语音信号的提取与识别技术——说话人识别系统的研究
说话人识别研究综述_王书诏
剧烈; ( 4) 加窗, 针对每个音框乘上汉明窗以消除音框
两端的不连续性, 避免分析时受到前后音框的影响;
( 5) 将音框通过低通滤波器, 可去除异常高起的噪声。
3 特征提取
经过预处理后, 几秒钟的语音就会产生很大的数 据量。提取说话人特征的过程, 实际上就是去除原来语 音中的冗余信息, 减小数据量的过程。从语音信号中提 取的说话人特征参数应满足以下准则: 对局外变量( 例 如说话人的健康状况和情绪, 系统的传输特性等) 不敏 感; 能够长期地保持稳定; 可经常表现出来; 易于进行 测量; 与其他特征不相关。
果, 而“倒谱特征”则是利用了对语音信号进 行适当的
同态滤波后, 可将激励信号与声道信号加以分离的原
理。倒谱中维数较低的分量对应于语音信号的声道分
量, 倒谱中维数较高的分量对应于语音信号的音源激
语音技术
Y Vo ic e t e c h n o lo g
励分量。因此, 利用语音信号倒谱可将它们分离, 彼此
一定的相似性准则形成判断。
输入语音 预处理
特性 提取
训练 识别
模型产生 模型存储
相似性准则
判决
图 1 说话人识别系统框图
2.3 预处理[5] 通常, 输入的语音信号都要进行预处理, 预处理过
程的好坏在一定程度上也影响系统的识别效果。一般
! " # 电声技术 2007 年 第 31 卷 第 1 期
语音技术
the feature extraction, model training and classification is reviewed and the trend and rubs are also discussed.
【Key wor ds】speaker recognition; feature extraction; model training; classification
论语音信号的特征提取和语音识别技术
论语音信号的特征提取和语音识别技术语音信号的特征提取和语音识别技术是语音处理领域中的重要研究方向,主要用于从语音信号中提取有效的特征,并将其应用于语音识别任务中。
一、语音信号的特征提取语音信号的特征提取旨在从原始语音信号中提取出能够最有效地进行区分和表示的信息。
常见的语音信号的特征提取方法包括:1.短时能量和过零率:短时能量描述了语音信号在短时时间内的能量大小,过零率描述了语音信号经过零点的频率,可以用于检测语音的活动性和边界。
2.声谱图:声谱图是将语音信号转换为频谱的一种可视化表示方法,在声谱图中可以看到声音在不同频率上的强度分布情况,可以用于语音信号的频域分析。
3.倒谱系数:倒谱系数是通过对语音信号的离散傅里叶变换(DFT)和对数运算得到的,倒谱系数描述了语音信号在倒谱域内的频谱特性,常用于语音识别中的声学特征表示。
4.线性预测系数:线性预测系数是通过对语音信号进行线性预测分析得到的,用于表示语音信号的谐波结构和共振峰,常用于语音识别中的声学特征表示。
5.梅尔频率倒谱系数:梅尔频率倒谱系数是在倒谱系数的基础上引入了梅尔滤波器组,在梅尔频率域内对语音信号进行分析和表示,更符合人类声音感知的特性。
语音识别技术是指将语音信号转换为对应的文本或命令的过程。
常见的语音识别技术包括:1.隐马尔可夫模型(HMM):HMM是一种统计模型,用于描述语音信号与文本之间的关系。
它将语音信号的声学特征序列映射为文本的概率分布,通过最大似然估计和维特比算法来进行识别。
2.深度神经网络(DNN):DNN是一种基于多层神经网络的机器学习模型,通过训练大量的语音数据来进行语音识别。
DNN在特征提取和模型训练方面都具有较好的性能。
3.循环神经网络(RNN):RNN是一种具有记忆功能的神经网络,在语音识别中可用于处理序列数据,如语音信号的语音帧。
4.语言模型:语言模型是用来描述文本序列的概率分布模型,常用于语音识别中对候选文本进行评分和选择。
语音信号的提取与识别技术(说话人识别系统)的研究-开题报告
中北大学毕业设计(论文)开题报告学生姓名:学号:学院、系:信息与通信工程学院通信工程系专业:通信工程设计(论文)题目:语音信号提取与识别技术指导教师:2006年 3 月 8 日开题报告填写要求1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2.开题报告内容必须用按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3.学生写文献综述的参考文献应不少于15篇(不包括辞典、手册)。
文中应用参考文献处应标出文献序号,文后“参考文献”的书写,应按照国标GB 7714—87《文后参考文献著录规则》的要求书写,不能有随意性;4.学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字;5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2004年3月15日”或“2004-03-15”;6. 指导教师意见和所在专业意见用黑墨水笔工整书写,不得随便涂改或潦草书写。
毕业设计(论文)开题报告毕业设计(论文)开题报告毕业设计(论文)开题报告附件:参考文献注释格式学术期刊作者﹒论文题目﹒期刊名称,出版年份,卷(期):页次如果作者的人数多于3人,则写前三位作者的名字后面加“等”,作者之间以逗号隔开。
例如:[1]李峰,胡征,景苏等. 纳米粒子的控制生长和自组装研究进展. 无机化学学报,2001, 17(3): 315~324[2] J.Y.Li, X.L.Chen,H.Li. Fabrication of zinc oxide nanorods.Journal of Crystal Growth, 2001,233:5~7学术会议论文集作者﹒论文题目﹒文集编者姓名﹒学术会议文集名称,出版地:出版者,出版年份:页次例如:[3] 司宗国谢去病王群﹒重子湮没快度关联的研究﹒见赵维勤,高崇寿编﹒第五届高能粒子产生和重离子碰撞理论研讨会文集,北京:中国高等科学技术中心,1996:105 图书著者﹒书名﹒版本﹒出版地:出版者,出版年﹒页次如果该书是第一版则可以略去版次。
语音信号处理第6章 说话人识别
一般来说,同时满足上述全部要求的特征通常是不可能找 到的,只能使用折衷方案。
6.2.2 特征的选取
说话人识别中常用的参数类别: 1)线性预测参数及其派生参数:包括部分相关系数、声道 面积比函数、线谱对系数以及LPC倒谱系数等。 2)语音频谱直接导出的参数:包括功率谱、基音轮廓、共 振峰及其带宽、语音强度及其变化等。 3)混合参数 4)其他鲁棒性参数:包括Mel频率倒谱系数,以及经过噪 声谱减或者信道谱减的去噪倒谱系数等。
所用特征 倒谱 误识率 9.43%
差值倒谱 基音 差值基音
倒谱与差值倒谱 倒谱、差值倒谱、基音、差值基音
11.81% 74.42% 85.88%
7.93% 2.89%
6.2.3 特征参量评价方法
同一说话人的不同语音会在参数空间映射出不同的点,若 对同一人来说,这些点分布比较集中,而对不同说话人的 分布相距较远,则选取的参数就是有效的。
6.2
说话人识别原理及系统结构
说话人识别系统可分为两个阶段:训练(注册)阶段和识 别阶段。 1)在训练阶段,系统的每一个使用者说出若干训练语料, 系统根据这些训练语料,通过训练学习建立每个使用者的 模板或模型参数参考集。 2)在识别阶段,把从待识别说话人说出的语音信号中提 取的特征参数,与在训练过程中得到的参考参量集或模型 模板加以比较,并且根据一定的相似性准则进行判定。
生活领域 ★
• 声纹监听 • 多人识别 • 声纹比对
技术难题:跨信道、噪声
6.2
说话人识别原理及系统结构
识别 识别结果 模式匹配 识别决策
语音输入
预处理
特征提取
训练
模板库
专家知识
说话人识别系统由预处理、特征提取、模式匹配和识别决 策等几大部分组成。除此之外,完整的说话人识别系统还
语音识别中的说话人识别技术研究
语音识别中的说话人识别技术研究语音识别在当今的科技领域中拥有广泛的应用,由于语音识别技术的不断发展,它已经成为人机交互领域中的一个重要组成部分。
语音识别技术可以使人们通过说话来与计算机互动,这为人们的工作和生活带来了许多便利。
然而,在实际应用中,因为每个人的声音都有差异,所以语音识别技术的准确性往往会受到说话人识别技术的影响。
而说话人识别技术是指在语音信号分析的基础上判断不同说话人身份的技术。
本文将从以下四个方面进行阐述:说话人识别技术的背景和概述、说话人识别技术的方法和原理、说话人识别技术的应用、说话人识别技术的发展方向。
一、说话人识别技术的背景与概述说话人识别技术的背景可以追溯到上个世纪60年代末,当时拉贝尔为解决电话线路上的欺骗问题,提出了基于语音中说话人区别的认证技术-说话人识别技术。
而在这之后的几十年里,随着语音处理技术的不断改进和深度学习技术的发展,说话人识别技术也得以更好地应用于语音识别、语音安全、语音助手、智能客户服务等领域。
说话人识别技术是一项可以自动辨别不同语音的身份的技术,说话人识别任务的基本就是寻找“当前语音实例所属的先前已知身份”。
在说话人识别中,要判断两条语音语素是否来自同一个说话人,就需要通过计算声音数据的特征向量来比较语素间的差异。
二、说话人识别技术的方法和原理在说话人识别技术中,主要有基于特征分离的方法和基于深度学习的方法两种。
基于特征分离的方法主要有声道特征提取(Vocal Tract Length Normalization,VTLN)和高斯混合模型。
VTLN把每一段语音信号处理成具有相同性质的语音信号,并控制声音的时长和音高,从而去除了说话人个体性带来的影响,实现对不同个体间语音信号的比较。
高斯混合模型方法,是一种比较常用的方法,它把一个说话人的声音特征向量聚类成高斯分布,通过高斯分布判别模型来进行说话人的辨识。
将每个说话人的特征向量都映射到对应的高斯分布后,再计算两个语音之间的转移概率,最后,再通过贝叶斯判决法来判断两个语音是否属于同一个说话人。
语音信号的提取与识别技术(说话人识别系统)的研究
语音信号的提取与识别技术摘要语音识别(Speech Recognition)是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的技术.说话人识别是语音识别的一种特殊方式.本论文中,将主要介绍说话人识别系统.说话人识别是指通过说话人的语音来自动识别说话人的身份,它在许多领域内有良好的应用前景。
本文通过分析语音特征参数的特点和说话人识别的基本方法,提出了以美尔倒谱差分和线性预测差分为特征,通过动态时间归整算法来识别的文本相关说话人辨认系统。
关键词: 语音识别, 说话人识别, 线性预测倒谱,美尔倒谱系数,动态时间归整The pick-up of speech signal and speech recognitionAbstractSpeech Recognition is a kind of technology that is using computer to transfer the voice signal to an associated text or command by identification and understand. Speaker recognition is a kind of special way of V oice-identifications. The paper is going to introduce speaker recognition. Speaker recognition is the process of automatically recognizing who is speaking on the basis of individual information include in speech signals. It has well application prospects in many fields. By analyzing speech characteristic parameters and the basis methods of speaker recognition, we choose MFCC and LPCC's difference to be the speech characteristic parameters. Using DTW to recognize text-dependent speech, we have developed a speaker identification system in this paper.Key words:V oice-Identification, Speaker-identification LPCC,MFCC, Dynamic Time Warping目录1引言 (1)2 语音识别技术的基础 (2)2.1 语音识别发展简史 (2)2.2 语音识别技术的应用 (3)3 说话人识别技术的国内外研究现状 (5)3.1 国内外发展水平 (5)3.2主要应用领域 (5)3.3 技术难点 (6)4 说话人识别技术基础 (8)4.1 说话人识别的基本原理 (8)4.2说话人识别系统中常用的特征 (9)4.3 说话人识别的分类 (10)4.4 说话人识别的主要方法 (11)4.5 说话人识别系统的性能评价 (13)5 语音信号分析与预处理 (16)5.1 语音产生机理 (16)5.2 语音信号的数字化和采集 (17)5.3 语音信号的数字模型 (18)5.3.1激励模型 (18)5.3.2 声道模型 (18)5.3.3辐射模型 (20)5.4语音信号的预加重处理 (20)5.5语音信号的短时参数特征 (21)5.5.1短时频谱 (22)5.5.2短时自相关函数 (22)5.5.3短时能量和短时平均幅度 (22)5.5.4短时过零分析 (23)5.5.5倒谱 (24)5.5.6线性预测编码(LPC)参数 (24)5.5.7短时基音周期估计 (25)5.6语音信号端点检测 (27)5.6.1双门限端点检测算法 (28)5.6.2 LPC美尔倒谱特征端点检测方法 (28)6说话人特征提取 (32)6.1线性预测系数LPC (32)6.1.1线性预测的基本原理 (33)6.2.2线性预测系数的求取 (35)6.2线性预测倒谱系数LPCC (36)6.2.1同态处理基本原理 (36)6.2.2线性预测倒谱 (37)6.2.3线性预测差分倒谱 (38)6.3美尔倒谱系数MFCC (39)6.3.1 MFCC系数的提取 (39)6.3.2美尔差分倒谱参数 (40)6.4特征参数的实际提取 (41)6.4.1 LPCC参数计算流程 (41)6.4.2 MFCC的计算 (43)7.说话人识别系统实现 (46)7.1文本相关说话人辨认系统的实现 (46)7.2线性预测倒谱参数的提取实现 (47)7.3美尔倒谱系数及其差分的提取实现 (48)7.4MFCC参数文本相关系统实现 (51)8结论 (54)致谢 (55)参考文献 (56)1引言语言是人类交流信息的基本手段,在人们日益扩大的交流中占据着重要的地位.在如今高度发达的信息社会中用数字化的方法进行语音的传送、储存、识别、合成、增强等是整个数字化通信网中最重要、最基本的组成部分之一。
《基于i-vector的说话人识别的研究》范文
《基于i-vector的说话人识别的研究》篇一基于i-vector的说话人识别技术研究一、引言随着语音技术的不断发展,说话人识别技术逐渐成为人们关注的焦点。
说话人识别技术是一种通过分析语音信号中的特征信息,从而确定说话人身份的技术。
i-vector技术作为一种有效的语音特征提取方法,在说话人识别领域得到了广泛的应用。
本文旨在研究基于i-vector的说话人识别技术,探讨其原理、方法及优势,为相关领域的研究提供参考。
二、i-vector技术原理i-vector是一种基于高斯混合模型(GMM)的语音特征提取方法。
其基本原理是将语音信号中的特征信息通过高斯混合模型进行建模,然后通过统计方法得到一个能够描述语音特性的向量,即i-vector。
该向量包含了语音信号中的各种特征信息,如声学特征、音素特征等,可以有效地表征说话人的语音特性。
三、基于i-vector的说话人识别方法基于i-vector的说话人识别方法主要包括以下几个步骤:1. 语音信号预处理:对输入的语音信号进行预处理,包括去噪、归一化等操作,以便后续的特征提取。
2. 特征提取:利用i-vector技术对预处理后的语音信号进行特征提取,得到每个语音信号的i-vector向量。
3. 模型训练:采用高斯混合模型(GMM)对提取的i-vector 向量进行建模,训练得到说话人的模型参数。
4. 说话人识别:将待识别的语音信号进行同样的特征提取和模型训练,然后与已建立的说话人模型进行比对,从而确定说话人的身份。
四、i-vector技术的优势相比其他说话人识别技术,i-vector技术具有以下优势:1. 特征提取能力强:i-vector技术能够有效地提取语音信号中的各种特征信息,形成能够表征说话人特性的向量。
2. 鲁棒性高:i-vector技术对噪声、信道等干扰因素具有较强的鲁棒性,能够在不同的环境下实现稳定的说话人识别。
3. 计算效率高:i-vector技术的计算过程相对简单,能够快速地完成大量的语音数据处理。
语音识别技术中的说话人识别与辨别研究
语音识别技术中的说话人识别与辨别研究随着科技的发展,人们的生活越来越依赖于科技的支持。
语音识别技术是其中的一种,通过将人的声音转换成计算机可以识别的数据,使得我们的交互方式更加智能化和自然化。
在语音识别技术中,识别说话人的身份也成为一个热门研究方向,它可以在很多场景下起到很大的作用。
本文将对说话人识别与辨别的研究进行分析和讨论。
一、说话人识别与辨别的意义说话人识别与辨别是语音识别技术中的一个重要研究方向。
在很多应用场景中,都需要对说话人进行识别和辨别,比如:电话客服、安保系统、远程教育等。
在这些场景下,如果能够高效准确地识别出说话人的身份,就可以帮助进行语义理解和智能交互,提高系统的自适应性和用户体验。
二、说话人识别与辨别的技术原理说话人识别与辨别的技术原理主要是基于语音信号的声学特征。
语音信号中包含声音的频率、幅度和相位等信息,可以通过数字信号处理技术进行提取和分析。
具体来说,说话人识别与辨别的算法主要包括两个方面:声学模型和发音模型。
声学模型是对说话人声音特征的建模,通过将语音信号的频谱、倒谱、梅尔频率倒谱系数等信息提取出来,再利用一些统计模型进行训练和分类,最终实现对说话人身份的识别。
发音模型则是对语音信号的发音规律建模。
通过对各种不同音素的声学特征进行描述和比对,发音模型能够较为准确地判断出说话人发音的准确性和流畅性,从而判断身份。
三、说话人识别与辨别的应用现状现在,说话人识别与辨别主要应用于如下四个方面:1.电话客服领域。
在客户拨打电话的时候,就可以自动识别客户的身份,并与客户的编号、账户等信息进行匹配,从而省去了不必要的输入。
2.语音搜索领域。
对于许多语音搜索应用程序,这些请求可能是由多个用户发送的。
在这种情况下,说话人识别可以帮助程序区分用户之间的请求,更好地满足每个请求的需求。
3.远程教育领域。
在线教育平台利用说话人识别技术,可以准确识别学生是否在听课,同时也可以通过语音分析学生的学习习惯并针对性地提供在线学习建议。
说话人识别研究现状
591 概述说话人识别技术是一种探索人类身份的一种生物识别技术,每个人说话时使用的发音器官例如口腔、舌头、牙齿、声带、喉咙和鼻腔等不管在形态还是在尺寸上或多或少都会有所差异,因而导致了每个说话人的发音也各不相同[1]。
按照不同的分类角度分类,说话人识别大致分为以下几类。
从实际应用的范围角度分,可以分为说话人辨认和说话人确认。
前者是指判定待测试语音属于目标说话人模型集合中的哪一个人,是一个多元判别的问题;而说话人确认是确定待测试语音是否来自其所声称的说话人,是一个二元判决的问题。
对于说话人辨认来说,由测试来自不同说话人的范围,说话人的辨认又可以开集识别和闭集识别[2]。
从待识别语音对应的文本角度分类,说话人识别可以分为文本无关、文本相关和文本提示三类。
文本无关是指说话人识别系统对说话对应的文本是开放的,即不做内容要求,在训练和识别时说话人可以随意录制语音内容只需达到一定的长度即可;文本相关是指说话人识别系统会要求说话人必须按照指定的文本进行发音录制;而对于文本提示型说话人识别系统,是结合之前两者的优点,系统需要从说话人训练文本库随机提取一些字或词汇组合后提示说话人按照该文本进行发音录制,由于其实现简单、安全性高,成为目前说话人识别技术的一大热点。
2 说话人识别的研究现状从说话人识别的发展来看,二十世纪七十年代DTW和VQ技术的出现对当时识别性能有了较大提升,而八十年代应用到说话人识别中去的人工神经网络、隐马尔可夫模型和MFCC一直沿用至今并且一直被优化改进。
到九十年代GMM以及GMM-UBM以其简单灵活、鲁棒性强的特点,在说话人识别中被广为使用,到现在也是这个领域最重要的建模技术之一,与此同时,SVM的建模技术也被引入说话人识别中。
进入二十一世纪后,联合因子分析技术(JFA)和扰动属性干扰算法(NAP)的提出使得说话人识别在复杂背景条件下也能收稿日期:2017-06-23作者简介:王煜(1991—),男,汉,内蒙古呼和浩特人,本科在读,研究方向:说话人识别。
语音识别实验报告总结
一、实验背景随着科技的飞速发展,人工智能技术在各个领域得到了广泛应用。
语音识别技术作为人工智能的一个重要分支,近年来取得了显著的进展。
为了深入了解语音识别技术,我们开展了语音识别实验,通过实际操作,对语音识别系统的原理、实现过程及性能进行了深入研究。
二、实验目的1. 了解语音识别的基本原理和关键技术;2. 掌握语音识别系统的实现方法;3. 评估语音识别系统的性能;4. 分析影响语音识别系统性能的因素。
三、实验内容1. 语音信号预处理(1)语音信号采集:采用麦克风采集一段普通话语音,采样频率为16kHz。
(2)语音信号预处理:对采集到的语音信号进行预加重、分帧、加窗等处理,提高语音信号的信噪比。
2. 特征提取(1)MFCC(梅尔频率倒谱系数)提取:将预处理后的语音信号进行MFCC特征提取,得到语音信号的时频特征。
(2)PLP(感知线性预测)提取:将预处理后的语音信号进行PLP特征提取,得到语音信号的线性预测特征。
3. 说话人识别(1)说话人特征提取:对语音信号进行说话人特征提取,包括声谱图、倒谱等。
(2)说话人识别:将提取的说话人特征与说话人数据库进行匹配,识别说话人。
4. 语音识别(1)声学模型训练:利用大量语音数据,训练声学模型。
(2)语言模型训练:利用大量文本数据,训练语言模型。
(3)语音识别:将提取的语音特征输入声学模型和语言模型,进行语音识别。
四、实验结果与分析1. 语音信号预处理通过预加重、分帧、加窗等处理,提高了语音信号的信噪比,为后续的特征提取奠定了基础。
2. 特征提取MFCC和PLP特征提取效果较好,能够有效表示语音信号的时频特征。
3. 说话人识别说话人识别准确率较高,能够有效识别不同说话人的语音。
4. 语音识别语音识别准确率较高,能够较好地识别语音内容。
五、实验结论1. 语音识别技术是实现人机交互的重要手段,具有广泛的应用前景。
2. 语音信号预处理、特征提取、说话人识别和语音识别是语音识别系统的关键环节。
语音识别中的声纹识别与说话人鉴别算法研究
语音识别中的声纹识别与说话人鉴别算法研究第一章:介绍语音识别技术作为一种重要的人机交互方式,在现代社会中得到了广泛的应用。
然而,传统的语音识别技术只能根据语音中的文字内容进行识别和分析,无法对说话人的身份进行准确鉴别。
为了解决这一问题,声纹识别与说话人鉴别算法应运而生。
第二章:声纹识别算法声纹识别算法是一种通过分析和比对语音中的声学特征,来进行说话人身份鉴别的技术。
这些声学特征包括说话人的音调、音色、语速、共振特征等。
声纹识别算法主要包括特征提取、特征匹配和建模三个步骤。
特征提取是声纹识别算法的核心步骤,它通过对声音信号进行分析和处理,提取出代表说话人特征的声学信息。
常用的声纹特征包括MFCC(梅尔频率倒谱系数)、LPCC(线性预测倒谱系数)等。
这些特征具有较好的抗噪能力和鲁棒性,可以有效区分不同说话人的声音。
特征匹配是声纹识别算法的关键步骤,它通过比对提取出的声纹特征与数据库中存储的声纹样本进行相似度计算,从而判断说话人的身份。
常用的特征匹配方法包括动态时间规整(DTW)和高斯混合模型(GMM)等。
这些方法可以根据声纹特征之间的相似度计算出匹配得分,并进行后续的判断和决策。
建模是声纹识别算法中的重要环节,它通过对声纹样本进行建模,从而实现对说话人声纹特征的有效提取和表达。
常用的声纹建模方法包括高斯混合模型(GMM)、隐马尔可夫模型(HMM)等。
这些模型可以根据声纹样本之间的统计特性,进行声纹模型参数的训练和优化,提高声纹识别的准确度和稳定性。
第三章:说话人鉴别算法说话人鉴别算法是在声纹识别算法的基础上,进一步提出的一种精细化的说话人身份鉴别技术。
说话人鉴别算法主要解决的问题是在同一声纹特征下,对多个说话人进行区分和判别。
常用的说话人鉴别算法包括GMM-UBM(GMM-Universal Background Model)和i-vector算法等。
GMM-UBM是一种经典的说话人鉴别算法,它通过建立一个通用背景声纹模型(UBM),对不同说话人的声纹进行建模和比对。
基于语音信号处理的说话人识别和语音合成技术研究
基于语音信号处理的说话人识别和语音合成技术研究近年来,基于语音信号处理的技术已经逐渐成为人工智能领域的一个热门方向,其中包括了说话人识别和语音合成技术。
本文将从这两个方面入手,阐述这两种技术的研究现状以及展望未来的发展方向。
一、说话人识别技术说话人识别技术作为语音信号处理领域的重要分支之一,已经被广泛应用于语音识别、安防、人脸识别等领域中。
说话人识别的核心问题是如何从语音中提取出与说话人身份相关的特征信息,并用这些信息去匹配或比对不同的说话人。
近年来,说话人识别技术已经得到了很大的进展,主要包括以下发展方向:1. 声纹识别声纹识别是一种在说话人识别中应用广泛的技术,其核心思想是在语音信号中提取出与说话人身份相关的声学特征,然后将其转换为数字特征用于比对和识别。
声纹识别技术在诸如银行、电话营销等业务上已经有了广泛的应用。
2. 深度学习近年来深度学习技术在说话人识别领域的应用也越来越火热,并取得了不俗的成果。
典型的应用场景为大规模说话人识别,如语音识别、音乐识别等,深度学习技术的优势在于可以从大规模的数据中自动地提取出影响说话人身份认知的特征,从而提高说话人识别的准确率。
3. 基于注意力机制的说话人识别基于注意力机制的说话人识别是近年来的一个研究热点。
它利用注意力机制来帮助模型更好地聚焦于说话人身份相关的特征信息,从语音信号中提取出比传统方法更有效的说话人身份特征。
这种方法在复杂环境下的说话人身份识别中具有较好的性能。
二、语音合成技术语音合成技术是人工智能领域中的一项重要技术,它的发展历史可以追溯到20世纪50年代。
随着技术的不断进步,语音合成技术在电子游戏、机器人、无障碍服务、辅助教育等领域得到了广泛的应用。
现在,语音合成技术还面临着许多挑战和机遇:1. 基于深度学习的语音合成技术近年来,基于深度学习的语音合成技术取得了较为显著的成果。
特别是利用Sequence to Sequence 模型或其变种来进行语音合成,取得了更高的准确率和更好的语音质量。
浅谈说话人识别技术及应用分析
浅谈说话人识别技术及应用分析引言:随着科学技术的快速发展,生物特征识别技术得到了越来越多的研究和应用,说话人识别是语音识别的一种。
它主要分为说话人辨认和说话人确认两个方面:前者是判断待识别语音是多个参考说话人中哪一个人所说,用于辨认说话者的身份,是一个多元判决问题;后者是说话人先声明身份(如输入用户号) ,然后由系统判定待识别语音是否与其参考声音相符,用于对特定人进行身份验证,是一个二元判决问题。
说话人识别技术的发展始于60 年代,随着信息社会化发展,说话人识别作为具有语音识别与理解功能的智能人机接口,是新一代计算机的重要组成部分,其应用领域不断扩大:在司法领域中,可以帮助对嫌疑人的查证;在保安领域中,可以用于机密场所的进入控制、合法使用通信线路、机要设备的身份核查及电子银行转帐业务的安全检查等;在医学领域,如使识别系统仅响应患者的命令,则可实现对假肢的控制;在玩具、家用电器等领域也有广泛的应用前景。
针对以上领域中的许多商用系统已经投入使用。
关键字:生物特征识别、系统判定、控制、应用前景一、说话人识别技术基础随着全球信息化的快速发展,电子商务等信息技术得到了广泛的应用,人们发现,传统的使用密码来认证用户的方法变的越来越脆弱。
在这种背景下,解决用户高安全性和长效稳定性的生物认证技术逐渐得到人们的青睐。
在众多的生物认证技术中,说话人识别技术以其信号采集简单、系统设备成本低等优点得到了快速发展,展现了广阔的应用前景。
说话人识别技术包括说话人辨认技术和说话人确认技术,他们在本质上是一致的,唯一不同的是说话人辨认技术是从多个说话人语音中辨认出某个人的那一段语音信息,而说话人确认技术是确定某段语音信息是不是某人所说。
两者是一对多和一对一的关系。
每个人的发音因为受到声道和发音特点等影响,总是存在一些代表自己特征的元素,说话人识别技术就是通过采集、提取这些表征说话人固有特征的参数来达到识别的目的。
语音识别技术的应用有着非常多的优点,同时目前的研究也存在一些还没有突破的难点,但我相信,不久的将来,说话人识别技术一定会在我国的信息安全方面起到无以替换的重要作用。
人工智能语音识别系统中的说话人辨识和说话人追踪技术
人工智能语音识别系统中的说话人辨识和说话人追踪技术在人工智能的快速发展和普及的时代背景下,语音识别技术已经成为了一项重要的研究领域。
其中,解决语音识别系统中的说话人辨识和说话人追踪技术是一个具有挑战性且仍在不断研究的问题。
说话人辨识是指在一个多说话人的环境中,通过分析语音信号来判断出是哪个具体的人说话。
这个问题在多种场景下都具有重要的应用价值,比如电话客服、语音助手以及安防领域等。
说话人辨识技术需要从语音信号中提取出与个体相关的特征,然后通过使用机器学习等方法对这些特征进行分类和匹配,从而实现对说话人的辨识。
说话人追踪技术是指在一个连续对话的语音流中,通过分析语音信号来确定每一帧语音信号是由哪个说话人所发出的。
这个问题在多麦克风阵列、会议录音等场景下具有重要意义。
说话人追踪技术需要从语音信号中提取出每一帧语音信号的特征,并将其与已知的说话人模型进行匹配和追踪,经过一系列的算法处理,实现对说话人的准确追踪。
为了实现说话人辨识和说话人追踪技术,研究者们从不同的角度进行探索和解决。
首先,对于说话人辨识技术,传统的方法主要基于声纹识别和语音特征分析。
声纹识别技术是利用语音信号中独特的声音特征来进行说话人辨识,在语音识别系统中已经取得了一定的成功。
而语音特征分析方法则是通过提取语音信号的频谱特征、共振特征等个体化的信息来进行说话人辨识。
然而,这些传统方法在实际应用中存在一定的局限性,比如说话人的发音习惯、语速、情感等因素会对识别结果产生影响。
随着深度学习在语音识别领域的广泛应用,以及更复杂的神经网络模型的出现,说话人辨识和说话人追踪技术取得了显著的进展。
基于深度学习的方法利用了强大的模型拟合能力和特征学习能力,通过多层神经网络对说话人的特征进行建模和学习,进一步提高了说话人辨识和说话人追踪的准确性。
典型的方法包括使用卷积神经网络(CNN)和循环神经网络(RNN)来提取特征,以及使用支持向量机(SVM)等算法进行分类。
数字音频信号处理及人声识别技术研究
数字音频信号处理及人声识别技术研究数字音频信号处理及人声识别技术是一种关于对声音进行数字处理和分析的技术。
这一领域的研究涉及到许多不同的技术和算法,用于提取和识别人类声音。
近年来,随着智能技术的快速发展,数字音频信号处理和人声识别技术在很多领域都得到了广泛的应用。
例如语音助手、智能音箱、语音识别系统等。
这些应用使得人们能够通过声音与电子设备进行交互,并且无需使用传统的键盘或触摸屏。
在数字音频信号处理中,有许多重要的技术手段。
其中之一是音频信号的采样和量化。
采样是将连续的音频信号转换为离散的数字信号的过程,而量化则是将连续的幅度范围转换为离散的数值。
这两个过程的准确性对于后续的信号处理和分析至关重要。
在音频信号的处理过程中,滤波是一项重要的技术。
滤波技术能够通过设计合适的滤波器来改变信号的频率响应,以消除噪声、增加信号的清晰度和提高声音质量。
常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等等。
此外,数字音频信号处理中的时域分析和频域分析也是非常重要的技术。
时域分析关注信号的时间变化规律,通过时域图像可以观察到信号随时间变化的特征;频域分析则关注信号的频率成分,通过频谱图可以分析信号中包含的频率信息。
另外一个重要的领域是人声识别技术。
人声识别技术是指将语音信号中的语音信息与已知数据库中的语音模型进行匹配和识别的过程。
人声识别技术有很多应用,例如语音验证码、语音指令识别和说话人识别等。
随着人工智能技术的发展,人声识别技术在智能音箱、语音助手、自动驾驶等领域都有着广泛的应用。
人声识别技术一般包括特征提取和模式识别两个步骤。
在特征提取中,会对声音信号进行预处理,提取出具有代表性的特征。
常见的特征包括MFCC(Mel-Frequency Cepstral Coefficients)和LPCC(Linear Predictive Cepstral Coefficients)等。
这些特征能够很好地反映声音信号的频谱特性。
语音识别技术中的说话人识别方法
语音识别技术中的说话人识别方法1. 介绍语音识别技术的背景和意义(150字)语音识别技术是指将人类语音信息转化为可被计算机识别和处理的文本或命令的技术。
随着人工智能技术的快速发展,语音识别技术在多个领域得到广泛应用,如智能助理、语音控制、语音翻译等。
其中,说话人识别是语音识别技术中的重要分支,旨在通过声音特征的分析和比对来识别说话者的身份。
2. 语音识别技术的基本原理(200字)语音识别技术的基本原理是将语音信号转化为数字信号,并通过模式匹配算法来识别语音中的信息。
在识别过程中,语音信号首先会经过预处理,去除噪音和干扰因素,提取出主要的声音特征。
然后,使用一组特定的算法或模型对特征进行分析,包括基于隐马尔科夫模型(Hidden Markov Model, HMM)、深度学习神经网络等。
最后,通过与预先训练好的模型进行比对,确定语音中的各个单词或语句。
3. 说话人识别方法之声纹识别(300字)声纹识别是说话人识别的一种主要方法,基于个体声音特征的差异来识别说话者的身份。
声纹识别技术首先会采集个体的语音样本,通过提取语音信号的声谱图、频谱轮廓、共振峰等特征,建立个体的声纹模型。
然后,当新的语音进行识别时,系统会将其与每个声纹模型进行比对,计算相似度并判断最佳匹配结果。
声纹识别技术具有高度的个体特异性和稳定性,适用于长期身份认证等场景。
然而,声纹识别也面临环境干扰、可靠性差等问题,尚需进一步完善算法与模型训练。
4. 说话人识别方法之语音指纹识别(300字)语音指纹识别是另一种常用的说话人识别方法,它通过提取语音信号中的短时频率特征,将其转化为固定长度的语音指纹,再以此作为特征进行说话人识别。
语音指纹识别比较适用于短期身份认证和语音检索等应用场景。
语音指纹识别技术主要包括两个关键步骤:特征提取和匹配。
特征提取阶段会将语音信号转化为频域或时域特征,如梅尔频率倒谱系数(Mel Frequency Cepstral Coefficients, MFCC)或MFCC与动态时间规整(Dynamic Time Warping, DTW)等。
语音识别中的说话人
语音识别中的说话人是指在语音识别系统中,通过对输入的语音信号进行分析和处理,识别出说话人的身份或特征的过程。
在语音识别中,说话人识别是一项重要的任务,它可以帮助系统更好地理解用户的意图,提高系统的准确性和可靠性。
语音识别中的说话人识别通常包括以下几个步骤:1. 语音采集:首先需要采集包含说话人语音的音频数据,通常使用麦克风或其他音频设备进行采集。
2. 预处理:对采集到的语音信号进行预处理,包括去除噪声、增强语音信号等,以便于后续的识别处理。
3. 特征提取:对预处理后的语音信号进行特征提取,提取出与说话人相关的特征信息,如声学特征、语言特征等。
4. 说话人识别算法:根据提取的特征信息,使用各种说话人识别算法对说话人进行识别。
常见的算法包括基于模板的方法、隐马尔可夫模型(HMM)、深度学习等方法。
5. 匹配与判断:将提取的特征与预先训练好的说话人模板进行匹配,根据匹配结果判断出说话人的身份或特征。
在语音识别中,说话人识别具有以下几个方面的作用:1. 提高系统的准确性和可靠性:通过识别说话人,系统可以更好地理解用户的意图,避免因不同说话人的语音差异而导致误判。
2. 保护隐私:说话人识别可以保护用户的隐私,避免未经授权的人员获取用户的语音信息。
3. 实现个性化服务:通过识别不同的说话人,可以实现个性化服务,如智能客服、语音助手等。
在实现语音识别中的说话人识别时,需要注意以下几个问题:1. 算法的准确性:说话人识别的算法需要具有较高的准确性和鲁棒性,能够准确识别出不同的说话人。
2. 隐私保护:说话人识别需要保护用户的隐私,避免未经授权的人员获取用户的语音信息。
3. 实时性:说话人识别需要在较短的时延内完成,以适应实时语音交互的需求。
总之,语音识别中的说话人识别是一项重要的任务,它可以帮助系统更好地理解用户的意图,提高系统的准确性和可靠性,同时保护用户的隐私。
随着人工智能技术的发展,说话人识别将会在更多领域得到应用和发展。
语音信号的提取与识别
语音识别(Speech Recognition)是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的技术。
说话人识别是语音识别的一种特殊方式。
本论文中,将主要介绍说话人识别系统。
通过采用VQ(Vector Quantization,矢量量化)算法,对说话人的识别进行了初步探讨和研究,实现了在MATLAB软件环境下说话人的语音识别,并针对VQ的主要特点及不足做出了总结,并提出了改进。
VQ算法基于LBG算法的思想,首先解决了矢量量化码书生成的问题,设计一个好的码本;其次是解决了未知矢量量化的问题。
最后是判决逻辑,识别结果输出。
关键词:语音识别,说话人识别,VQ,MATLAB,LBG算法Speech Recognition is a kind of technology that is using computer to transfer the voice signal to an associated text or command by identification and understand. speaker recognition is a kind of special way of V oice-identifications .The paper is going to introduce speaker recognition..In this paper,VQ arithmetic is adapted to study and research the implement.the identification of speaker,and Speech recognition for speaker is realized by using MATLAB.In the end,this paper gets a conclusion on the feature and the shortage of VQ and put forward the improvement.VQ arithmetic based on the method of LBG has solved the problems that set up good codebook of vector Quantization and quantization unknown vector.After compared ,the output of recognition is putout.Key words:V oice-Identification ,Speaker-recognition,VQ,MATLAB,LBG- arithmetic目录1 引言 (1)2 语音识别技术的基础 (2)2.1 语音识别技术的发展历史 (2)2.2 语音识别技术的应用 (3)2.3 语音识别的概述 (5)2.4 语音识别的原理 (5)2.5 语音识别系统分类 (10)3 说话人语音识别技术的基本方法 (11)3.1 说话人语音识别的一般方法 (11)3.2 模板匹配法 (13)4 基于VQ的远程说话人识别系统 (15)4.1识别系统总体框图 (15)4.2 组成部分模块介绍 (15)4.3 systerview实现介质中传输模块的仿真 (15)5 MATLAB软件简介 (18)6 系统中VQ算法实现 (19)6.1 VQ算法原理 (19)6.2 VQ算法实现 (23)6.2.1 VQ算法简介 (23)6.2.2 程序运行流程 (25)6.2.3 运行结果 (26)7 VQ算法的不足和改进措施 (28)总结 (29)附录A:源主程序 (30)附录B:对信号s1和s2经过各种变换后的图形 (31)致谢 (35)参考文献 (36)1.引言语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry 系统,它是第一个可以识别十个英文数字的语音识别系统。
语音信号的说话人识别技术及其应用
语音信号的说话人识别技术及其应用随着科技的不断发展,语音信号的说话人识别技术已经逐渐成为现实。
这样一种技术利用了人们不同的嗓音特征和语音语调,将每个人的声音进行归类,从而能够对声音信号进行辨识,确保声音信号的合法性。
语音信号的说话人识别技术广泛应用于各种领域,如银行、网络安全、犯罪侦查等等,为我们的生活和工作带来了便利。
首先,语音信号的说话人识别技术在银行行业得到了广泛的应用。
通过说话人识别,银行能够提高客户登陆系统的安全性,防止不合法的用户通过银行系统进行非法操作。
这样一种技术防止了不法分子利用他人的身份信息进行欺骗和诈骗,有着非常重要的作用。
除此之外,语音信号的说话人识别技术还在网络安全领域独具优势。
使用这种技术,安全团队能够轻松识别和排除网络攻击中的非法用户,从而提高网络的安全性和稳定性。
在当今时代,网络安全是琳琅满目的威胁,该技术能够有效地防止一些不法分子在网络上的非法行为,对于保护我们的社会、政府、企业信息和数据非常重要。
此外,语音信号的说话人识别技术还在犯罪侦查领域有着广泛的应用。
法医用这种技术来进行声音鉴定、嫌疑人辨识等工作,对于破案起着至关重要的作用。
而在一些刑事案件中,法庭也会依据语音信号的说话人识别技术进行判决。
然而,语音信号的说话人识别技术在实践中也面临着一些困难与挑战。
例如,不同的人可能会在不同的环境中发出不同的语调,这就需要技术人员在设计算法与模型时考虑到复杂情况,进一步提高识别准确率。
总之,由于语音信号的说话人识别技术的应用和实践价值,它在当前的研究中也受到越来越多的关注。
这种技术的出现,大大提高了人们的生活和工作效率,为我们的社会稳定做出了贡献。
我们相信,随着技术的进一步发展和完善,语音信号的说话人识别技术在未来的很短时间内将会呈现更好的应用效果,为我们的生活带来更多的便利和优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计说明书语音信号的提取与识别技术——说话人识别系统的研究作者:学号:学院(系):专业:指导教师:评阅人:20**年6月中北大学毕业设计(论文)任务书学院、系:专业:学生姓名:学号:设计(论文)题目:语音信号的提取与识别技术起迄日期: 20**年2月15日~20**年6月21日设计(论文)地点:指导教师:系主任:发任务书日期:20**年2月15日毕业设计(论文)任务书1.毕业设计(论文)课题的任务和要求:1.了解声音信号的特征参数,及现阶段研究处理方法。
以现阶段信号处理领域比较活跃的语音信号为具体研究对象,进行相关知识的了解与学习。
2.学会在语音信号处理中使用MATLAB软件工具。
3.针对基本的个别个体的特定声音进行与信识别研究。
4.根据研究情况利用MATLAB语言进行相关算法的实现。
2.毕业设计(论文)课题的具体工作内容(包括原始数据、技术要求、工作要求等):1.查阅相关资料,利用已学的相关知识进行消化和理解。
2.了解现阶段的语音处理情况,分析研究相关的产品。
3.研究学习基本的识别处理方法。
4.学习相关信号处理软件。
5.对软件的学习达到能对基本的算法进行软件的处理。
6.完成毕业设计论文。
毕业设计(论文)任务书3.对毕业设计(论文)课题成果的要求〔包括毕业设计(论文)、图纸、实物样品等):1、毕业论文一份;2、英文文献1份,相应的中文译文1份。
4.毕业设计(论文)课题工作进度计划:起迄日期工作内容2006年2月15日~ 3月31日4月 1日~ 5月31日6月 1日~ 6月20日6月20日~ 6月21日系统学习,查阅资料,作开题报告;英文资料翻译;撰写毕业论文;论文答辩。
学生所在系审查意见:系主任:年月日中北大学毕业设计(论文)开题报告学生姓名:学号:学院、系:专业:设计(论文)题目:语音信号提取与识别技术指导教师:20**年 3 月 8 日毕业设计(论文)开题报告1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述:文献综述语音信号识别研究的根本目的是研究出一种具有听觉功能的机器,能直接接受人的口呼命令,理解人的意图并做出相应的反映。
语音识别系统的研究涉及微机技术、人工智能、数字信号处理、模式识别、声学、语言学和认知科学等许多学科领域,是一个多学科综合性研究领域。
近年来,高性能数字信号处理芯片DSP (DigitalSignalProcess)技术的迅速发展,为语音识别的实时实现提供了可能,其中,AD公司的数字信号处理芯片以其良好的性价比和代码的可移植性被广泛地应用于各个领域。
因此,我们采用AD 公司的定点DSP处理芯片ADSP2181实现了语音信号的识别。
1 语音识别的基本过程根据实际中的应用不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。
但无论那种语音识别系统,其基本原理和处理方法都大体类似。
一个典型的语音识别系统的原理图如图1所示[1]。
语音识别过程主要包括语音信号的预处理、特征提取、模式匹配几个部分。
预处理包括预滤波、采样和量化、加窗、端点检测、预加重等过程。
语音信号识别最重要的一环就是特征参数提取。
提取的特征参数必须满足以下的要求:(1)提取的特征参数能有效地代表语音特征,具有很好的区分性;(2)各阶参数之间有良好的独立性;(3)特征参数要计算方便,最好有高效的算法,以保证语音识别的实时实现。
在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。
在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。
同时,还可以在很多先验知识的帮助下,提高识别的准确率。
2 系统的硬件结构2.1 ADSP2181的特点[2]AD公司的DSP处理芯片ADSP2181是一种16 b的定点DSP芯片,他内部存储空间大、运算功能强、接口能力强。
有以下的主要特点:(1)采用哈佛结构,外接16.67 MHz晶振,指令周期为30 ns,指令速度为33 MI /s,所有指令单周期执行;(2)片内集成了80 kB的存储器:16 kB字的(24b)的程序存储器和16kB(16b)的数据存储器;(3)内部有3个独立的计算单元:算术逻辑单元(ALU)、乘累加器(MAC)和桶形移位器(SHIFT),其中乘累加器支持多精度和自动无偏差舍入;(4)一个16 b的内部DMA端口(IDMA),供片内存储器的高速存取;一个8 b自举DMA(BDMA)口,用于从自举程序存储器中装载数据和程序;(5)6个外部中断,并且可以设置优先级或屏蔽等。
由于ADSP2181以上的特点,使得该芯片构成的系统体积小、性能高、成本和功耗低,能较好地实现语音识别算法。
2.2 系统的硬件结构在构成语音识别电路时,我们采用了ADSP2181的主从结构设计方式,通过IDMA口由CPU装载程序。
语音识别系统的硬件结构如图2所示。
在这种结构中,PC机为主CPU,ADSP2181为从CPU,由PC机通过IDMA口将程序装载到ADSP2181的内部存储器中。
PC机总线通过CPLD译码,形成等控制信号,与ADSP2181的IDMA口相连。
这样,在ADSP2181全速运行时,主机可以查询从机的运行状态,可以访问到ADSP2181内部所有的程序存储器和数据存储器。
这对程序的编译和调试,以及语音信号的实时处理带来了极大的方便。
参考文献[1] RabinerL,Juang BH.Fundamentals ofspeech recognition[M].PTRPrentice Hall,1993.[2]苏淘,吴顺君,廖晓群.高性能数字信号处理器与高速实时信号处理[M].西安:西安电子科技大学出版社,1999.[3] Analog ing ADSP-2100 family volume l[Z].[4] Analog ing ADSP-2100 family volume 2[Z].毕业设计(论文)开题报告2.本课题要研究或解决的问题和拟采用的研究手段(途径):语音识别的DSP实现技术1 浮点运算的定点实现在语音识别的算法中,有许多的浮点运算。
用定点DSP来实现浮点运算是在编写语音识别程序中需要首先解决的问题。
这个问题可以通过数的定标方法来实现。
数的定标就是决定小数点在定点数中的位置。
Q表示法是一种常用的定标方法。
其表示机制是:设定点数是x,浮点数是y,则Q法表示的定点数与浮点数的转换关系为:2 数据精度的处理用16 b的定点DSP实现语音识别算法时,虽然程序的运行速度提高了,但是数据精度比较低。
这可能由于中间过程的累计误差而引起运算结果的不正确。
为了提高数据的运算精度,在程序中采用了以下的处理方法:(1)扩展精度在精度要求比较高的地方,将计算的中间变量采用32 b,甚至48 b来表示。
这样,在指令条数增加不多的情况下却使运算精度大大提高了。
(2)采用伪浮点法来表示浮点数伪浮点法即用尾数+指数的方法来表示浮点数。
这时,数据块的尾数可以采用Q1.15数据格式,数据块的指数相同。
这种表示数据的方法有足够大的数据范围,可以完全满足数据精度的要求,但是需要自己编写一套指数和尾数运算库,会额外增加程序的指令数和运算量,不利于实时实现。
以上两种方法,都可以提高运算精度,但在实际操作时,要根据系统的要求和算法的复杂度,来权衡考虑。
3 变量的维护在高级语言中,有全局变量与局部变量存储的区别,但在DSP程序中,所有声明的变量在链接时都会分给数据空间。
所以如果按照高级语言那样定义局部变量,就会浪费大量的DSP存储空间,这对数据空间较为紧张的定点DSP来说,显然是不合理的。
为了节省存储空间,在编写DSP程序时,最好维护好一张变量表。
每进入一个DSP子模块时,不要急于分配新的局部变量,应优先使用已分配但不用的变量。
只有在不够时才分配新的局部变量。
4 循环嵌套的处理语音识别算法的实现,有许多是在循环中实现的。
对于循环的处理,需要注意以下几个问题:(1)ADSP2100系列DSP芯片中,循环嵌套最多不能超过4重,否则就会发生堆栈溢出,导致程序不能正确执行。
但在语音识别的DSP程序中,包括中断在内的嵌套程序往往超过4重。
这时不能使用DSP提供的do…until…指令,只能自己设计出一些循环变量,自己维护这些变量。
由于这时没有使用 DSP的循环堆栈,所以也不会导致堆栈溢出。
另外,如果采用jump指令从循环指令中跳出,则必须维护好PC,LOOP和CNTR三个堆栈的指针。
(2)尽量减少循环体内的指令数。
在多重循环的内部,减少指令数有利于降低程序的执行次数。
这样有利于减少程序的执行时间、提高操作的实时性。
5 采用模块化的程序设计方法在语音识别算法的实现中,为了便于程序的设计和调试,采用了模块化的程序设计方法。
以语音识别的基本过程为依据进行模块划分,每个模块再划分为若干个子模块,然后以模块为单元进行编程和调试。
在编写程序之前,首先用高级语言对每个模块进行算法仿真,在此基础上再进行汇编程序的编写。
在调试时,可以采用高级语言与汇编语言对比的调试方式,这样可以通过跟踪高级语言与汇编语言的中间状态,来验证汇编语言的正确性,并及时的发现和修改错误,缩短编程周期。
另外,在程序的编写过程中,应在关键的部分加上必要的注释与说明,以增强程序的可读性。
在总调时,需要在各模块中设置好相应的入口参数与出口参数,维护好堆栈指针与中间变量等。
6 利用C语言与汇编语言的混合编程现在,大多数的DSP芯片都支持汇编语言与C或C++语言的混合编程,ADSP2181也不例外。
用C语言开发DSP程序具有缩短开发周期、降低程序复杂度的优点,但是,程序的执行效率却不高,会增加额外的机器周期,不利于程序的实时实现。
为此,在用C 语言编写语音识别算法时,我们采用了定点化处理技术。
ADSP2181是16位定点处理器,定点化处理应注意以下几个问题[3,4]:(1)ADSP2181支持小数和整数两种运算方式,在计算时应选择小数方式,使计算结果的绝对值都小于1;(2)用双字定点运算库代替C语言的浮点库,提高运算精度;(3)注意在每次乘加运算之后进行饱和操作,防止结果的上溢和下溢;(4)循环处理后的一组数据可能有不同的指数,要进行归一化处理,以便后续定点操作对指数和尾数部分分别处理。
毕业设计(论文)开题报告指导教师意见:指导教师:年月日所在系审查意见:系主任:年月日附件:参考文献注释格式学术期刊作者﹒论文题目﹒期刊名称,出版年份,卷(期):页次如果作者的人数多于3人,则写前三位作者的名字后面加“等”,作者之间以逗号隔开。
例如:[1]李峰,胡征,景苏等. 纳米粒子的控制生长和自组装研究进展. 无机化学学报,2001, 17(3): 315~324[2]J.Y.Li, X.L.Chen,H.Li. Fabrication of zinc oxide nanorods.Journal of Crystal Growth, 2001,233:5~7学术会议论文集作者﹒论文题目﹒文集编者姓名﹒学术会议文集名称,出版地:出版者,出版年份:页次例如:[3] 司宗国谢去病王群﹒重子湮没快度关联的研究﹒见赵维勤,高崇寿编﹒第五届高能粒子产生和重离子碰撞理论研讨会文集,北京:中国高等科学技术中心,1996:105图书著者﹒书名﹒版本﹒出版地:出版者,出版年﹒页次如果该书是第一版则可以略去版次。