z 轴,即有
批注 [JL1]: 应为 S z
Sz
2
, Sz
2

在 t 0 时,体系状态是
(t 0) 。这一粒子沿 y 轴运动,通过一沿 y 轴方向的均匀磁场
B B0 j 。
(ⅰ)、求
(t ) ,用 和 来表示。
(ⅱ)、 S x 、 S y 、 S z 作为时间函数的表达式。
状态的自旋波函数是: 1 1 2 , 2 S 1 2 C12 , 3 C1 2 S12 , 4 1 2 ,其
批注 [JL3]:
H E / 41 2 1 2

z i i i
1,ຫໍສະໝຸດ z i i iz

量子力学作业习题

量子力学作业习题

第一章 量子力学的诞生[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m 2时的窗子所衍射.[2] 用h,e,c,m (电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz 实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B 缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1)h 2e m ;(2)h 2nm ;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] [2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。

量子力学智慧树知到答案章节测试2023年兰州理工大学

量子力学智慧树知到答案章节测试2023年兰州理工大学

第一章测试1.量子力学只适应于()A:微观客体B:宏观物体和微观客体C:宏观物体D:低速微观客体答案:D2.物体辐射总能量及能量按波长分布都决定于温度。

A:对B:错答案:A3.戴维逊和革末所做的电子衍射实验证明电子具有粒子性。

A:错B:对答案:A4.微观粒子具有波粒二象性。

A:错B:对答案:B5.康普顿散射实验证明()A:电子具有粒子性B:电子具有波动性C:光具有粒子性D:光具有波动性答案:C6.()提出的光量子概念可以成功地解释光电效应。

A:普朗克B:玻尔C:波恩D:爱因斯坦答案:D7.能量为0.1eV的自由中子的德布罗意波长为()A:1.23 ÅB:0.17 ÅC:0.92ÅD:12.6 Å答案:A8.普朗克在解决黑体辐射时提出了()A:自旋假设B:光量子假设C:能量子假设D:定态假设答案:B9.1900年12月,()发表了他关于黑体辐射能量密度的研究结果,提出原子振动能量假设,第一个揭示了微观粒子运动的特殊规律:能量不连续。

A:爱因斯坦B:康普顿C:波尔D:普朗克答案:D10.玻尔理论不仅能解释氢原子光谱问题,也能解释多电子的原子光谱问题A:错B:对答案:A第二章测试1.算符A本征态是指()A:一个确定的状态B:算符A为厄米算符C:在该态上多次测量力学量A有唯一确定值D:在该态上测量力学量A没有确定值答案:C2.波函数和体系状态的关系是()A:只有定态波函数才能唯一确定体系状态B:因不确定相因子的影响,波函数不能完全确定体系状态C:波函数完全确定体系状态D:因不确定常数因子的影响,波函数不能完全确定体系状态答案:C3.波函数确定则()A:波函数与力学量取值无关B:只有体系能量完全确定C:所有力学量的取值概率完全确定D:某些力学量的取值可以完全确定答案:C4.可测量的物理量在量子力学中可以用厄密算符表示,原因是()A:厄密算符的本征值取值概率一定B:厄米算符作用在波函数上得到复数乘以该波函数C:厄米算符是幺正算符D:厄密算符的本征值都是实数答案:D5.定态是指A:B:C:D:答案:A6.A:错B:对答案:B7.A:错B:对答案:B8.A:错B:对答案:B9.A:错B:对答案:B10.系统处于定态势,任何力学量的平均值都不随时间变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档