青岛版八年级数学下册期中试卷
2022-2023学年全国初中八年级下数学青岛版期中考试(含答案解析考点)150333
2022-2023学年全国初中八年级下数学青岛版期中考试学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 8 小题,每题 5 分,共计40分)1. 在平行四边形ABCD中,∠A+∠C=200∘,则∠B的度数是( )A.100∘B.160∘C.80∘D.60∘2. 下列命题,其中是真命题的为( )A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形3. 物体自由下落时,下落距离h(单位:米)可用公式h=5t2来估算,其中t(t>0,单位:秒)表示物体下落的时间.若一个篮球掉入80米深的山谷中,下落过程看作成物体自由下落,篮球落人谷底前不与其他物体接触,则篮球掉落到谷底需要的时间为( )A.2秒B.4秒C.16秒D.20秒4. 比较2.5,−3,√7的大小,正确的是()A.−3<2.5<√7B.2.5<−3<√7C.−3<√7<2.5D.√7<2.5<−35. 下列二次根式,不能与√2合并的是( )A.√12B.√8C.√12D.−√186. 已知a>b,下列关系式中一定正确的是( )A.a2<b2B.2a<2bC.a+2<b+2D.−a<−b7. 不等式2x+1>−3的解集在数轴上表示正确的是( ) A.B.C.D.8. 当0<a<1时,√(a−1a)2−1a=( ) A.aB.−aC.a −2aD.2a −a卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 假期到了,17名女教师外出培训,住宿时2人间和3人间可供租住,每个房间都要住满,她们有________种租住方案.10. ①|2−√5|=________.②√8×√12=________.③写出−√5和√10之间的所有整数________.11. 如图:点E 、F 、G 、H 分别是四边形ABCD 各边的中点.当四边形ABCD 满足条件________时,四边形EFGH 是菱形.12. 如图,在△ABC 中,点M 是BC 边上的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,若BN =3,AN =4,MN =1,则AC的长是________.13. 如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是________.14. 不等式组{x −2(x −1)<3,3−12x ≥x 的解集为________ .三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )15. 计算: (12)−2+|2−√12|−4cos30∘+(π−3.14)0.16. 解下列不等式(组):(1)5(x +2)4>2x −2;(2){5x −2>3(x −2);x −103≤1−32x.17. 已知不等式3x −2<5x +1 的最小正整数解是方程4x −32ax =7的解,求a 的值.18. 如图,平行四边形ABCD ,E ,F 是直线DB 上两点,且DF =BE .求证:四边形AECF 是平行四边形.19. 已知b 是最小的正整数,且a ,b 满足(c −5)2+|a +b |=0,请回答问题:(1)请直接写出a ,b ,c 的值;(2)数轴上a ,b ,c 所对应的点分别为点A ,B ,C ,点M 是A ,B 之间的一个动点,其对应的数为m ,请化简|2m|(请写出化简过程);(3)在(1),(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动. 同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC −AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值;20. 已知平行四边形ABCD 中,对角线AC ,BD 相交于点O , AB ⊥AC ,AB =3,BD =2√10,求AD 的长.21. 如图所示,将长方形ABCD 沿直线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,求△BED 的面积.22. 如图,在5×5的网格中,每个小正方形的边长都是1,四边形ABCD 的顶点都在格点上(格点:小正方形的顶点).(1)求四边形ABCD 的边AB 的长;(2)连接BD ,试判断△BCD 的形状.23. 某商店计划购进一批A ,B 两种型号的计算器共50只,两型号计算器的进价和利润如表所示,商店所获利润不少于购进总成本的25%.问该商店至少要采购B 型计算器多少只?型号A B进价元/只4060利润元/只918 24. 观察下列等式:第一个等式:1√2−1=2−1√2−1=(√2−1)(√2+1)√2−1=√2+1第二个等式:1√3−√2=3−2√3−√2=(√3−√2)(√3+√2)√3−√2=√3+√2第三个等式:12−√3=4−32−√3=(2−√3)(2+√3)2−√3=2+√3…请回答下列问题:(1)则第四个等式为________.(2)用含n(n为正整数)的式子表示出第n个等式为________.参考答案与试题解析学校:____________ 班级:____________ 姓名:____________ 考号:____________一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】C【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD//BC.∵∠A+∠C=200∘,∴∠A=100∘,∴∠B=180∘−∠A=80∘.故选C.2.【答案】B【考点】正方形的判定矩形的判定菱形的判定平行四边形的判定【解析】根据矩形的定义作出判断;根据菱形的性质作出判断;根据平行四边形的判定定理作出判断;根据正方形的判定定理作出判断.解:A,对角线互相垂直的平行四边形是菱形,故本选项错误;B,对角线互相平分的四边形是平行四边形,故本选项正确;C,两条对角线相等且相互平分的四边形为矩形,故本选项错误;D,对角线互相垂直平分且相等的四边形是正方形,故本选项错误.故选B.3.【答案】B【考点】算术平方根【解析】根据h=5t 2,把公式变形成用h表示t的形式即可.【解答】解:把h=80代入h=5t 2得5t2=80,即t2=16,∵t>0,∴t=4.故选B.4.【答案】A【考点】实数大小比较【解析】先求得它们的平方,然后再比较即可.【解答】解:∵ 2.52=6.25,(√7)2=7,∴ 2.5<√7,∴ −3<2.5<√7.故选A.5.【答案】C同类二次根式【解析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【解答】解:A 、√12=√22,能与√2合并;B 、√8=2√2,能与√2合并;C 、√12=2√3,不能与√2合并;D 、−√18=−3√2,能与√2合并,故选:C .6.【答案】D【考点】不等式的性质【解析】本题考查了不等式的性质.【解答】解:一个数的绝对值越大,则其平方越大.当a ,b 为正数时,|a |>|b |,∴a 2>b 2,故选项A 错误;由不等式的基本性质可得2a >2b ,a +2>b +2,−a <−b,故选项B,C 错误,D 正确.故选D .7.【答案】C【考点】在数轴上表示不等式的解集【解析】此题暂无解析解:不等式两边减1,得2x>−4,再两边同时除以2,得x>−2,即为该不等式的解集,故其在数轴上表示为:故选C.8.【答案】B【考点】二次根式的性质与化简【解析】首先根据已知确定a<1a,再利用绝对值以及二次根式的性质化简求出即可.【解答】解:∵0<a<1,∴a<1a,即a−1a<0,∴√(a−1a)2−1a=1a−a−1a=−a.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)9.【答案】3【考点】二次根式的化简求值【解析】设住3人间的需要x间,住2人间的需要y间,根据总人数是17人,列出不定方程,解答即可.【解答】解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,所以有3种不同的安排.故答案为:3.10.【答案】√5−2,2,−2,−1,0,1,2,3【考点】估算无理数的大小【解析】①先估算出√5的取值范围,再去绝对值符号即可;②利用二次根式的运算法则计算即可;③先估算出−√5、√10的取值范围,再找出符合条件的整数即可.【解答】√12=√8×12=√4=2(2)故答案为:2(3)③因故答案为:√5−2(1)②√8×为−3<−√5、√10<4,所以−√5和√10之间的所有整数:−2,−1,0,1,2,3.故答案为:2,−1,0,1,2,3.11.【答案】AC=BD【考点】三角形中位线定理菱形的判定【解析】本题主要考查三角形的中位线定理及菱形的判定.【解答】解:连接AC,BD,∵E,F,G,H分别是边AB,BC,CD,AD的中点,∴EF//=12AC,GH//=12AC,∴四边形EFGH是平行四边形,当AC=BD时,EF=EH,四边形EFGH为菱形,故答案为:AC=BD.12.【答案】7【考点】等腰三角形的性质:三线合一三角形中位线定理【解析】本题目考查了等腰三角形的性质,三角形的中位线定理,解题关键是掌握等腰三角形的性质和三角形的中位线定理,根据这两个定理来解答即可.【解答】解:如图:延长BN交AC于D,∵AN平分∠BAC,BN⊥AN于点N,∴BN=ND,AB=AD,∵BN=3,AN=4,∴AB=AD=5.∵点M是BC边上的中点,BN=ND,∴MN//CD,MN=12CD.∵MN=1,∴CD=2,∴AC=AD+CD=5+2=7.故答案为:7.13.【答案】1−√2【考点】在数轴上表示实数勾股定理【解析】先根据勾股定理求出AC的长,再根据数轴上两点间的距离公式求出点A表示的数即可.【解答】解:如图所示,∵正方形的边长为1,∴BC=√12+12=√2,∴AC=√2,即|A−1|=√2,∴点A表示的数是1−√2.故答案为:1−√2.14.【答案】−1<x≤2【考点】解一元一次不等式组【解析】此题暂无解析【解答】{x−2(x−1)<3①,3−12x≥x②,解:解①得x>−1,解②得x≤2,∴不等式组的解集为−1<x≤2.故答案为:−1<x≤2.三、解答题(本题共计 10 小题,每题 5 分,共计50分)15.【答案】解:(12)−2+|2−√12|−4cos30∘+(π−3.14)0=22+|2−2√3|−4×√32+1=4+2√3−2−2√3+1=3.【考点】特殊角的三角函数值零指数幂、负整数指数幂绝对值实数的运算【解析】利用零指数幂,绝对值,特殊角的三角函数,负整数指数幂的运算求解即可.【解答】解:(12)−2+|2−√12|−4cos30∘+(π−3.14)0=22+|2−2√3|−4×√32+1=4+2√3−2−2√3+1=3.16.【答案】解:(1)5(x+2)4>2x−2,不等式两边同乘以4,得:5(x+2)>4(2x−2),化简得x<6.{5x−2>3(x−2)①,x−103≤1−32x②,(2)由①得,x>−2,由②得,x≤2611,故不等式组的解集为:−2<x≤2611.【考点】解一元一次不等式解一元一次不等式组【解析】无无【解答】解:(1)5(x+2)4>2x−2,不等式两边同乘以4,得:5(x+2)>4(2x−2),化简得x<6.{5x−2>3(x−2)①,x−103≤1−32x②, (2)由①得,x>−2,由②得,x≤2611,故不等式组的解集为:−2<x≤2611.17.【答案】解:解不等式3x−2<5x+1得x>−32,所以最小正整数解是x=1.把x=1代入4x−32ax=7,得4×1−32a×1=7,所以a=−2.【考点】一元一次方程的解一元一次不等式的整数解【解析】暂无【解答】解:解不等式3x−2<5x+1得x>−32,所以最小正整数解是x=1.把x=1代入4x−32ax=7,得4×1−32a×1=7,所以a=−2.18.【答案】证明:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是平行四边形,∴AO =CO ,DO =BO ,∵DF =BE ,FO =FD +DO ,EO =EB +BO ,∴FO =EO ,∵FO =EO ,AO =CO ,∴四边形AECF 是平行四边形.【考点】平行四边形的应用平行四边形的判定平行四边形的性质与判定【解析】暂无【解答】证明:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是平行四边形,∴AO =CO ,DO =BO ,∵DF =BE ,FO =FD +DO ,EO =EB +BO ,∴FO =EO ,∵FO =EO ,AO =CO ,∴四边形AECF 是平行四边形.19.【答案】解:(1)∵b 是最小的正整数,∴b =1.∵(c −5)2+|a +b |=0,∴a =−1,c =5.(2)由(1)知,a =−1,b =1,a ,b 在数轴上所对应的点分别为A ,B ,①当m <0时,|2m|=−2m ;②当m ≥0时,|2m|=2m .(3)BC −AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =3t +4,AB =3t +2,∴BC −AB =(3t +4)−(3t +2)=2.【考点】有理数的概念及分类非负数的性质:偶次方非负数的性质:绝对值数轴【解析】(1)先根据b 是最小的正整数,求出b ,再根据c 2+|a +b |=0,即可求出a 、c ;(2)先得出点A 、C 之间(不包括A 点)的数是负数或0,得出m ≤0,再化简|2m|即可;(3)先求出BC =3t +4,AB =3t +2,从而得出BC −AB =2.【解答】解:(1)∵b 是最小的正整数,∴b =1.∵(c −5)2+|a +b |=0,∴a =−1,c =5.(2)由(1)知,a =−1,b =1,a ,b 在数轴上所对应的点分别为A ,B ,①当m <0时,|2m|=−2m ;②当m ≥0时,|2m|=2m .(3)BC −AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =3t +4,AB =3t +2,∴BC −AB =(3t +4)−(3t +2)=2.20.【答案】解:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC ,AD =BC ,又∵BD =2√10,∴BO =√10,∵AB ⊥AC ,AB =3,∴AO =√10−9=1,∴AC =2,∴BC =√32+22=√13,∴AD =√13.【考点】平行四边形的性质勾股定理【解析】此题暂无解析【解答】解:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC ,AD =BC ,又∵BD =2√10,∴BO =√10,∵AB ⊥AC ,AB =3,∴AO =√10−9=1,∴AC =2,∴BC =√32+22=√13,∴AD =√13.21.【答案】解:∵四边形ABCD 是长方形,∴AD//BC ,∴∠2=∠3,由折叠性质得,∠1=∠2,∴∠1=∠3,∴BE =DE .设BE =x ,则DE =x ,∴AE =AD −DE =8−x ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴42+(8−x)2=x 2,解得:x =5,∴DE =5,∴S △BED =12DE ⋅AB=12×5×4=10.【考点】勾股定理三角形的面积矩形的性质翻折变换(折叠问题)【解析】左侧图片未给出解析【解答】解:∵四边形ABCD 是长方形,∴AD//BC ,∴∠2=∠3,由折叠性质得,∠1=∠2,∴∠1=∠3,∴BE =DE .设BE =x ,则DE =x ,∴AE =AD −DE =8−x ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴42+(8−x)2=x 2,解得:x =5,∴DE =5,∴S △BED =12DE ⋅AB=12×5×4=10.22.【答案】解:(1)AB =√52+12=√26.(2)如图,连接BD ,则BC 2=22+42=20,CD 2=12+22=5,BD 2=32+42=25,∴BC 2+CD 2=BD 2,∴△BCD 是直角三角形.【考点】勾股定理勾股定理的逆定理【解析】(1)借助网格,根据勾股定理直角计算即可;(2)首先利用勾股定理计算各边的平方,然后根据勾股定理的逆定理判定即可.【解答】解:(1)AB =√52+12=√26.(2)如图,连接BD ,则BC 2=22+42=20,CD 2=12+22=5,BD 2=32+42=25,∴BC 2+CD 2=BD 2,∴△BCD 是直角三角形.23.【答案】解:设要采购B 型计算器x 只,根据题意可得18x +9(50−x)≥[60x +40(50−x)]×25%,解得x ≥12.5.答:该商店至少要采购B 型计算器13只.【考点】一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设要采购B 型计算器x 只,根据题意可得18x +9(50−x)≥[60x +40(50−x)]×25%,解得x ≥12.5.答:该商店至少要采购B 型计算器13只.24.【答案】1√5−2=5−4√5−2=(√5−2)(√5+2)√5−2=√5+2.1√n +1−√n =n +1−n √n +1−√n =(√n +1−√n )(√n +1+√n )√n +1−√n =√n +1+√n.【考点】规律型:数字的变化类二次根式的性质与化简【解析】此题暂无解析【解答】√5−2=5−4√5−2解:(1)根据题中式子规律可得1=(√5−2)(√5+2)√5−2=√5+2.√5−2=5−4√5−2=(√5−2)(√5+2)√5−2=√5+2.故答案为:1(2)根据题意得1√n+1−√n=n+1−n√n+1−√n=(√n+1−√n)(√n+1+√n)√n+1−√n=√n+1+√n.√n+1−√n=n+1−n√n+1−√n故答案为:1=(√n+1−√n)(√n+1+√n)√n+1−√n=√n+1+√n.。
山东省青岛市八年级下学期数学期中考试试卷
山东省青岛市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)使有意义的x的取值范围是()A . x>B . x>-C . xD . x-2. (2分)下列二次根式中,是最简二次根式的是()A .B .C .D .3. (2分)(2016·南京) 下列长度的三条线段能组成钝角三角形的是()A . 3,4,4B . 3,4,5C . 3,4,6D . 3,4,74. (2分) (2019八下·宣州期中) 下列各式运算正确是()A .B .C .D .5. (2分) (2017八下·东城期中) 如图,矩形中,对角线,交于点,若 ,,则的长为().A .B .C .D .6. (2分) (2019·鄞州模拟) 如图,在平面直角坐标系中,一个含有45〫角的三角板的其中一个锐角顶点置于点A(﹣3,﹣3)处,将其绕点A旋转,这个45〫角的两边所在的直线分别交x轴,y轴的正半轴于点B,C,连结BC,函数y=(x>0)的图象经过BC的中点D,则()A .B .C .D .7. (2分)如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是()A . (2,−1)B . (1,−2)C . (1,2)D . (2,1)8. (2分) (2020九下·汉中月考) 如图,在三边互不相等的△ABC中, D,E,F分别是AB,AC,BC边的中点.连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有()A . 3对B . 4对C . 5对D . 6对9. (2分)如图所示,在正方形ABCD中,E为CD上一点,延长BC至F,使CF=CE,连接DF,BE与DF相交于点G,则下面结论错误的是()A . BE=DFB . BG⊥DFC . ∠F+∠CEB=90°D . ∠FDC+∠ABG=90°10. (2分) (2019八下·南浔期末) 在数学课拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长是1,且一个内角是60°的小菱形拼成的图形,P是其中4个小菱形的公共顶点,小新在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A . 2B . 3C .D .二、填空题 (共5题;共7分)11. (1分) (2018七上·武威期末) 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=________;12. (2分)(2016·广安) 如图,直线l1∥l2 ,若∠1=130°,∠2=60°,则∠3=________.13. (2分)菱形两条对角线长分别是4和6,则这个菱形的面积为________ .14. (1分) (2019八下·交城期中) 如图,在菱形ABCD中,对角线AC=6,AB=5,则菱形ABCD的面积为________.15. (1分) (2019九上·九龙坡期末) 如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为________.三、解答题 (共8题;共83分)16. (10分)计算:(1)÷ ﹣× + ;(2).17. (6分) (2015八下·鄂城期中) 计算:(1) 3 ﹣9 +3(2)( + )(2﹣2 )﹣(﹣)2.18. (5分)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.19. (15分) (2017八下·广州期中) 台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力。
青岛版2021-2022学年度第二学期八年级期中质量检测数学试卷
青岛版2021-2022学年度第二学期八年级期中质量检测数学试卷一、选择题题(共30分)1.(本题3分)用下列几组边长构成的三角形中哪一组不是直角三角形( )A .8,15,17B .6,8,10C D .1,2.(本题3分)下列等式中正确的是( )A 3B ±3C 3D 33.(本题3分)已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( ) A .20B .40C .60D .804.(本题3分)下列各数中:π0.12、0.2121121112…(相邻两个2之间的1的个数依次加1),无理数的个数是( ) A .2个B .3个C .4个D .5个5.(本题3分)不等式3442(2)x x -+-的最小整数解是( ) A .4-B .3C .4D .56.(本题3分)矩形ABCD 的对角线交于点O ,∠AOD =120°,AO =3,则BC 的长度是( )A .3B .C .D .67.(本题3分)如果不等式组1x x a >-⎧⎨>⎩的解集是1x >-,那么a 的值可能是( )A .-2B .0C .-0.7D .358.(本题3分)如图,直角三角形纸片ABC 中,∠ACB =90°,∠A =50°,将其沿边AB 上的中线CE 折叠,使点A 落在点A '处,则∠A 'EB 的度数为( )A .10°B .15°C .20°D .40°9.(本题3分)一只纸箱质量为1kg ,放入一些苹果后,纸箱和苹果的总质量不能超过9kg .若每个苹果的质量为0.3kg ,则这只纸箱内能装苹果( ) A .最多27个B .最少27个C .最多26个D .最少26个10.(本题3分)将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A .80°B .90°C .100°D .110°评卷人 得分二、填空题(共32分) 11.(本题4分)在不等式组2029x x -≥⎧⎨≤⎩的解集中,最大的整数解是______.12.(本题4分)已知51n -是整数,写出一个自然数n ____.13.(本题4分)一个实数的平方根为33x +与1x -,则这个实数是________. 14.(本题4分)如果三角形的三条边长分别为26x 、、,那么x 的取值范围是______. 15.(本题4分)如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC :∠EDA=1:2,且AC=10,则DE 的长度是_____16.(本题4分)一件商品的成本价是30元,若按标价的八八折销售,至少可获得10%的利润;若按标价的九折销售,可获得不足20%的利润,设这件商品的标价为x 元,则x 的取值范围是______________17.(本题4分)如图,海中有一个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 在它的北偏东60︒方向上,航行12海里到达点C 处,测得小岛A 在它的北偏东30方向上,那么小岛A 到航线BC 的距离等于____________海里.18.(本题4分)如图,正方形ABCD 的边长为4,P 为对角线AC 上一点,且CP = 32,PE ⊥PB 交CD 于点E ,则PE =_____评卷人 得分三、解答题(共58分) 19.(本题8分)(1)计算:()2031820222π-⎛⎫--- ⎪⎝⎭;(2)已知()21160x +-=,求x 的值.20.(本题8分)解不等式(组),并把解集在数轴上表示出来. (1)()3428x x -->- (2)()3241213x x x x ⎧+-≥⎪⎨+>-⎪⎩21.(本题10分)已知:菱形ABCD的对角线AC,BD交于点O,CE∥OD,DE∥OC.求证:四边形OCED是矩形.22.(本题10分)如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.23.(本题10分)如图,学校操场有一个垂直于地面的旗杆,爱动脑筋的小明利用足够长的升旗绳子和卷尺测算旗杆高度,测量方法如下:将升旗的绳子拉直到旗杆底端C,并在绳子与旗杆底端C重合处做一个记号D,然后将绳子拉直到离旗杆底端5米B处,发现此时绳子B处距离记号D处1米.请你帮小明算出旗杆AC的高度.24.(本题12分)某学校初二年级党支部组织“品读经典,锤炼党性”活动,需要购买不同类型的书籍给党员老师阅读.已知购买1本A类书和2本B类书共需82元;购买2本A类书和1本B类书共需74元.(1)求A,B两类书的单价;(2)学校准备购买A,B两类书共34本,且A类书的数量不高于B类书的数量.购买书籍的花费不得高于900元,则该学校有哪几种购买方案?参考答案:1.解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误; B 、∵2226810+=,∴此三角形是直角三角形,故选项错误; C 、∵()()222325+≠,∴此三角形不是直角三角形,故选项正确;D 、∵222)12(5+=,∴此三角形为直角三角形,故选项错误.故选:C .2.解:A 、9-,负数没有算术平方根,故此选项错误;、B 、9=3,故此选项错误; C 、2(3)-=3,故此选项正确;D 、2(3)-=3,故此选项错误;故选:C . 3.解:这个菱形的面积=12×10×8=40.故选:B .4.解:9=3,是整数,属于有理数;0.12••是循环小数,属于有理数;无理数有π,3,0.2121121112…(相邻两个2之间的1的个数依次加1),共3个. 故选:B . 5.C6.解:如下图所示:∵四边形ABCD 是矩形,∴∠ABC =90°,OA =12AC ,OB =12BD ,AC=BD ,∴OA=OB ,∵∠AOD =120°,∴∠AOB =60°,∴△AOB 是等边三角形,∴OA=AB =2,∴AC =2OA =4,∴BC 2=AC 2-AB 2=36-9=27, ∴BC =33D .7.∵不等式组1x x a >-⎧⎨>⎩的解集是1x >-,∴a≤-1,只有-2满足条件,故选A .8.解:∵△ABC 是直角三角形,CE 是中线,∴AE CE BE ==,有折叠的性质,则 AE A E '=,AEC A EC '∠=∠,∴AE CE BE A E '===,∵∠A =50°,∴∠ACE =50°, ∴180505080AEC A EC '∠=∠=︒-︒-︒=︒,∵5050100BEC ∠=︒+︒=︒,∴1008020A EB '∠=︒-︒=︒; 故选:C .9.设这只纸箱内能装苹果x 个,由题意可得:1+0.3x ≤9解不等式得:2263x ≤由于x 只能取正整数所以x 为不超过26的正整数时,均满足纸箱和苹果的总质量不能超过9kg 即这只纸箱内最多能装苹果26个故选:C10.解:根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∵∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°. 故选B .11.解:2029x x -≥⎧⎨≤⎩①② ,解不等式①得,x ≥2,解不等式②得,92x ≤ ,∴不等式组的解集为922x ≤≤,∴不等式组的最大整数解为4.故答案为:4. 12.解:当n =1时,原式5114=⨯-==2,是整数.故答案为:1(答案不唯一). 13.解:根据题意得:①这个实数为正数时:3x +3+x -1=0,∴x =-12,∴(x -1)2=94,②这个实数为0时:3x +3=x -1,∴x =-2,∵x -1=-3≠0,∴这个实数不为0.故答案为:94.14.解:根据题意得:6262x -<<+,即48x .故答案为:48x.15.∵四边形ABCD 是矩形,∴∠ADC=90°,AC=BD=10,OA=OC=12AC=5 OB=OD=12BD=5,∴OC=OD ,∴∠ODC=∠OCD ,∵∠EDC :∠EDA=1:2,∠EDC+∠EDA=90°,∴∠EDC=30°,∠EDA=60°,∵DE ⊥AC ,∴∠DEC=90°,∴∠DCE=90°-∠EDC=60°,∴∠ODC=∠OCD=60°,∴∠ODC+∠OCD+∠DOC=180°,∴∠COD=60°,∴△OCD 是等边三角形,DE=sin60°•OD=32×5=53216.解:根据题意,得:0.88303010%0.9303020%x x -≥⨯⎧⎨-<⨯⎩解得:37.5≤x <40,故答案为:37.5≤x <40.17.如图,过点A 作AD ⊥BC 于D ,根据题意可知∠EBA =60°,∠FCA =30°,EB ⊥BC ,FC ⊥BC ,BC =12,∴∠ABD =30°,∠ACD =60°,∠CAD =30°,∴∠BAC =∠ACD -∠ABD =30°, ∴AC =BC =12,∴CD =12AC =6,∴AD =22AC CD -=22126-=63.故答案为:318.连接BE ,设CE 的长为x ∵AC 为正方形ABCD 的对角线,正方形边长为4,2 ∴∠BAP=∠PCE=45°,222∴BP 2=AB 2+AP 2-2AB×AP×cos ∠BAP=42+22-2×4×2×2PE 2=CE 2+CP 2-2CE×CP×cos ∠PCE=(32)2+x 2-2x×32×22=x 2-6x+18 BE 2=BC 2+CE 2=16+x 2 在Rt △PBE 中,BP 2+PE 2=BE 2,即:10+x 2-6x+18=16+x 2,解得:x=2∴PE 2=22-6×2+18=10 ∴PE=10.19.解:(1)原式212112=-+-⎛⎫⎪⎝⎭2411=-+-=.(2)由题意可知,两边开平方运算,得到:14x +=±,∴3x =或5-,∴x 的值为3或5-. 20.(1)原式为()3428x x -->-去括号得31228x x -->-合并同类项、移向得4x > 故不等式的解集为4x >数轴上解集范围如图所示(2)原式为3(2)41213x x x x +-≥⎧⎪⎨+>-⎪⎩①②①式为3(2)4x x +-≥去括号得364x x +-≥合并同类项、移向得410x ≥化系数为1得52x ≥②式为1213xx +>-去分母得1233x x +>-合并同类项、移向得4x ->-化系数为1得4x < 故方程组的解集为542x ≤<数轴上解集范围如图所示21.证明:∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠DOC =90°,∴平行四边形OCED 是矩形.22.(1)证明:∵四边形ABCD 是平行四边形,∴AO =OC ,∵△ACE 是等边三角形, ∴EO ⊥AC (三线合一),即BD ⊥AC ,∴▱ABCD 是菱形;(2)解:∵△ACE 是等边三角形,∴∠EAC =60°由(1)知,EO ⊥AC ,AO =OC ∴∠AEO =∠OEC =30°,△AOE 是直角三角形,∵∠AED =2∠EAD ,∴∠EAD =15°, ∴∠DAO =∠EAO ﹣∠EAD =45°,∵▱ABCD 是菱形,∴∠BAD =2∠DAO =90°, ∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.23.设旗杆AC 的高度为x 米,则(1)AB x =+米.∵在ABC 中,AC BC ⊥,∴222AC BC AB +=,即2225(1)x x +=+,解得:12x =.故旗杆AC 的高度为12米. 24.(1)解:设A 类书的单价为x 元,B 类书的单价为y 元,依题意得:282274x y x y +=⎧⎨+=⎩,解得:2230x y =⎧⎨=⎩.答:A 类书的单价为22元,B 类书的单价为30元. (2)解:设购买A 类书m 本,则购买B 类书()34m -本,依题意得:342230(34)900≤-⎧⎨+-≤⎩m mm m ,解得:1517m ≤≤.又∵m 为正整数, ∴m 可以为15,16,17,∴该学校共有3种购买方案,分别如下所示: 方案1:购买A 类书15本,B 类书19本; 方案2:购买A 类书16本,B 类书18本; 方案3:购买A 类书17本,B 类书17本. 【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。
八年级下册数学期中试卷(青岛版)
八年级下册数学期中试卷(青岛版)的长等于内槽宽AB, 那么判定△OAB≌△OAB的理由是( )A. 边角边B. 角边角C. 边边边D. 角角边7、在下列各组的条件中, 不能判定△ABC和△DEF全等的是( )A. AB=DE, E, FB. AC=DF, BC=DE, DC. AB=EF, E, FD. F, E, AC=DE8、下列各组三角形中,两个三角形能够相似的是( )A.△ABC中,A=42 o,B=118 o,△ABC中,A=118 o,B=15 oB.△ABC中,AB=8,AC=4, A=105 o,△ABC中,AB=16,BC=8,A=100oC.△ABC中,AB=18,BC=20,CA=35,△A`B`C`中,A`B`=36,B`C`=40,C`A`=70D.△ABC和△ABC中,有,C9、如图在△ABC,P为AB上一点,连结CP,以下各条件中不能判定△ACP∽△ABC的是( )A.ACP=B B.APC=ACB C. ACAP=ABAC D.ACAB=CPBC10、下列代数式中,x能取一切实数的是( )A. B. C. D.11、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( )A 4.8米 B 6.4米 C 9.6米 D 10米12、如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC, EF∥AB, 且AD:AB=1:2, S四边形BFED:S△ABC=( )A、1:2B、1:3C、4:9D、5:9二、填空题:13、如右图所示为农村一古老的捣碎器,已知支撑柱的高为0.3米,踏板长为1.6米,支撑点到踏脚的距离为0.6米,现在踏脚着地,则捣头点上升了米.14、如图, 已知:2 , 4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_____ ____再证△BDE≌△__ ____ ,根据是___ _______.15、式子成立的条件是。
【八年级】八年级下册数学期中检测试题(青岛版含答案)
【八年级】八年级下册数学期中检测试题(青岛版含答案)八年级下学期数学试卷一、:(每题3分,共30分)1若为二次根式,则m的取值为()上午≤3b、m<3c、m≥3d、m>32、计算:18÷(3d6)的结果是():a、 6d3;b、3;c、d6d23;d、d333、在△abc和△a’b’c’中,ab=a’b’,∠b=∠b’,补充条件后仍不一如果△ 基础知识≌ △ a'b'c'可以保证,补充条件是()a、bc=b’c’b、∠a=∠a’c、ac=a’c’d、∠c=∠c’4.如果两个三角形的两侧对应于一侧的相同高度,则两个三角形第三侧的角度之间的关系为()a、相等b、不相等c、互余或相等d、互补或相等5.如果α是锐角,sinα=Cos 50°,那么α的值是()a、20°b、30°c、40°d、50°6.已知:如图所示,小明打网球时,球拍球的高度应为()a、2.7mb、1.8mc、0.9md、6m7.如图所示,正方形ABCD的边BC位于等腰直角三角形PQR的底边QR上,其他两个顶点a和D位于PQ和PR上,则PA:PQ=()a、b、1:2c、1:3d、2:38.如果平行四边形的两个相邻边的长度分别为10和15,且其夹角为60°,则平行四边形的面积为()m2a、150;b、75;c、9;d、79.如图所示,在RT中△ ABC,CD是斜边AB上的高度,角平分线AE在H和ef中与CD相交⊥ AB在F中,那么以下结论是不正确的()a、∠acd=∠bb、ch=ce=efc、 ac=afd、ch=hd10、在正方形网格中,的位置如右图所示,则的值为()a、 b、c、d、二、题:(每小题3分,共30分)1.当x_____________________2、化简-÷=____________.3.如果a=3+22,B=3-22,那么a2b-ab2=。
2023—2024学年山东省青岛市城阳区八年级下学期期中数学试卷
2023—2024学年山东省青岛市城阳区八年级下学期期中数学试卷一、单选题(★★) 1. 下列四个图形中是中心对称图形的是()A.B.C.D.(★★) 2. 如图,屋顶钢架外框是等腰三角形,其中,工人师傅在焊接立柱时,只用找到的中点D,就可以说明竖梁垂直于横梁了,工人师傅这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”(★★) 3. 交通法规人人遵守,文明城市处处安全在通过桥洞时,我们往往会看到如图所示的标志,这是限制车高的标志.则通过该桥洞的车高x(m)的范围在数轴上可表示为()A.B.C.D.(★★) 4. 如图,的顶点坐标分别为,,,如果将先向左平移3个单位,再向上平移1个单位得到,那么点B的对应点的坐标是()A.B.C.D.(★) 5. 若,则下列不等式一定成立的是()A.B.C.D.(★★) 6. 用反证法证明命题“三角形中必有一个内角小于或等于60 °”时,首先应假设这个三角形中()A.每一个内角都大于B.每一个内角都小于C.有一个内角大于D.有一个内角小于(★★) 7. 已知点在第二象限,则a的取值范围是()A.或B.C.D.(★★★) 8. 如图,把绕点顺时针旋转,得到,交于点,若,则的度数()A.B.C.D.(★) 9. 如果不等式的解集为,则a必须满足()A.B.C.D.(★★★) 10. 如图,在中,,以点为圆心,适当长为半径作弧,分别交于点,分别以点为圆心,大于的长为半径作弧,两弧在的内部相交于点,作射线,交于点,则的长为()A.B.C.D.二、填空题(★★) 11. 如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 _________ .(★★) 12. 某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 ________ 道题.(★★★)13. 如图,在中,的平分线与的垂直平分线交于点P,连接.若,则的度数为 _______ .(★★) 14. 若不等式组的解集为x>3,则m的取值范围 ___ .(★★★) 15. 如图,已知在四边形中,,平分交于点,于点,于点,,,则的面积为 _______ .(★★★) 16. 如图,函数(k,b为常数,)的图象经过点,与函数的图象交于点A,下列结论:①点A的横坐标为2 ;②关于x的不等式的解集为;③关于x的方程的解为;④关于x的不等式组的解集为.其中正确的是_______ (只填写序号).三、解答题(★★★) 17. 已知:如图,四边形;求作:点,使点在四边形内部,,且点到两边的距离相等.(★★) 18. 计算:(1)解不等式;(2)解不等式,并把解集表示在数轴上;(3)求不等式的非负整数解;(4)解不等式组:;(5)解不等式组:.(★★★) 19. 如图,,是的高,且.(1)求证:是等腰三角形;(2)若,,求的高.(★★★) 20. 的各顶点坐标分别为,将先向下平移2个单位长度,再向左平移4个单位长度,得到.(1)如果将看成是由经过一次平移得到的,则平移的距离是个单位长度;(2)在y轴上有点D,则的最小值为个单位长度;(3)作出绕点O顺时针旋转后的.(★★★) 21. 如图,已知,以为边构造等边,连接,在上取一点,使,在上取一点,使,连接.(1)求证:;(2) ,,三条线段长度之和与图中哪条线段的长度相等?请说明理由.(★★★) 22. 两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买张成人票和张儿童票共需元,小波家购买张成人票和张儿童票共需元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共人,估计儿童至人.导游选择哪种购票方式花费较少?(★★) 23. 【问题情境】如图①,的内角,的平分线交于点D.【建立模型】如图①,的内角,的平分线,交于点.【建立模型】(1)如图②,过点作的平行线分别交,于点,.请你写出与,的数量关系并证明.(2)如图③,在图①的基础上,过点作直线,延长和,分别交于点,,若,,请你直接写出的长度(不需要证明).【类比探究】如图④,的内角的平分线,与它的外角的平分线交于点,过点作的平行线分别交,于点,.请你写出与,的数量关系并证明.(★★★) 24. 如图,在长方形中,,,延长至点E,使,连接.点P从点A出发,沿方向匀速运动,速度为;同时,点Q从点C出发,沿方向匀速运动,速度为;连接、.当点Q停止运动时,点P也停止运动.设运动时间为,解答下列问题:(1) 当t为何值时,使点Q在的平分线上?(2) 当t为何值时,为等腰三角形?(3) 设四边形的面积为,求y与t之间的关系式及四边形面积的最大值.。
2022-2023学年山东省青岛市市南区八年级第二学期期中数学试卷
青岛市市南区2022-2023学年度第二学期期中学业水平质量检测八年级数学试题(考试时间:120分钟;满分:120分)第Ⅰ卷(共24分)一、选择:(本题满分24分,共有8道小题,每小题3分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .2.已知a b >,则下列各式中一定成立的是( )A .0a b -<B .2121a b -<-C .22ac bc >D .33a b > 3.用公式法分解因式:①22x+y x xy y ++=2();②22x y 2x xy y =--+-2(-);③2269x y x xy y +-=2(-3);④2111x x 422x -+=(+)(-)其中,正确的有( )个 A .1 B .2 C .3 D .44.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设( )A .直角三角形中两个锐角都大于45°B .直角三角形中两个锐角都不大于45°C .直角三角形中有一个锐角大于45°D .直角三角形中有一个锐角不大于45°5.若关于x 的不等式()13a x ->的解集为31x a <-,则a 的取值范围是( ) A .1a <B .1a >C .1a ≠D .1a <-6.在元旦联欢会上,3名小朋友分别站在三角形三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先坐到凳子上谁获胜,为使游戏公平,则凳子应放在三角形的( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三条边的垂直平分线的交点 7.不等式组6154x x x m+⎧+⎪⎨⎪⎩><的解集是x <4,则m 的取值范围是 A .<m 4 B .m >4 C .m ≤4 D .m ≥48.如图,在△ABC 中,PD ,PE 分别是AC ,BC 边的垂直平分线,且分别与AB 交于点M ,N 连接CM ,CN .有下列四个结论:①P A B ∠=∠+∠;②ACB MCN P ∠=∠+∠;③∠ACB 与∠B 是互为补角;④△MCN 的周长与AB 边长相等.其中正确结论的个数是( )A .1 B .2 C .3 D . 4校密第Ⅱ卷(共96分)二、填空:(本题满分21分,共有7道小题,每小题3分)9.因式分解x 4﹣4x 2= 。
2022-2023学年全国初中八年级下数学青岛版期中试卷(含解析)
2022-2023学年全国八年级下数学期中试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知▱中,,则的度数是( )A.B.C.D.2. 在下列命题中,是假命题的是( )A.两组对边分别相等的四边形是平行四边形B.两条对角线垂直且平分的四边形是正方形C.四条边都相等的四边形是菱形D.四个内角都相等的四边形是矩形3. 下列各数中,算术平方根等于它本身的是( )A.B.C.D.4. 下列实数中,在和之间的是( )A.B.C.ABCD ∠A +∠C =260∘∠B 110∘160∘70∘50∘1671−1237–√15−−√πD.5. 下列二次根式与不是同类二次根式的是( )A.B.C.D.6. 若,且为实数,有下列各式:①;②;③;④;⑤其中,正确的有( )A.个B.个C.个D.个7. 将不等式的解集在数轴上表示出来,正确的是( )A.B.C.D.8. 与根式的值相等的是( )A.B.π+12–√2–√12−−√0.2−−−√72−−√a >b c ac >bc ac <bc a >b c 2c 2a ≥b c 2c 2>a c bc1234 x +8<4x −1,x ≤8−x1232x −1x −−−√−x −−−√x−√−−−−√C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 化简:________.10. 实数,是连续整数,如果,那么的值是________.11. 如图:点、、、分别是四边形各边的中点.当四边形满足条件________时,四边形是菱形.12. 如图,中,,点,点在第一象限,,分别为,的中点,且,则点坐标为________.13. 已知实数,,在数轴上的对应点如图所示,则________(填“”“”或“=”)14. 关于的不等式组的解集中至少有个整数解,则正数的最小值是________.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )15. 市体育局为组织校园足球联赛准备购进一批足球,红星体育用品公司通过公开招标接到这项业务,而比赛用的足球质量有严格规定,其中质量误差符合要求,现质检员从中抽取个足球进行检查,检查结果如下表:(单位:)①②③ ④ ⑤ ⑥有几个足球符合质量要求?−−x−−−√−x−√=−12−−√18−−√3–√n m n <<m 26−−√m +n E F G H ABCD ABCD EFGH △ABO AO =AB B(10,0)A C D OB OA CD =6.5A a b a +b −10><x {x −a ≤0,2x −3a ≥05a ±5g 6g +3−2+4−6+1−3(1)(2)其中质量最接近标准的是几号球?为什么?16. 解不等式组,并把不等式组的解集表示在数轴上.;.17. 已知不等式的最小正整数解是方程的解,试求的值. 18. 如图,在▱中,,以为直径的交于点,过点作的切线交于点.求证:;填空:①当________时,四边形为正方形;②当________时,四边形为菱形.19. 先化简,再求值:,其中=.20. 已知平行四边形中,对角线,相交于点, ,,,求的长.21. 如图,在矩形中,,,对角线相交于,为上一点,交于点,若,求:的长;的面积.22. 如图,一条伸直的橡皮筋的两端被固定在水平桌面上,是上的一点,,,将橡皮筋从点向上垂直拉升到点.求的长;(2)(1) 4x >2x −6≤x −13x +19(2) 5x −1<3(x +1)−≤12x −135x +125x −2<6x −13x −1.5ax =6a ABCD AC =BC =4AC ⊙O CD E E ⊙O AD F (1)EF ⊥AD (2)∠B =∘AOEF AF =ABCD 2−2−3−3+3+x 2y 2x 2y 2x 2x 2y 2y 23|x +1|+2(y −2)40ABCD AC BD O AB ⊥AC AB =3BD =210−−√AD ABCD AB =2BC =4O E BC DE AC F ∠EDC =∠ADB (1)BE (2)△CEF AB C AB AB =5cm AC =4cm C 2cm D (1)AD (2)△ABD判断的形状,并说明理由.23. 某公司有、两种型号的客车,它们的载客量、每天的租金如表所示:型号客车型号客车载客量(人/辆)租金(元/辆)已知某中学计划租用、两种型号的客车共辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过元.(1)求最多能租用多少辆型号客车?(2)若七年级的师生共有人,请写出所有可能的租车方案.24. 计算: .(2)△ABD A B A B 4530600450A B 105600A 380+−−(−)(−)3–√2(1−)2–√2−−−−−−−−√()2–√2−12–√2–√3–√参考答案与试题解析2022-2023学年全国八年级下数学期中试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】平行四边形的性质【解析】由平行四边形的性质得出,,求出,即可得出答案.【解答】解:∵四边形是平行四边形,∴,,∵,∴,∴.故选.2.【答案】B【考点】正方形的判定矩形的判定菱形的判定平行四边形的判定【解析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:两组对边分别相等的四边形是平行四边形,正确,故不符合题意;∠A =∠C ∠B +∠C =180∘∠C =130∘ABCD ∠A =∠C ∠B +∠C =180∘∠A +∠C =260∘∠C =130∘∠B =−=180∘130∘50∘D A两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故符合题意;四条边都相等的四边形是菱形,正确,故不符合题意;四个内角都相等的四边形是矩形,正确,故不符合题意.故选.3.【答案】C【考点】算术平方根【解析】根据算术平方根的定义对各个选项分析判断后进行解答即可.【解答】解:算术平方根是;算术平方根是;算术平方根是,没有算术平方根.所以算术平方根等于它本身的是.故选.4.【答案】A【考点】实数大小比较【解析】本题主要考查了实数的大小比较.【解答】解:.,符合题意;.,不符合题意;.,不符合题意;.,不符合题意.故选.5.【答案】CB C D B 16477–√11−11C A 2<<37–√B >315−−√C π>3D π+1>3A【考点】同类二次根式【解析】根据同类二次根式的定义求解即可.【解答】解:,,与是同类二次根式,与不是同类二次根式,故选:.6.【答案】A【考点】不等式的性质【解析】根据不等式的性质对选项进行分析、判断.【解答】解:①当时,不等式不成立,故错误;②当时,不等式不成立,故错误;③当时,不等式不成立,故错误;④当时,;当时,;综上所述,故正确;⑤当时,不等式不成立,故错误;综上所述,正确的不等式有个.故选:.7.【答案】C【考点】在数轴上表示不等式的解集【解析】2–√12−−√72−−√2–√=0.2−−−√5–√52–√C c =0ac >bc c =0ac <bc c =0a >b c 2c 2c =0a =b c 2c 2c ≠0a >b c 2c 2a ≥b c 2c 2c ≤0>a c b c 1A解不等式组,观察数轴即可求解.【解答】解:由①得,由②得,不等式组的解集为:.不等式组的解集在数轴上表示为:故选.8.【答案】C【考点】二次根式的性质与化简【解析】考查了二次根式的性质与化简和二次根式有意义的条件.【解答】解:∵ 有意义,∴,∴,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9.【答案】【考点】二次根式的化简求值【解析】x +8<4x −1①,x ≤8−x ②,1232x >3x ≤4∴3<x ≤4C −1x−−−√x <0x <0−1x −−−√x =x ⋅=−−1x −−−√−x −−−√−x−x −−−√C 2−6–√此题暂无解析【解答】解:,.10.【答案】【考点】估算无理数的大小【解析】根据题意结合即可得出,的值,进而求出答案.【解答】解:∵,是连续整数,,∴,,∴.故答案为:.11.【答案】【考点】三角形中位线定理菱形的判定【解析】本题主要考查三角形的中位线定理及菱形的判定.【解答】解:连接,,=−=2−−12−−√18−−√3–√4–√6–√6–√2−6–√115<<626−−√m n n m n <<m 26−−√n =5m =6m +n =1111AC =BDAC BD E,F,G,H AB,BC,CD,AD分别是边的中点,,, 四边形是平行四边形,当时,,四边形为菱形,故答案为:.12.【答案】【考点】勾股定理直角三角形斜边上的中线等腰三角形的性质:三线合一【解析】连接,根据等腰三角形三线合一的性质可得,根据线段中点的定义求出,再根据直角三角形斜边上的中线等于斜边的一半求出,利用勾股定理列式求出,然后写出点的坐标即可.【解答】解:如图,连接,∵,点是的中点,∴,,∵点是的中点,∴,由勾股定理,得,∴点的坐标为.故答案为:.13.【答案】【考点】实数大小比较在数轴上表示实数∵E,F,G,H AB,BC,CD,AD ∴EF AC =//12GH AC =//12∴EFGH AC =BD EF =EH EFGH AC =BD (5,12)AC AC ⊥BC OC AO AC A AC AO =AB C OB AC ⊥BC OC =OB =×10=51212D AO AO =2CD =2×6.5=13AC ===12A −O O 2C 2−−−−−−−−−−√−13252−−−−−−−√A (5,12)(5,12)<数轴实数【解析】直接利用数轴上,的位置得出的取值范围进而得出答案.【解答】由数轴可得:,故,则,14.【答案】【考点】解一元一次不等式组【解析】利用整数解个数,确定不等式组解集的左右界点,即可解答.【解答】解: 解得,解得由题,不等式组至少有个整数解,则不等式组的解集是.因为不等式组至少有个整数解,所以,所以.当时,由已知可得,则,矛盾;当,经检验,符合题意;故的范围是,所以的最小值是.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )15.【答案】a b a +b 1<b <2−2<a <−1−1<a +b <1a +b −1<02{x −a ≤0(1),2x +3a >0(2),(1)x ≤a (2)x >−a,325−a <x ≤a 325a −(−a)>432a >85<a <285−a <−332a >2a ≥2a a ≥2a 22(1)|+3|=3|−2|=2|+4|=4|−6|=6|+1|=1|−3|=3解:,,,,,;只有第④个足球的质量绝对值大于,不符合质量要求,其它的都符合,所以有个足球符合质量要求.因在个球中,质量绝对值最小,所以⑤号球最接近标准质量.【考点】绝对值正数和负数的识别【解析】(1)根据题意,只要每个篮球的质量标记的正负数的绝对值不大于的,即符合质量要求;(2)篮球的质量标记的正负数的绝对值越小的越接近标准.【解答】解:,,,,,;只有第④个足球的质量绝对值大于,不符合质量要求,其它的都符合,所以有个足球符合质量要求.因在个球中,质量绝对值最小,所以⑤号球最接近标准质量.16.【答案】解:(1),在数轴上表示为:(2).在数轴上表示为:【考点】解一元一次不等式组解一元一次不等式【解析】此题暂无解析【解答】此题暂无解答17.【答案】(1)|+3|=3|−2|=2|+4|=4|−6|=6|+1|=1|−3|=355(2)|+1|=165(1)|+3|=3|−2|=2|+4|=4|−6|=6|+1|=1|−3|=355(2)|+1|=16−3<x ≤2−1≤x <2解:∵,∴,∴不等式的最小正整数解为,∵是方程的解,则,∴.【考点】一元一次不等式的整数解一元一次方程的解【解析】本题是关于的不等式,应先只把看成未知数,求得的解集,然后根据不等式最小整数解是方程的解,进而求得.【解答】解:∵,∴,∴不等式的最小正整数解为,∵是方程的解,则,∴.18.【答案】证明:如图,连接,∵为的直径,∴,∵四边形是平行四边形,∴,,,∴为的中点.∵为的中点,∴,与相切于点,∴,∴.,【考点】切线的性质平行四边形的性质与判定5x −2<6x −1x >−15x −2<6x −1x =1x =13x −1.5ax =63×1−1.5a =6a =−2x x x a 5x −2<6x −1x >−15x −2<6x −1x =1x =13x −1.5ax =63×1−1.5a =6a =−2(1)OE AC ⊙O AE ⊥CD ABCD AD =BC ∵AC =BC ∴AD =AC E CD O AC AD//OE ∵EF ⊙O E EF ⊥OE EF ⊥AD 453正方形的判定菱形的判定【解析】无无【解答】证明:如图,连接,∵为的直径,∴,∵四边形是平行四边形,∴,,,∴为的中点.∵为的中点,∴,与相切于点,∴,∴.解:①∵,,∴,,,,四边形为矩形.,∴四边形为正方形.②∵,,∴,由,得,,,,,是等边三角形,∴,▱是菱形.故答案为:;.19.【答案】原式=(1)OE AC ⊙O AE ⊥CD ABCD AD =BC ∵AC =BC ∴AD =AC E CD O AC AD//OE ∵EF ⊙O E EF ⊥OE EF ⊥AD AC =BC ∠B =45∘AC ⊥BC ∵AD//BC ∴AC ⊥AD ∵EF ⊥OE ,EF ⊥AD ∴AOEF ∵AO =OE AOEF AF =3AD =4DF =1△AEF ∽△EDF E =AF ⋅DF F 2∴EF =3–√∴tan D ==EF DF 3–√∴∠D =60∘∵AC =AD ∴△ACD AD =CD ∴ABCD 4532−4−2+−3+3x 2x 2y 4y 2x 8y 2x 8y 2−−25=,由题意可知:=或=.原式==.【考点】整式的加减——化简求值非负数的性质:偶次方绝对值【解析】此题暂无解析【解答】此题暂无解答20.【答案】解:∵四边形是平行四边形,∴,,,又∵,∴,∵,,∴,∴,∴,∴.【考点】平行四边形的性质勾股定理【解析】此题暂无解析【解答】解:∵四边形是平行四边形,∴,,,又∵,∴,∵,,∴,∴,∴,∴.21.【答案】解:∵四边形是矩形,,,−−x 2y 5x −1y 2−5−4−5ABCD BO =DO AO =OC AD =BC BD =210−−√BO =10−−√AB ⊥AC AB =3AO ==110−9−−−−−√AC =2BC ==+3222−−−−−−√13−−√AD =13−−√ABCD BO =DO AO =OC AD =BC BD =210−−√BO =10−−√AB ⊥AC AB =3AO ==110−9−−−−−√AC =2BC ==+3222−−−−−−√13−−√AD =13−−√(1)ABCD AB =2BC =4AD//BC CD =AB =2∴,,∴.∵,∴.∵,∴,∴,∴,解得:,∴.,∴,∴,∴.∵, .【考点】矩形的性质相似三角形的性质与判定【解析】由在矩形中,,易证得,然后由相似三角形的对应边成比例,求得答案;首先求得的面积,然后证得,即可得:,由等高三角形的面积比等于对应底的比,求得答案.【解答】解:∵四边形是矩形,,,∴,,∴.∵,∴.∵,∴,∴,∴,解得:,∴.,∴,∴,∴.∵, .22.AD//BC CD =AB =2∠ADB =∠CBD ∠EDC =∠ADB ∠EDC =∠CBD ∠ECD =∠DCB △CDE ∼△CBD CE :CD =CD :CB CE :2=2:4CE =1BE =BC −CE =4−1=3(2)∵AD//BC △ADF ∼△CEF DF :EF =AD :CE =4:1EF :DE =1:5=CE ⋅CD =1S △CDE 12∴==S △CEF 15S △CDE 15(1)ABCD ∠EDC =∠ADB △CDE ∽△CBD (2)△CDE △ADF ∼△CEF EF :DE =1:5(1)ABCD AB =2BC =4AD//BC CD =AB =2∠ADB =∠CBD ∠EDC =∠ADB ∠EDC =∠CBD ∠ECD =∠DCB △CDE ∼△CBD CE :CD =CD :CB CE :2=2:4CE =1BE =BC −CE =4−1=3(2)∵AD//BC △ADF ∼△CEF DF :EF =AD :CE =4:1EF :DE =1:5=CE ⋅CD =1S △CDE 12∴==S △CEF15S △CDE 15【答案】解:∵,,,由勾股定理得, .由勾股定理得,,∵,,∴,∴是直角三角形.【考点】勾股定理勾股定理的逆定理【解析】暂无暂无【解答】解:∵,,,由勾股定理得, .由勾股定理得,,∵,,∴,∴是直角三角形.23.【答案】设租用型号客车辆,则租用型号客车辆,依题意,得:,解得:.又∵为整数,∴的最大值为.答:最多能租用辆型号客车.设租用型号客车辆,则租用型号客车辆,依题意,得:,,解得:.又∵为整数,且,∴=,.∴有两种租车方案,方案一:组型号客车辆、型号客车辆;方案二:组型号客车辆、型号客车辆.【考点】一元一次不等式的实际应用【解析】(1)AB =5cm AC =4cm CD =2cm AD =A +C C 2D 2−−−−−−−−−−√=+4222−−−−−−√=2(cm)5–√(2)DB =C +C D 2B 2−−−−−−−−−−√=+2212−−−−−−√=(cm)5–√A ==25B 252A +D =D 2B 2+(2)5–√2()5–√2=20+5=25A =A +D B 2D 2B 2△ABD (1)AB =5cm AC =4cm CD =2cm AD =A +C C 2D 2−−−−−−−−−−√=+4222−−−−−−√=2(cm)5–√(2)DB =C +C D 2B 2−−−−−−−−−−√=+2212−−−−−−√=(cm)5–√A ==25B 252A +D =D 2B 2+(2)5–√2()5–√2=20+5=25A =A +D B 2D 2B 2△ABD A x B (10−x)600x +450(10−x)≤5600x ≤713x x 77A A x B (10−x)45x +30(10−x)≥380x ≥513x x ≤713x 67A 6B 4A 7B 3A (10−x)A(1)设租用型号客车辆,则租用型号客车辆,根据总租金=租用型号客车的辆数租用型号客车的辆数结合租车的总费用不超过元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再取其中的最大整数值即可得出结论;(2)设租用型号客车辆,则租用型号客车辆,根据座位数=租用型号客车的辆数租用型号客车的辆数结合师生共有人,即可得出关于的一元一次不等式,解之即可得出的取值范围,再结合(1)的结论及为整数,即可得出各租车方案.【解答】设租用型号客车辆,则租用型号客车辆,依题意,得:,解得:.又∵为整数,∴的最大值为.答:最多能租用辆型号客车.设租用型号客车辆,则租用型号客车辆,依题意,得:,,解得:.又∵为整数,且,∴=,.∴有两种租车方案,方案一:组型号客车辆、型号客车辆;方案二:组型号客车辆、型号客车辆.24.【答案】解:原式 .【考点】零指数幂、负整数指数幂二次根式的性质与化简二次根式的混合运算【解析】此题暂无解析【解答】解:原式 . A x B (10−x)600×A +450×B 5600x x A x B (10−x)45×A +30×B 380x x x A x B (10−x)600x +450(10−x)≤5600x ≤713x x 77A A x B (10−x)45x +30(10−x)≥380x ≥513x x ≤713x 67A 6B 4A 7B 3=3+−1−−2+2–√2–√6–√=6–√=3+−1−−2+2–√2–√6–√=6–√。
2022-2023学年山东省青岛实验初级中学八年级第二学期期中数学试卷及参考答案
青岛实验初级中学2022-2023学年八年级数学下学期期中测试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.下列图形中,是中心对称图形的是( )A .B .C .D .2.抛掷一枚质地均匀的硬币,正面朝上的概率为( )A .0B .12C .1D .无法确定 3.某市有3万名学生参加中考,为了考察他们的数学考试成绩,抽样调查了2000名考生的数学成绩,在这个问题中,下列说法正确的是( )A .3万名考生是总体B .每名考生的数学成绩是个体C .2000名考生是总体的一个样本D .2000名是样本容量4.顺次连接平行四边形的各边中点,所得四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形5.如图,将△ABC 绕点C 旋转180 °得△EFC ,连接AF 、BE ,下列说法正确的有( ) ①四边形ABEF 一定是平行四边形 ②当∠ACB =90°时,四边形ABEF 是矩形 ③当AC =B C 时,四边形ABEF 是菱形④当AC =BC ,∠ACB =90°时,四边形ABEF 是正方形 A .1个 B .2个 C .3个 D .4个6.如图,线段a'是由线段a 经过平移得到的,线段a'还可以看作是线段a 经过怎样的图形变化得到?下列结论:①1次中心对称;②1次轴对称;③2次轴对称.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.某班级共有50名学生,在一次体育抽测中有5人不合格,那么不合格人数的频率为 . 8.调查乘坐高铁的旅客是否携带违禁物品,这种调查适用 (填“普查”或者“抽样调查”). 9.估计下列事件发生的可能性大小:①抛掷一枚质地均匀的骰子,向上一面的点数是6;②抛掷一块石头,石头会下落;③在一只不透明的袋子中装有4个除颜色外完全相同的小球,3个黄色,1个蓝色,任意摸出一个球,第6题第5题A BCEF摸到红色球.把这些事件的序号按发生的可能性从小到大排列是 .10.对于命题“如图,如果OA =OC ,OB ≠OD ,那么四边形ABCD 不是平行四边形”.用反证法证明这个结论时,第一步应假设 .11.如图,为测量池塘岸边A 、B 两点间的距离,在池塘的一侧选取点O ,分别取OA 、OB 的中点M 、N ,测得MN=32m ,则A 、B 两点间的距离是 m .12.如图,在菱形ABCD 中,AB =5,AC =6,则该菱形的面积是 .13.如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,∠C =45°,若AD =2,BC =3,则DC = .14.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,若CD =3,AD =7,则AE = .15.如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD 上,△AEF 是等边三角形,若AB =AE ,则∠B = °. 16.如图,在矩形ABCD 中,AB =3,BC =4,M 是CD 边上任意一点,过点A 、C 、D 作射线BM 的垂线,垂足分别是E 、F 、G ,若AE +CF +DG =m ,则m 的最小值是 .三、解答题(本大题共9小题,计68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)某市为增强学生的卫生防疫意识,组织全市学生参加知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了某校部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图(如图所示),请根据图表信息解答以下问题.20%CDBA第16题 ABC D EFGMABCDEF第14题ABCDE 第13题ABCD第12题ABCDBCDO A第10题部分学生参赛成绩扇形统计图部分学生参赛成绩分布直方图 6(1)在这个问题中,样本容量是;(2)补全频数分布直方图;(3)计算扇形统计图中“D”对应的圆心角度数;(4)如果竞赛成绩达80分以上(含80分)为优秀,该校共有2000名学生,请估算该校竞赛成绩达到优秀的总人数.18.(7分)某农场引进一批新菜种,在播种前做了五次发芽实验,每次任取一定数量的种子进行实验.实验结果如下表所示:(1)请估计,当n很大时,频率将会接近;(2)这批菜种发芽的概率估计值是,请简要说明理由;(3)如果该种子发芽后的成秧率为90%,那么在相同条件下用10000粒该种子可得到菜秧苗多少棵?19.(6分)如图,在平面直角坐标系中,已知点A(-2,3),B(-4,-1),C(-4,3),△A1AC1是由△ABC 顺时针旋转得到的.(1)写出旋转中心的坐标为,此时旋转角是°;(2)画出△ABC关于点O的中心对称图形.20.(6分)求证:一组对边平行,一组对角相等的四边形是平行四边形.已知:如图, . 求证: .21.(6分)如图,在△ABC 中,∠BAC =90°,DE 是△ABC 中位线,AF 是△ABC 的中线.求证:DE =AF .(1)请把证法1补充完整; (2)试用不同的方法证明DE =AF .22.(6分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,交BC 的延长线于点E . (1)求证:DB =DE ;(2)若∠DOC =120°,DE =2,求矩形ABCD 的面积.23.(6分)如图,四边形ABCD 是平行四边形,E 为AB 的中点. (1)如图①,只用无刻度的直尺在CD 边上作点F ,使DF =BE ;(2)如图②,用直尺和圆规作菱形EFGH ,使得点F 、G 、H 分别在边BC 、CD 、DA 上(不写作法,只保留作图痕迹).OBAC DEAB CD① ②24.(8分)如图,在矩形ABCD 中,AB =4,BC =8,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为点O . (1)连接AF 、CE ,求证:四边形AFCE 为菱形; (2)求AF 的长.25.(6分)如图①,在正方形ABCD 中,AB =3,点P 、Q 、E 分别在AB 、CD 、AD 上.(1)如图②,平移PQ ,使点Q 与C 重合,若PC ⊥BE ,求证:PC =BE ;(2)如图③,将正方形ABCD 沿PQ 翻折,使点D 落在BC 上的G 点处,若CG =1,则PQ = .26.(9分)平面直角坐标系不仅可以研究函数,还可以研究并解决很多图形以及图形变换问题. (1)如图①,在菱形OABC 中,若点A (3,4),则点B 坐标为 .(2)如图②,线段AB 、CD 关于点P 对称,若点A (3,3)、B (5,1)、D (-3,-1),则点C 的坐标为 .(3)如图③,在直角坐标系中,点A 、B 的坐标分别为(-1,2)、(-5,1),点M 、N 分别是x 轴、y 轴上的点,若以点A 、B 、M 、N 为顶点的四边形是平行四边形,则点M 的横坐标为 .(4)如图④,已知正方形 ABCD 的边长为5,E 、F 分别是边CD 、AD 上的点,BE 、CF 交于点P ,CE =DF =2,写出求AP 长的解题思路.AB CDFPE图③图① 图②ABCDEFOA BCDEABCDE八年级数学参考答案与评分标准一、选择题(本大题共6小题,每小题2分,共12分)1.C2.B3.B4.A5.B6.C二、填空题(本大题共10小题,每小题2分,共20分)7.0.1; 8.普查; 9.③①②; 10.四边形ABCD 是平行四边形; 11.64; 12.24; 13.2; 14.5; 15.80°; 16.245;三、解答题(本大题共10小题,共68分) 17.(本题8分)(1)40 …………………………… ………………2分(2)图略(虚线不画或未标数值扣1分) …………………4分(3)360°×1640=144°………………………………6分(4)2000×10+1640=1300人…………………………8分答:该校竞赛成绩达到优秀的总人数为1300人. 18.(本题7分)(1)0.90 …………………………………2分 (2)0.9 …………………………………4分理由:当试验次数很多时,事件发生的频率可作为概率的近似值………5分 (3)10000×0.9×0.9=8100棵………………………7分 答:可得到菜秧苗8100棵. 19.(本题6分)(1)(-1,0),90 ………………………………4分 (2)图略………………………………6分20.(本题6分)已知:如图,在四边形ABCD 中,AD ∥BC ,∠A =∠C …………1分求证:四边形ABCD 是平行四边形 …………………2分 证明:∵AD ∥BC∴∠A +∠B =180°…………………………3分 ∵∠A =∠C∴∠C +∠B =180° …………………4分 ∴AB ∥CD ………………………5分∴四边形ABCD 是平行四边形………………6分21.(本题6分) (1)12 BC ,12BC …………………………………2分 (2)证明:连接EF ,FD∵点D 、E 、F 是AC 、BC 的中点∴DF 、EF 是△ABC 的中位线…………………3分 ∴EF ∥AD ,DF ∥AE∴四边形AEFD 是平行四边形…………………4分 ∵∠BAC =90°∴四边形AEFD 是矩形…………………………5分 ∴DE =AF ………………………6分 22.(本题6分)(1)证明:∵四边形ABCD 是矩形∴AD ∥BE ,AC =DB ……………1分∵DE ∥AC∴四边形ACED 为平行四边形…………………2分 ∴AC =DE ∵AC =DB∴DB =DE ……………………3分 (2)∵四边形ABCD 是矩形∴∠DAB =90°,OA =12AC ,OD =12BD ,AC =BD∴ OA =OD∴ ∠ADO =∠OAD ∵ ∠DOC =120° ∴ ∠ADO =60°∴∠DBA =30° …………………4分 ∵DE =2∴ AD =21BD =1,∴在 …………5分 ∴S 6分23.(本题6分)图略 24.(本题8分)(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ,∠AEF =∠CFE ∵EF 垂直平分AC ,垂足为O∴EF ⊥AC ,OA =OC ……………………1分 在△AOE 和△COF 中, ∠CAD =∠ACB ∠AEF =∠CFE OA =OC∴△AOE ≌△COF ……………………3分 ∴OE =OF∴四边形AFCE 为平行四边形……………………4分 ∵EF ⊥AC∴四边………………………………………5分 (2)解:设菱形边长AF =CF =x ,则BF =8-x在Rt △ABF 中,AB =4,由勾股定理得42+(8-x )2=x 2 ………7分解得x =5 …………………………8分∴ AF 的长为5 .25.(本题6分)(1)∵四边形ABCD 是正方形∴AB =BC ,∠A =∠CBP =90°……………………1分∵BE⊥PC∴∠ABE+∠AEB=90°,∠ABE+∠BPC=90°∴∠AEB=∠BPC………………………………2分在△ABE和△BCP中,∠A=∠ABC∠AEB=∠BPCAB=BC∴△ABE≌△BCP…………………………3分∴BE=PC…………………………………4分(2)10.…………………………………6分26.(本题9分)(1)(8,4)…………………………………………1分(2)(-1,-3)……………………………3分(3)-4,4,-6……………………………6分(4)①以点B为坐标原点,建立平面直角坐标系……………………7分②求点P的坐标……………………………………8分③由勾股定理可求AP的长……………………………9分。
山东省青岛市青岛大学附属中学2022-2023学年八年级下学期期中数学试题(含答案)
2022—2023学年度第二学期期中阶段性调研八年级数学试题(满分:120分 时间:120分钟)一、选择题(共8个小题,每小题3分,满分24分)1.下列四幅图片呈现的是垃圾类型及标识图案,其中标识图案是中心对称图形的是( )A.厨余垃圾B.可回收物C.其他垃圾D.有害垃圾2.已知,那么下列不等式中一定成立的是()A. B. C.D.3.下列各式由左到右的变形中,属于因式分解的是( )A. B.C. D.4.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都大于等于45°C.有一个内角大于等于45°D.每一个内角都小于45°5.如图,在中,,.将此三角形绕点按顺时针方向旋转后得到,若点恰好落在线段上,、交于点,则的度数为( ).A.5°B.10°C.15°D.20°6.某大型超市从生产基地购进一批水果,总质量为千克,进价10元/千克,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.30% B.33.3% C.33.4% D.40%7.如图,已知的面积为12,BP 平分,且于点,则的面积是()a b >a c b c +>+c a c b ->-ac bc>a b c c >()()21232x x x x --=-+()()22x y x y x y +=+-()24444x x x x ++=++()()23212x x x x -+=--ABC △90ACB ∠=︒50B ∠=︒C A B C ''△B 'AB AC A B ''O ACB ∠'a ABC △ABC ∠AP BP ⊥P BPC △A.10B.8C.6D.48.如图,已知中,,将绕点A 沿逆时针方向旋转得到,交于点F ,DE 交BC 、AC 于点G 、H ,则以下结论:①;②连接AG 、FH ,则;③当时,的长度最大;④当点H 是DE 的中点时,四边形的面积等于.其中正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(共8个小题,每小题3分,满分24分)9.命题“等边三角形的三个内角相等”的逆命题是______.10.如图,直线:与:交于点,则不等式的解集为______.11.如图,点A 的坐标为,点在轴上,把沿轴向右平移到,若四边形的积为9,则点的坐标为______.ABC △AB AC =ABC △()0n n BAC ︒<<∠ADE △AD BC ABF AEH ≌△△AG FH ⊥AD BC ⊥DF AFGH AF GH ⨯1L 3y x =+2L y mx n =+()1,A b -30x mx n +-->()1,3B x OAB △x ECD △ABDC C12.如图,在四边形中,,,连接BD ,,.若是边上一动则长的最小值为______.13.如图,在中,,的平分线BD 交AC 于点D ,E 是BC 中点,且,那么数为______.14.已知关于的不等式组有解,则的取值范围是______.15.如图,四边形ABCD 中,,连接AC ,将绕点逆时针旋转60°,点C 的对应点与重合得到,若,,则的长度为______.16.如图,在平面直角坐标系中,将等边绕点A 旋转180°,得到,再将绕点旋转得到,再将绕点旋转180°,得到,……,按此规律进行下去,若点,的坐标为______.ABCD 90A ∠=︒4AD =BD CD ⊥ADB C ∠=∠P BC DP ABC △87A ∠=︒ABC ∠DE BC ⊥C ∠x 0320x a x -≥⎧⎨->⎩a 30DAB ∠=︒ABC △B EBD △6AB =5AD =AC OAB △11O AB △11O AB △1O 112O A B △112O A B △1A 213O A B △()2,0B 20B三、作图题(本题满分4分,用直尺作图,不写作法,但要保留作图痕迹)17.已知:如图,,射线上一点.求作:等腰,使线段BD 为等腰的底边,在内部,且点P 到两边的距离相等.四、解答题(本大题共7个题,共68分)18.(本题满分16分,每小题4分)(1)解不等式:(2)解不等式组:,并写出其整数解.(3)因式分解;(4)因式分解;19.(本题满分6分)如图所示的平面直角坐标系中,的三个顶点坐标分别为,,,请按如下要求画图:(1)以坐标原点O 为旋转中心,将顺时针旋转90°得到,请画出;(2)将向下平移5个单位长度得到,请画出;(3)和关于点中心对称,请画出ABC ∠BC D PBD △PBD △ABC ∠ABC ∠()22317323515x x x -+--≤+3561162x x x x <+⎧⎪+-⎨≥⎪⎩()()2191a b b -+-()()1124x x +++ABC △()3,2A -()1,3B -()1,1C -ABC △111A B C △111A B C △111A B C △222A B C △222A B C △222A B C △333A B C △()1,3--333A B C △20.(本题满分6分)如图,在和中,,与DE 相交于点F ,且,,连接CD ,EB .(1)求证:;(2)试判断与的数量关系,并说明理由.21.(本题满分10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元①若设购进甲种羽毛球筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润(元)与甲种羽毛球进货量(筒)之间的函数关系式,并说明当为何值时所获利润最大?最大利润是多少?22.(本题满分10分)如图1,在中,,D 、E 分别在边AB、AC 上,且,连接DE .现将绕点A 顺时针方向旋转,旋转角为,分别连接CE 、BD .(1)如图2,当时,求证:;(2)如图3,当时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;(3)连接CD ,在旋转过程中,直接写出的面积的最大值______,此时旋转角的度数为______.Rt ABC △Rt ADE △90ABF ADE ∠=∠=︒BC AB AD =AC AE =CAD EAB ∠=∠CF EF 35m W m m ABC △90A ∠=︒AB AC ==2AD AE ==ADE △()0360αα︒<<︒090α︒<<︒CE BD =90α=︒BCD △α23.(本题满分10分)【阅读材料】代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、解方程、求最值等问题中都有着广泛的应用.例1:用配方法因式分解:.原式例2:求的最小值.解由于,斤以,即的最小值为5.【类比应用】(1)在横线上添上一个常数项使之成为完全平方式:______;(2)仿照例1的步骤,用配方法因式分解:;(3)仿照例2的步骤,求的最小值;(4)若,则______.24.(本题满分10分)如图,在中,,,,动点从点开始沿边以1cm/s 的速度运动,动点从点开始沿边以3cm/s 的速度运动.点和点同时出发,当点到达点时,点也随之停止运动.设动点的运动时间为,解答下列问题:(1)当为何值时,点在的垂直平分线上?243a a ++()()()()()2244121212113a a a a a a a =++-=+-=+-++=++2821x x ++()222821816545x x x x x ++=+++=++()240x +≥()2455x ++≥2821x x ++26a a ++21024m m -+241215x x ++2222690x y xy y ++-+=x y -=ABC △60A ∠=︒4cm AB =12cm AC =P A AB Q C CA P Q P B Q ()s 04t t <<t A PQ(2)在运动过程中,是否存在某一时刻,使是直角三角形?若存在,求出t 的值;若不存在,请说明理由.(3)设四边形的面积为,求与之间的关系式.2022—2023学年度第二学期期中阶段性调研八年级数学试题参考答案(满分:120分 考试时间:120分钟)一、选择题(本题满分24分,共有8道小题,每小题3分)1.D2.A3.D4.B5.B6.C7. C8.A二、填空题(本题满分24分,共有8道小题,每小题3分)9.三个内角相等的三角形是等边三角形10.11.12.413.31°14.16.三、作图题(本题满分4分,用直尺作图,不写作法,但要保留作图痕迹)17.作图正确结论:如图即为所求四、解答题(本题满分68分,共有7道小题)18.(本题满分16分,每小题4分)(1)t APQ △BCQP ()2cm y y t 1x >-()4,332a <(22,()22317323515x x x -+--≤+(2)解不等式①,,解不等式②,,,解集在数轴上表示如下:的整数解为,,0,1,2.(3)原式(4)原式19.(本题满分6分)每小问2分20.(本题满分6分)【答案】证明:(1),(2)()()()5313733022x x x +--≤+-32x ≥-3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②3x >-2x ≤32x ∴-<≤x ∴2-1-()()()133b a a =--+2293342x x x ⎛⎫=++=+ ⎪⎝⎭AC AE = AB AD=Rt Rt ABC ADE∴≌△△CAB EAD∴∠=∠CAB DAB EAD DAB∴∠-∠=∠-∠CAB EAD∴∠=∠CAD EAB∴∠=∠Rt Rt ABC ADE≌△△,连接21.(本题满分10分)(1)设甲种羽毛球每筒的售价为元,乙种羽毛球每筒的售价为元,根据题意可得,解得答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球筒,则乙种羽毛球为筒,根据题意可得,解得,为整数,的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得,,随的增大而增大,且,当时,最大,W 最大值为1390,答:当时,所获利润最大,最大利润为1390元.22.(本题满分10分)(1)证明:如题中图2中,根据题意:,,,∵∠CAE+∠,,AC AE ∴=ACB DEA∠=∠CEAC AE= ACE DEC∴∠=∠ACE ACB DEC DEA∴∠-∠=∠-∠FCE BEC∴∠=∠CF EF∴=x y 1523255x y x y -=⎧⎨+=⎩6045x y =⎧⎨=⎩m ()200m -()()504020878032005m m m m ⎧+-≤⎪⎨>-⎪⎩7578m <≤m m ∴()()()6050454020051000W m m m =-+--=+50> W ∴m 7578m <≤∴78m =W 78m =AB AC =AD AE =90CAB EAD ∠=∠=︒90CAE BAE BAD BAE ︒∠+∠=∠+∠= CAE BAD ∴∠=∠在和中,.(2)证明:如题中图3中,根据题意:,,,在和中,,,,且,,,,,,,,,是线段的垂直平分线.(3) 解:中,边的长是定值,则边上的高取最大值时的面积有最大值,∴当点D 在线段的垂直平分线上时,的面积取得最大值,如图4中:图4,,,于,,,ACE △ABD △AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩()SAS ACE ABD ∴≌△△CE BD ∴=AB AC =AD AE =90CAB EAD ∠=∠=︒ACE △ABD △ACAB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩()SAS ACE ABD ∴≌△△ACE ABD ∴∠=∠90ACE AEC ︒∠+∠= AEC FEB ∠=∠90ABD FEB ︒∴∠+∠=90EFB ︒∴∠=CF BD ∴⊥AB AC == 2AD AE ==90CAB EAD ∠=∠=︒2BC ∴==2CD AC AD =+=BC CD ∴=CF BD ⊥ CF ∴BD 3135α=︒BCD △BC BC BCD △BC BCD △2AB AC AD AE ====- 90CAB EAD ∠=∠=︒DG BC ⊥G 112AG BC ∴==45GAB ∠=︒,,的面积的最大值为:,旋转角23.(本题满分10分)解:(1).故答案为:9;(2)(3),由于,所以,即的最小值是6;(4),,,,,解得,,则.故答案为:.24.(本题满分10分)解:(1)若点在线段的垂直平分线上,则,3DG AG AD ∴=+=-18045135DAB ∠︒=︒︒=-BCD ∴△(1123322BC DG ⋅⋅=⨯⨯-=135α=︒269a a ++21024m m -+210251m m =-+-()251m =--()()5151m m =---+()()64m m =--241215x x ++()2243 1.56x x =+++()24 1.56x =++()21.50x +≥()24 1.566x ++≥241215x x ++2222690x y xy y ++-+= ()()2222690x y xy y y ∴+++-+=()()2230x y y ++-=0x y +=30y -=3x =-3y =336x y -=--=-6-A PQ AP AQ =,,,解得:,答:当时,点在线段的垂直平分线上;(2)①若,则是直角三角形,,,,,,②若,则是直角三角形,,,,,,∴当或时,是直角三角形;(3)过点作,垂足为,交于点,,,,,AP t = 123AQ t =-123t t ∴=-3t =3s t =A PQ 90APQ ∠=︒APQ △60A ︒∠= 30AQP ︒∴∠=2AQ AP ∴=1232t t ∴-=125t ∴=90AQP ∠=︒APQ △60A ︒∠= 30APQ ︒∴∠=2AP AQ ∴=()2123t t ∴=-247t ∴=125t =247APQ △P PD AC ⊥D AC D 90ADP ︒∴∠=60A ︒∠= 30APD ︒∴∠=2AP AD ∴=12AD t ∴=,,过点作,垂足为,交于点,,,,,,,.答:与之间的关系式为.PD ∴=()211232APQ S t ∴=-=△P PE AC⊥E AC E 90AEB ︒∴∠=60A ︒∠= 30ABE ︒∴∠=2AB AE ∴=2AD ∴=BE ∴=1122ABC S ∴=⨯⨯=△2ABC APQ y S S ∴=-=+△△y t 2y =-+。
山东省青岛市胶州市、黄岛区、李沧区2022-2023学年八年级下学期期中数学试题
山东省青岛市胶州市、黄岛区、李沧区2022-2023学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________A.B.C.D.5.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设( ) A .直角三角形中两个锐角都大于45°B .直角三角形中两个锐角都不大于45°C .直角三角形中有一个锐角大于45°D .直角三角形中有一个锐角不大于45°6.如图,在ABC V 中,70B ∠=︒,将ABC V 绕点A 旋转后,得到AB C ''△,且点B '在BC 上,则C B C ''∠的度数为( )A .20︒B .40︒C .70︒D .110︒三、填空题9.列不等式:据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天的气温t(℃)的变化范围是______.10.如图,在Rt ABC △中,90ACB ∠=︒,40A ∠=︒,点D 在斜边AB 的延长线上,如果将ABC V 按顺时针方向旋转一定角度后能与EBD △重合,那么旋转角的度数是______.︒11.如图,一艘船上午9时从海岛A 出发,以每小时20海里的速度向正西方向航行,上午11时到达海岛B 处,分别从A ,B 望灯塔C ,测得34DAC ∠=︒,68DBC ∠=︒,则海岛B 到灯塔C 的距离为______ 海里.12.如图,已知点B ,E ,F ,C 在同一条直线上,BE CF =,AB AF ⊥,CD DE ⊥,若添加一个条件(不再添加新的字母)后,能判定ABF △与DCE △全等,则添加的条件可以是______(写出一个条件即可).13.如图,在ABC V 中,90A ∠=︒,=45ABC ∠︒,6cm AC =,将ABC V 沿AB 方向平移2cm ,得到DEF V ,BC 与DF 相交于点M ,则四边形BEFM 的周长为______cm .14.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”,乙说:“至多22元”,丙说:“至多20元”,小明说:“你们三个人都说错了”,则这本书的价格x (元)的取值范围为______ .15.如图,ABC V 与DBE V 关于点B 成中心对称,若90A ∠=︒,30ADC ∠=︒,2DE =,则AB 的长为______ .16.如图,在RtABC △中,9068ACB AC BC ∠=︒==,,,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是_____.现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,这三种拼块拼图时可平移、旋转.(1)若用1个拼块A ,2个拼块B ,4个拼块C 拼正方形,则拼出的正方形的面积为______ 个单位(拼块之间无缝隙,且不重叠);(2)在图1和图2中,各画出了某个正方形拼图中的1个拼块A 和1个拼块B ,请分别用不同的拼法将图1和图2中的正方形拼图补充完整.要求:①正方形拼图的面积为25个单位;②用实线画出边界线;③拼块之间无缝隙,且不重叠21.如图,在ABC V 中,D 为AC 边上一点,AD BD =,AE BD ⊥,交BD 的延长线于点E ,DF BC ⊥,垂足为F ,且AE DF =.(1)求证:CB CD =;(2)若点D 是AC 的中点,求C ∠的度数.22.5G 时代的到来,给人类生活带来了巨大变化,某营业厅销售A ,B 两种型号的5G 手机,每销售一台A 型手机可获利400元,每销售一台B 型手机可获利500元,该营业厅计划购进A ,B 两种型号手机共30台,其中B 型手机的数量不多于A 型手机数量的2倍,该营业厅购进A ,B 两种型号手机各多少台时,获得的利润最大?最大利润是多少?23.如图,ABC V 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE CD =.(1)如图②,射线OP 是AOB ∠的平分线,C ,D ,E 分别是OA ,OB ,OP 上的动点,若OCE ODE ∠=∠,则CE 与DE 的数量关系是______ ;猜想验证:(2)如图③,射线OP 是AOB ∠的平分线,C ,D ,E 分别是OA ,OB ,OP 上的动点,若CE DE =,则OCE ∠与ODE ∠的大小有什么关系?请写出你的结论并证明; 拓展应用:(3)在平面直角坐标系中,点()0,6A 在y 轴上,点()8,8B 在函数y x =的图象上,点C 在x 轴上,连接AB ,BC ,若AB BC =,请直接写出点C 的坐标.。
青岛版八年级数学下册期中测试题
八年级数学下册期中测试题1.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46(第1题图)(第3题图)(第4题图)2.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB△CDC.AB=CD,AD△BC D.AB△CD,AD△BC3.如图,在菱形ABCD中,AB=5,△BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.54.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.25.矩形、正方形、菱形的共同性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.每一条对角线平分一组对角6.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关(第6题图)(第8题图)7.的算术平方根是()A.3 B.C.±3 D.±8.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S329.直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形10.下列命题中,正确的个数有()△1的平方根是1;△1是1的算术平方根;△(﹣1)2的平方根是﹣1;△0的算术平方根是它本身.A.1个B.2个C.3个D.4个11.下列计算正确的是()A.B.C.﹣32=9 D.12.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N13.已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<014.关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是()A.a>3 B.a≤3 C.a<3 D.a≥315.如图一个圆桶,底面直径为12cm,高为8cm,则桶内能容下的最长的木棒为()A.8cm B.10cm C.4cm D.20cm(15题图)二.填空题(共6小题,每小题4分)16.如图,平行四边形ABCD中,AF、CE分别是△BAD和△BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是_________。
[精品]初中数学八年级下学期期中检测卷和答案(青岛版)
期中检测卷(时间:120分钟,满分:120分)一、选择题(每小题3分,共10小题,共30分) 1.下列图形,由∠1=∠2能得到AB ∥CD 的是( )A. B. C. D.2.下列运算结果正确的是( )=·3. 下列关于对顶角的叙述错误的是( ) A.对顶角一定相等 B.相等的角不一定是对顶角 C.对顶角的两边互为反向延长线D.若两个相等的角共有一个顶点,则这两个角是对顶角 4. 若二元一次方程组⎩⎨⎧=-=+4233y x y x ,的解为则n m -的值为( )A.1B.3 C .51- D .517 5.如图,下列关系式错误的是 ( )A. B.C. D.6.已知空气的单位体积质量是0.001 239 g/,则用科学记数法表示该数为( )A.1.239× g/B.1.239× g/C.0.1239× g/ B.12.39× g/7. 如图,点在的延长线上,下列条件不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠ D.∠+∠BDC=180°第7题图8. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机调查了10 000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设在这10 000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A. B.C. D.9. 三条共点直线都与第四条直线相交,对顶角一共有( ).A.8 对B.24 对C.7对D.12对10. 将一直角三角板与两边平行的纸条按如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共8小题,共24分)11.如图,直线a∥b,∠1=125°,则∠2的度数为_________°.12. 在关于x,y的方程组6,3x my m+⎧⎨-⎩==中,x y+= .13.如图,若AB∥EF ,BC∥DE,则∠∠_________.14. 若332-mx-12-ny =5是二元一次方程,则m=_________,n=________.15. 如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .16.如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是.17.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.18. 如图,已知AB,CD相交于点O,OE⊥AB,∠EOC=28°,则∠A OD= .三、解答题(共7小题,共66分)19.(8分)用指定的方法解下列方程组:第11题图(1) ⎩⎨⎧=+=-.52,4y x y x (代入法); (2) ⎩⎨⎧-=--=-.2354,42y x y x (加减法).20.(9分)某个图形上各点的横坐标不变,纵坐标变为原来的相反数,•此时图形却未发生任何改变,你认为可能吗?举例说明若横、纵坐标都变为原来的相反数呢?21.(9分)如图,直线分别与直线相交于点, 与直线相交于点.若∠1=∠2,∠3=75°,求∠4的度数.22.(10分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5.问甲、乙两个旅游团分别有多少人?23. (10分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队分别有多少支参赛?24.(10分)如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.(10分)方程组2528x yx y+=⎧⎨-=⎩,的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是不是方程组2528x yx y+=⎧⎨-=⎩,的解?参考答案1. B 解析:本题考查平行线的判定.A,D选项中∠1与∠2是同旁内角,并且不能证明∠1+∠2=180°,所以不能得到结论AB∥CD.C选项中∠1与∠2是直线AD,BC被直线AC 所截而形成的内错角,所以由∠1=∠2可得到AD∥BC,但不能得到AB∥CD.只有B选项符合题意.2. C 解析:因为,所以A错误;因为==-,所以B错误;因为,所以C正确;因为·,所以D错误.3.D 解析:根据对顶角的定义可知D不正确.4. A 解析:先求出的值为2,的值为1,所以nm-的值为1.5.D6. A 解析:因为0.001 239=1.239×10-3,故选A.7. A 解析:选项B中,∵ ∠3=∠4,∴ AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵ ∠5=∠B,∴ AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵ ∠B+∠BDC=180°,∴ AB∥CD(同旁内角互补,两直线平行),正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵ ∠1=∠2,∴ AC∥BD,故A错误.选A.8. B 解析:因为吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,所以被调查的吸烟者人数为,被调查的不吸烟者人数为.利用本题中的两个等量关系:①吸烟者患肺癌的人数-不吸烟者患肺癌的人数=22;②被调查的吸烟者人数+被调查的不吸烟者人数=10 000,列二元一次方程组可得9.D10.D 解析:是同位角正确;(2)正确++90°=180°,所以∠2+∠4=90°,所以(3)正确;与是同旁内角,(4)正确.二、11. 55 解析:如图,∵ 直线a∥b,∠1=125°,∴ ∠3=∠1=125°,∴ ∠2=180°-∠3=180°-125°=55°.12. 9 解析:6,3.x my m+⎧⎨-⎩==①②①+②,得36x m y m++-=+,所以9x y+=.13. 180° 解析:由AB∥EF推出∠B+∠BCF=180°.又由BC∥DE推出∠E=∠BCF.由等量代换可推得∠B+∠E=180°.14. 2 1 解析:令2m-3=1,2n-1=1,得m=2,n=1.15. 52°解析:∵ EA⊥BA,∴ ∠EAD=90°.∵ CB∥ED,∠ABC=38°,第11题答图∴ ∠EDA=∠ABC=38°,∴ ∠AED=180°-∠EAD -∠EDA=52°.16. 70° 解析:由DC ∥OB 得∠ADC =∠AOB =35°,又由反射角等于入射角知∠ADC =∠ODE =35°.在△ODE 中,∠DEO =180°∠DOE ∠EDO =180°35°=110°.又∠DEB +∠DEO =180°,∴ ∠DEB=180°=70°.17.120 解析:设应该安排x 名工人缝制衣袖,y 名工人缝制衣身,z 名工人缝制衣领,才能使每天缝制出的衣袖、衣身、衣领正好配套,依题意有解得 120,40.50.x y z =⎧⎪=⎨⎪=⎩故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套. 18.解析:由题图知,,即,所以.三、19.解:(1) ⎩⎨⎧=+=-②.52①,4y x y x 由①得.③将③代入②得,解得.将代入③得.所以原方程组的解是(2) ⎩⎨⎧-=--=-②.2354①,42y x y x①得解得.将代入①得21.所以原方程组的解是⎪⎩⎪⎨⎧==.5,21y x20.解:可能.因为图形上的点原本就关于x 轴对称,这样位置、形状和大小都没有发生改变. 举例略. 21.解:因为,所以∥,所以.22. 分析:根据“两个旅游团共有55人”和“甲旅游团的人数比乙旅游团的人数的2倍少5”两个等量关系列方程组解答. 解:设甲旅游团x 人,乙旅游团y 人. 根据题意,得解得答:甲、乙两个旅游团分别有35人、20人. 23. 解法1:设有x 支篮球队和y 支排球队参赛,依题意得解得答:篮球、排球队分别有28支与20支.解法2:设有x 支篮球队,则排球队有(48x )支, 依题意,得10x +12(48x )=520. 解得x =28. 48x =4828=20.答:篮球、排球队各有28支与20支.24.解:因为 ∠FOC =90°,∠1=40°,AB 为直线,所以 ∠3+∠FOC +∠1=180°,所以 ∠3=180°-90°-40°=50°. 因为 ∠3与∠AOD 互补,所以 ∠AOD =180°-∠3=130°. 因为 OE 平分∠AOD ,所以 ∠2=21∠AOD =65°.25. 解:满足,不一定.∵2528x yx y+=⎧⎨-=⎩,的解既是方程x+y=25的解,也是方程2x-y=8的解,•∴ 方程组的解一定满足其中的任何一个方程,但方程2x-y=8的解有无数组,如x=10,y=12就不满足方程组25 28. x yx y+=⎧⎨-=⎩,。
八年级数学下学期期中检测(AB卷) 青岛版
时间:90分钟 分值:120分一、选择题(每题3分,共30分)1、下列二次根式中属于最简二次根式的是( ) A .12 B .5.0 C .a 2 D .522、下列说法错误的是( )A .全等三角形的对应边相等B .全等三角形的对应角相等C .三个角对应相等的两个三角形全等D .若两个三角形全等,则对应边所对的角是对应角3、两个相似三角形的对应高的比为2:3,且它们的面积和是130cm 2,则较小的三角形的面积是_____cm 2. ( )A .40 B .90 C .52 D. 784、下列各组二次根式中,是同类二次根式的是( )A .12与72B .63与28C .x 4与x 2 D. 18与275、在△ABC 和△DEF 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,可以添加的条件是( )A . AB=ED B .AB=FD C . AC=FD D. ∠A=∠F6、某校有两块相似的多变形草坪,其面积比为9:4,其中一块草坪的周长为36米,则另一块草坪的周长为( )米A .24 B . 54 C . 24或54 D. 36或547、在锐角△ABC 中,∠B=45°,∠C=60°,BC 边上的高AD=3,则BC 边的长为( ) A .3+3 B .23 C . 6 D. 48、在Rt △ABC 中,∠C=90,BC=5,AC=15,则∠A=( ) A .90° B .60° C . 45° D. 30°9、已知A 、B 两点,若A 对B 的仰角为,则B 对A 的俯角为( ) A .α B .90°+α C .180°-α D. 90°-α 10、若式子8-x +x -10在实数范围内有意义,则χ的取值范围为( )A . x ≥8B .x ≤10C . 8≤x ≤10 D. x ≥8或x ≤10 二、填空题(每题3分,共30分) 1、(2-1)(2+1)=_______。
山东省青岛市胶州市2023-2024学年八年级下学期期中数学试题
山东省青岛市胶州市2023-2024学年八年级下学期期中数学试题一、单选题1.发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路,是应对气候变化、推动绿色发展的战略举措.2023年,中国新能源汽车产销量占全球比重超过60%,交出亮眼成绩单;下列新能源汽车标志是中心对称图形的是( )A .B .C .D . 2.若a b >,则下列式子不一定成立的是( )A .44a b +>+B .22a b >C .22ac bc >D .2211a b c c >++ 3.在平面直角坐标系中,线段AB 两个端点的坐标分别为()2,1A -,()1,3B -,将线段AB 平移后得到线段A B '',若点A '的坐标为(),1a -,点B '的坐标为()1,1,则a 的值为( ) A .1- B .1 C .2 D .04.如图,直线7y kx =+经过点()2,4A -,则不等式74kx +>的解集为( )A .2x >-B .<2x -C .4x >D .4x < 5.如图,在ABC V 中,BD 平分ABC ∠,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若48A ∠=︒,28ECF ∠=︒,则ADB ∠的度数为( )A .152︒B .132︒C .124︒D .104︒6.房梁的一部分如图所示,其中BC AC ⊥,=60B ∠︒,2BC =,点D 是AB 的中点,且DE AC ⊥,垂足为E ,则AE 的长是( )AB .2CD .47.关于x 的不等式组1x a x >⎧⎨>⎩的解集为1x >,则a 的取值范围是( ) A .1a > B .1a < C .1a ≥ D .1a ≤8.如图,将ABC V 绕点A 按顺时针方向旋转90︒后得到AB C ''△,点P 是y 轴上任意一点,当PA PB '+的值最小时,则点P 的坐标为( )A .10,2⎛⎫- ⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .10,3⎛⎫ ⎪⎝⎭D .()0,1二、填空题9.等腰三角形的一个底角为50︒,则它的顶角的度数为.10.一个关于x 的不等式的解集如图所示,则这个不等式的解集为.11.如图,线段AB 与CD 相交于点O ,且60BOD ∠=︒,分别将AB 和AC 平移到CC ',BC '的位置,若AB CD a ==,则DC '的长为.12.风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史.如图是一款风筝骨架的简化图,已知AB AD =,BC CD =,80cm AC =,50cm BD =,制作这个风筝需要的布料至少为2cm .13.如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''V ,连接AA ',若4AB =,15AA B ''∠=︒,则AB '的长度为.14.已知关于x 的方程38x a x +=-的根是负数,则实数a 的取值范围是.15.国际航班免费托运行李箱的尺寸通常限制为长、宽、高三边之和不超过158厘米.某厂家生产符合免费托运的行李箱,已知行李箱的高为74厘米,长与宽的比为9:5,则行李箱的宽的最大值为厘米.16.如图,直线AB CD ∥,AEF ∠的平分线与EFC ∠的平分线交于点P ,与CD 交于点M ,若3PE =,5EF =,则EMF V 的面积为.三、解答题17.已知:如图,∠MON 及边ON 上一点A .求作:在MON ∠内部的点P ,使得PA ON ⊥,且点P 到MON ∠两边的距离相等.18.(1)解不等式:248x x --≤+(2)解不等式:21143x x --+≥; (3)解不等式组:()302133x x x +>⎧⎨-+≥⎩,并写出它的最小负整数解. 19.是否存在实数x ,使得12x x -<,且322x +<-?请说明理由. 20.为深入践行绿色发展理念,引导师生尊重自然、爱护自然,在第46个植树节来临之际,某校组织师生积极开展了“植此青绿,共树未来”主题植树活动,学校决定用不超过1800元的费用购买甲、乙两种树苗共60棵,已知甲种树苗每棵36元,乙种树苗每棵25元,则学校最多可以购买多少棵甲种树苗?21.如图,在ABC V 中,62B ∠=︒,76BAC ?,D 为BC 上一点,DE 交AC 于点F ,且AB AD DE ==,连接AE ,55E ∠=︒.请判断AFD △的形状,并说明理由.22.如图,在ABC V 中,90A ∠=︒,60BCA ∠=︒,6AC =cm ,动点D 从点A 出发以1cm /s的速度向点C 运动;动点E 同时从点C 出发以2cm /s 的速度向点B 运动,当一个点停止运动时,另一个点也停止运动.连接DE ,设运动时间为t 秒()06t <<.(1)当2t =时,求DEC V 的面积;(2)当t 为何值时,DEC V 为直角三角形?23.如图,在ABC V 中,AD 垂直平分BC ,垂足为D ,过点D 作DF AB ⊥,垂足为F ,FD 的延长线与AC 边的延长线交于点E ,30E ∠=︒.(1)求证:ABC V 是等边三角形;(2)BF 与AE 有怎样的数量关系?请说明理由.24.2024年是中国农历甲辰龙年,某购物中心有A ,B 两种龙年吉祥物出售.B 种每个售价比A 种多2元;购买20个A 种龙年吉祥物和30个B 种龙年吉祥物共需花费360元.(1)A ,B 两种吉祥物每件售价各是多少?(2)某爱心团队计划购买A 种吉祥物送给特教学校的学生们作为新年礼物,且购买数量超过50个,购物中心给出两种优惠方案:方案一:每个均按原售价的8折优惠;方案二:前30个按原售价付款,超过30个的部分每个按原售价的5折优惠.爱心团队选择哪种方案购买更合算?(3)若购买A ,B 两种龙年吉祥物共60个,且购买A 种的数量不多于B 种的3倍,购买多少个A 种龙年吉祥物花费最少?最少花费是多少?25.【定义新知】给定两个不等式P 和Q ,若不等式P 的任意一个解,都是不等式Q 的一个解,则称不等式P 为不等式Q 的“子集”.例如:不等式P :4x >是Q :2x >的子集.同理,给定两个不等式组M 和N ,若不等式组M 的任意一个解,都是不等式组N 的一个解,则称不等式组M 为不等式组N 的“子集”.例如:不等式组M :21x x >⎧⎨>⎩是不等式组N :21x x >-⎧⎨>-⎩的子集. 【新知应用】(1)请写出不等式2x <的一个子集;(2)若不等式组A :1415x x +>⎧⎨-<⎩,不等式组B :2113x x ->⎧⎨>-⎩,则其中不等式组是不等式组M :21x x >⎧⎨>⎩的“子集”(填:A 或B );(3)若关于x 的不等式组1x a x >⎧⎨>-⎩是不等式组21x x >⎧⎨>⎩的“子集”,则a 的取值范围是; (4)若a ,b ,c ,d 为互不相等的整数,a b <,c d >,下列三个不等式组D :a x b ≤≤,E :c x d ≤≤,F :49x <<,满足:D 是E 的“子集”且E 是F 的“子集”,则()a b c d ++的值为;(5)已知不等式组G :23x m x n ≥⎧⎨<⎩有解,且不等式组H :13x <≤是不等式组G 的“子集”,且m ,n 为正整数,则m n的最大值为.。
山东省青岛市八年级下学期数学期中考试试卷
山东省青岛市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若x>y,则下列式子错误的是()A . x﹣2>y﹣2B . x+1>y+1C . >D . ﹣5x>﹣5y【考点】2. (2分)在下列四个图案中,不是中心对称图形的是()A .B .C .D .【考点】3. (2分)不等式1﹣x>0的解集在数轴上表示正确的是()A .B .C .D .【考点】4. (2分) (2017七上·长寿期中) 下列多项式中,与﹣x﹣y相乘的结果是x2﹣y2的多项式是()A . y﹣xB . x﹣yC . x+yD . ﹣x﹣y【考点】5. (2分) (2019八下·孝南月考) 图中字母所代表的正方形的面积为144的选项为()A .B .C .D .【考点】6. (2分)分解因式x4+2x3﹣35x2 ,结果为()A . (x2﹣5x)(x2+7x)B . x2(x2+2x﹣35)C . x2(x+5)(x﹣7)D . x2(x﹣5)(x+7)【考点】7. (2分) (2018八上·江岸期中) 如图,在的边上取一点使,作于,作交于点,则与的关系是()A .B .C .D .【考点】8. (2分) (2018九上·深圳开学考) 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A .B .C .D .【考点】9. (2分)(2018·博野模拟) 如图,AB∥CD,EF⊥AB于E,若∠1=60°,则∠2的度数是()A . 35°B . 30°C . 25°D . 20°【考点】10. (2分)(2019·保定模拟) 如图,AB是半圆O的直径,点C在半圆O上,且∠BAC=60°,若AB=12,则图中阴影部分图形的面积为()A . 12πB . 3 +12πC . 9 +12πD . 9 +6π【考点】二、填空题 (共6题;共7分)11. (1分) (2020八上·龙岩期末) 因式分解: ________;【考点】12. (1分) (2020八下·成都期中) 如图,△ABC与△BDE都是等腰直角三角形,若△ABC经旋转后能与△BDE 重合,则旋转中心是________,旋转了________°.【考点】13. (2分)(2018·凉州) 如图,一次函数与的图象相交于点,则关于的不等式组的解集为________.【考点】14. (1分)如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于________.【考点】15. (1分) (2019八下·高新期末) 如图,在中,已知,,现将沿所在的直线向右平移4cm得到,与相交于点,若,则阴影部分的面积为________ .【考点】16. (1分) (2017八下·宁德期末) 如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC于点E,则EP的长是________.【考点】三、解答题 (共9题;共46分)17. (2分)(2017·大冶模拟) 解不等式组:,并在数轴上表示出不等式组的解集.【考点】18. (5分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.【考点】19. (2分)已知下列两个图形关于某点中心对称,画出对称中心.【考点】20. (2分) (2016八上·井陉矿开学考) 如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【考点】21. (10分)(2017·安顺) 随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1) 2017年“五•一”期间,该市周边景点共接待游客________万人,扇形统计图中A景点所对应的圆心角的度数是________,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.【考点】22. (10分) (2020八下·防城港期末) 为落实“精准扶贫”精神,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图示,直接写出日销售量的最大值为________;(2)根据图示,求李大爷家百香果的日销售量y与上市时间x的函数解析式,并求出第15天的日销售量.【考点】23. (11分) (2017八下·平定期中) 已知:a、b、c满足求:(1) a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【考点】24. (2分) (2017九下·萧山月考) 如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=.(1)在图中,求作△ABO的外接圆;(尺规作图,不写作法但需保留作图痕迹)(2)求点B的坐标与cos∠BAO的值;(3)若A,O位置不变,将点B沿轴正半轴方向平移使得△ABO为等腰三角形,请直接写出平移距离.【考点】25. (2分) (2020八下·长沙期中) 如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx-4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.【考点】参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共46分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:答案:25-1、答案:25-2、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中数学试卷一、选择题1.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1B.2C.3D.42.下列各组数中,能构成直角三角形的一组是()A.6,8,12B.1,4,C.3,4,5D.2,2,3.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形4.()2的平方根是x,64的立方根是y,则x+y的值为()A.3B.7C.3或7D.1或75.若不等式的解集是x>a,则a的取值范围是()A.a<3B.a=3C.a>3D.a≥36.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.已知点P(2﹣4m,m﹣4)在第三象限,且满足横、纵坐标均为整数的点P 有()A.1个B.2个C.3个D.4个8.如图所示,四边形OABC是正方形,边长为4,点A、C分别在x轴、y轴的正半轴上,点P在OA上,且P点的坐标为(3,0),Q是OB上一动点,则PQ+AQ的最小值为()A.5B.C.4D.6二、填空题9.计算:+(π﹣2)0﹣()﹣1=.10.的算术平方根等于.11.一个正数x的平方根为2a﹣3和5﹣a,则x=.12.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是.13.如图,在菱形ABCD中,M、N分别是边BC、CD上的点,且AM=AN=MN=AB,则∠C的度数为.14.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.三、解答题15.解不等式(或不等式组)并在数轴上表示解集:(1)2(x+5)<3(x﹣5)(2)解不等式组.16.求x的值:(1)(x+3)3=﹣27(2)16(x﹣1)2﹣25=0.17.如果A=是a+3b的算术平方根,B=的1﹣a2的立方根.试求:A﹣B的平方根.18.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?19.已知关于x、y的方程组的解都是非正数,求a的取值范围.20.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)若<0,则或.根据上述规律,求不等式>0的解集.21.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.22.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?23.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC 上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)若BD=12cm,AC=16cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形?参考答案一、选择题1.【解答】解:(1)π是无理数,而不是开方开不尽的数,则命题错误;(2)无理数就是无限不循环小数,则命题正确;(3)0是有理数,不是无理数,则命题错误;(4)正确;故选:B.2.【解答】解:A、∵82+62≠122,∴不能够成直角三角形,故本选项错误;B、∵12+()2≠42,∴不能够成直角三角形,故本选项错误;C、∵32+42=52,∴能够成直角三角形,故本选项正确;D、∵22+22≠()2,∴不能够成直角三角形,故本选项错误.故选:C.3.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.4.【解答】解:∵(﹣)2=9,∴()2的平方根是±3,即x=±3,∵64的立方根是y,∴y=4,当x=3时,x+y=7,当x=﹣3时,x+y=1.故选:D.5.【解答】解:由不等式的解集是x>a,根据大大取大,a≥3.选:D.6.【解答】解:,由①得,x≤﹣1,由②得,x>﹣5,故﹣5<x≤﹣1.在数轴上表示为:.故选:A.7.【解答】解:∵点P(2﹣4m,m﹣4)在第三象限,∴,由①得,m>,由②得,m<4,所以,不等式组的解集是<m<4,∴整数m为1、2、3,∴满足横、纵坐标均为整数的点P有3个.故选:C.8.【解答】解:作出P关于OB的对称点D,则D的坐标是(0,3),则PQ+QA 的最小值就是AD的长,则OD=3,因而AD==5,则PD+PA和的最小值是5,故选:A.二、填空题9.【解答】解:原式=2+1﹣=3﹣2=1.故答案为:1.10.【解答】解:的算术平方根=,故答案为:11.【解答】解:∵一个正数x的平方根为2a﹣3和5﹣a,∴(2a﹣3)+(5﹣a)=0,解得:a=﹣2.∴2a﹣3=﹣7,5﹣a=7,∴x=(±7)2=49.故答案为:49.12.【解答】解:∵(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<﹣1.13.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∵AM=AN=MN=AB,∴AB=AM,AN=AD,△AMN是等边三角形,∴∠B=∠AMB,∠D=∠AND,∠MAN=60°,设∠B=x,则∠AMB=x,∠BAM=∠DAN=180°﹣2x,∵∠B+∠BAD=180°,∴x+180°﹣2x+60°+180°﹣2x=180°,解得:x=80°,∴∠B=80°,∴∠C=180°﹣80°=100°.故答案为:100°.14.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.三、解答题15.【解答】解:(1)由原不等式,得2x+10<3x﹣15,即10+15<3x﹣2x∴x>25;(2)由不等式组得,解得16.【解答】解:(1)x+3=﹣3,所以x=﹣6;(2)(x﹣1)2=,x﹣1=±,所以x=或x=﹣.17.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.18.【解答】解:在RT△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,∵楼梯宽2米,∴地毯的面积=14平方米,故这块地毯需花14×30=420元.答:地毯的长度需要7米,需要花费420元.19.【解答】解:,①+②得:x=﹣3+a,①﹣②得:y=﹣4﹣2a,所以方程组的解为:,因为关于x、y的方程组的解都是非正数,所以可得:,解得:﹣2≤a≤3.20.【解答】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.21.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).22.【解答】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.23.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.24.【解答】解:(1)当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或AE=14cm;由于动点的速度都是1cm/s,所以t=2(s)或t=14(s);故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.。