定积分的简单应用__平面图形的面积

合集下载

高中数学 第四章 定积分 4.3.1 平面图形的面积课件 北师大版选修2-2

高中数学 第四章 定积分 4.3.1 平面图形的面积课件 北师大版选修2-2

10
2.曲线y=x2-1与x轴所围成图形的面积等于 ( )
A .1B .2C .1 D .4
33
3
11
【解析】选D.函数y=x2-1与x轴的交点为(-1,0),
(1,0),且函数图像关于y轴对称,所以所求面积为
S=
(11-x2)dx=2 1
(1-x 210)dx=2
2× 2 4 .
33
=
(x
1 3
7
【素养小测】
1.思维辨析(对的打“√”,错的打“×”)
(1)曲线y=sin x,x∈ [与 ,x3轴 ]围成的图形的面积
22
3
为 2
sin xdx.
(
)
2
(2)曲线y=x3与直线x+y=2,y=0围成的图形的面积为
1 0
x3dx+
(22 -x)dx. 1
(
)
8
(3)曲线y=3-x2与直线y=-1围成的图形的面积为
24
【习练·破】 (2019·衡阳高二检测)如图,阴影部分的面积是( )
25
A.32
B.16
C. 3 2
D. 8
3
3
26
【解析】选C.由已知,阴影部分的面积
S=
1
3(3-x2-2x)dx=(3x13x3x2)|13332.
27
【加练·固】 若函数f(x)=Asin ( (Ax >0,) ω>0)的图像如图所示,则图
所以S=
1 0
(x2+1)dx+
3 1
(3-x)dx
( x 3 3 x ) |1 0 ( 3 x x 2 2 ) |1 3 1 3 1 ( 9 9 2 ) ( 3 1 2 ) 1 3 0 .

1.7定积分的简单应用

1.7定积分的简单应用


b
a
f (x)dx = S1 − S2 + S3
S1 S2
S3
类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b) 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a<b) 1.求由一条曲线y=f(x)和直线 及x轴所围成平面图形的面积S 轴所围成平面图形的面积S
y
y = f (x)
π
x

2

π
2
f ( x)dx = A2 − A1 = 0
由一条曲线和直线所围成平面图形的面积的求解
2
练习. 求抛物线y=x 直线x=2 y=0所围成的 x=2, 练习. 求抛物线y=x -1,直线x=2,y=0所围成的 图形的面积。 图形的面积。
1=0得到抛物线与 得到抛物线与x 解:如图:由x2-1=0得到抛物线与x轴 如图: 的交点坐标是( 1,0),(1,0).所求面积 的交点坐标是(-1,0),(1,0).所求面积 如图阴影所示: 如图阴影所示: 所以: 所以:

1
2
求两曲线围成的平面图形的面积的一般步骤: 求两曲线围成的平面图形的面积的一般步骤: (1)作出示意图;(弄清相对位置关系) (1)作出示意图;(弄清相对位置关系) 作出示意图;(弄清相对位置关系 (2)求交点坐标;(确定积分的上限 下限) (2)求交点坐标;(确定积分的上限,下限) 求交点坐标;(确定积分的上限, (3)确定积分变量及被积函数; (3)确定积分变量及被积函数; 确定积分变量及被积函数 (4)列式求解. (4)列式求解. 列式求解
1.7定积分的简单应用 定积分的简单应用
一、复习
平面图形的面积: 1.平面图形的面积:

高中数学人教A版选修2-2学案:第一章 1.7 定积分的简单应用含解析

高中数学人教A版选修2-2学案:第一章 1.7 定积分的简单应用含解析

定积分的简单应用预习课本P56~59,思考并完成下列问题(1)利用定积分求平面图形的面积时,需要知道哪些条件?(2)两条曲线相交围成的平面图形能否用定积分求其面积?[新知初探]1.定积分与平面图形面积的关系(1)已知函数f (x )在[a ,b ]上是连续函数,由直线y =0,x =a ,x =b 与曲线y =f (x )围成的曲边梯形的面积为S .f (x )的符号 平面图形的面积与定积分的关系f (x )≥0 S =⎠⎛a bf (x )d x f (x )<0S =-⎠⎛a b f (x )d x(2)一般地,如图,如果在公共的积分区间[a ,b ]上有f (x )>g (x ),那么直线x =a ,x =b 与曲线y =f (x ),y =g (x )围成的平面图形的面积为S =⎠⎛a b[f (x )-g (x )]d x .[点睛] 对于不规则平面图形面积的处理原则定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.2.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛a bv (t )d t .3.力做功(1)恒力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s ,则力F 所做的功为W =Fs .(2)变力做功:如果物体在变力F (x )的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b (a <b ),那么变力F (x )所做的功为W =⎠⎛a bF (x )d x .[点睛] 变速直线运动物体的路程、位移与定积分的关系如果做变速直线运动物体的速度-时间函数为v =v (t ),则物体在区间[a ,b ]上的位移为定积分⎠⎛a bv (t )d t ;物体在区间[a ,b ]上的路程为⎠⎛a b|v (t )|d t .[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)曲线y =x 3与直线x +y =2,y =0围成的图形面积为⎠⎛01x 3d x +⎠⎛12(2-x )d x .( ) (2)曲线y =3-x 2与直线y =-1围成的图形面积为⎠⎛-2 2(4-x 2)d x .( )(3)速度是路程与时间的函数关系的导数.( )(4)一个物体在2≤t ≤4时,运动速度为v (t )=t 2-4t ,则它在这段时间内行驶的路程为⎠⎛24(t 2-4t )d t .( )答案:(1)√ (2)√ (3)√ (4)×2.曲线y =cos x ⎝⎛⎭⎫0≤x ≤3π2与坐标轴所围成的图形面积是( ) A .2 B .3 C.52 D .4答案:B3.已知做自由落体运动的物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20B. gt 20C. 12gt 20D.14gt 20答案:C4.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车所前进的路程为________.答案:405利用定积分求平面图形的面积[典例] 求抛物线y 2=2x 和直线y =-x +4所围成的图形的面积.[解] 先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022x d x +⎠⎛28()2x -x +4d x =423x 3220+⎝⎛⎭⎫223x 32-12x 2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为[-4,2],如图得所求的面积为 S =⎠⎛2-4⎝⎛⎭⎫4-y -y22d y =⎝⎛⎭⎫4y -y 22-y362-4=18.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积. [活学活用]求曲线y =e x ,y =e -x 及直线x =1所围成的图形的面积.解: 如图,由⎩⎪⎨⎪⎧y =e x ,y =e -x ,解得交点为(0,1), 所求面积为S =⎠⎛01(e x -e -x )d x =(e x +e -x )10=e +1e -2.求变速直线运动的路程、位移[典例] 有一动点P 从原点出发沿x 轴运动,在时刻为t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求(1)t =6时,点P 离开原点后运动的路程和点P 的位移; (2)经过时间t 后又返回原点时的t 值. [解] (1)由v (t )=8t -2t 2≥0得0≤t ≤4, 即当0≤t ≤4时,P 点沿x 轴正方向运动, 当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点后运动的路程 s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪ 40-⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪64=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪60=0.(2)依题意,⎠⎛0t(8t -2t 2)d t =0, 即4t 2-23t 3=0,解得t =0或t =6,因为t =0对应于点P 刚开始从原点出发的情况,所以t =6为所求,(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.[活学活用]一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求点在t =4 s 时的位置及经过的路程.解:在t =4 s 时该点的位移为 ⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪4=43(m). 即在t =4 s 时该点距出发点43m.又因为v (t )=t 2-4t +3=(t -1)(t -3), 所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0.所以在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪1-⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪31+⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪ 43=4(m).求变力做功[典例] 一物体在变力F (x )=⎩⎪⎨⎪⎧2x +4,0≤x ≤2,x 2+2x ,2≤x ≤5,(x 的单位:m ,F 的单位:N)的作用下,沿着与力F 相同的方向从x =0运动到x =5处,求变力所做的功.[解] 变力F (x )所做的功为 W =⎠⎛02(2x +4)d x +⎠⎛25(x 2+2x )d x=(x 2+4x ) ⎪⎪⎪2+⎝⎛⎭⎫13x 3+x 2⎪⎪⎪52=12+60=72(J).求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳. [活学活用]在弹性限度内,用力把弹簧从平衡位置拉长10 cm 所用的力是200 N ,求变力F 做的功. 解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F (x )=kx (k >0),当x =10 cm =0.1 m 时,F (x )=200 N ,即0.1k =200,得k =2 000,故F (x )=2 000x , 所以力F 把弹簧从平衡位置拉长10 cm 所做的功是W =⎠⎛0 0.12 000x d x =1 000x 2⎪⎪⎪1=10(J).层级一 学业水平达标1.在下面所给图形的面积S 及相应的表达式中,正确的有( )A .①③B .②③C .①④D .③④解析:选D ①应是S =⎠⎛a b[f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )A .31 mB .36 mC .38 mD .40 m解析:选B S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)30=33+32=36(m),故应选B. 3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:选C S =⎠⎛-3 1(3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2,则F (1)=3-13-1=53,F (-3)=-9+9-9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.4.由y =x 2,y =14x 2及x =1围成的图形的面积S =( )A.14B.12C.13D .1解:选A 图形如图所示,S =⎠⎛01x 2d x -⎠⎛0114x 2d x=⎠⎛0134x 2d x=14x 310=14. 5.曲线y =x 3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10D .9解析:选B 由⎩⎪⎨⎪⎧ y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =-2,y =-2.∵两函数y =x 3-3x 与y =x 均为奇函数,∴S =2⎠⎛02[x -(x 3-3x )]d x =2·⎠⎛02(4x -x 3)d x=2⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪20=8,故选B.6.若某质点的初速度v (0)=1,其加速度a (t )=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.解析:v (2)-v (0)=⎠⎛02a (t )d t =⎠⎛026t d t =3t 2⎪⎪⎪2=12,所以v (2)=v (0)+3×22=1+12=13. 答案:137.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.解析:S =⎠⎛0101+t d t =23(1+t )32 ⎪⎪⎪10=23⎝⎛⎭⎫1132-1. 答案: 23⎝⎛⎭⎫1132-1 8.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为________.解析:画出曲线y =1x (x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影部分面积.∴S =⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2-ln 1=ln 2.答案:ln 29.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.解:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,解得x =0及x =3.从而所求图形的面积S =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x =⎝⎛⎭⎫-13x 3+32x 2⎪⎪⎪30=92. 10. 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f (x )是二次函数且f ′(x )=2x +2, ∴设f (x )=x 2+2x +c . 又f (x )=0有两个等根,∴4-4c =0,∴c =1,∴f (x )=x 2+2x +1.(2)y =f (x )的图象与两坐标所围成的图形的面积S =⎠⎛-10(x 2+2x +1)d x =13x 3+x 2+x ⎪⎪⎪-1=13. 层级二 应试能力达标1.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8 JB .10 JC .12 JD .14 J解析:选D 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x ) ⎪⎪⎪31=14(J),故应选D.2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-322 C .6+3 2D .6-3 2解析:选D ⎠⎛3636t d t =6t ⎪⎪⎪63=6-32,故应选D.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403m D.203m 解析:选A 由v =40-10t 2=0,得t 2=4,t =2. ∴h =⎠⎛02(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪2=80-803=1603(m).故选A. 4.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02(4x -x 3)d x=⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪2=4.5.椭圆x 216+y 29=1所围区域的面积为________.解析:由x 216+y 29=1,得y =±3416-x 2.又由椭圆的对称性知,椭圆的面积为S =4⎠⎛043416-x 2d x =3⎠⎛0416-x 2d x. 由y =16-x 2,得x 2+y 2=16(y ≥0).由定积分的几何意义知⎠⎛0416-x 2d x 表示由直线x =0,x =4和曲线x 2+y 2=16(y ≥0)及x 轴所围成图形的面积,∴⎠⎛0416-x 2d x =14×π×16=4π,∴S =3×4π=12π.答案:12π6.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.解析:∵S 阴=2⎠⎛01(e -e x )d x =2(e x -e x ) ⎪⎪⎪1=2,S 正方形=e 2,∴P =2e 2.答案:2e27.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧xy =1,y =x , 得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B(1,1);由⎩⎪⎨⎪⎧y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C(3,3),8.函数f(x)=ax 3+bx 2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P 的坐标为(b ,a ),试求出点P 的轨迹所形成的图形的面积S .解:当a =0时,由f (x )在R 上单调,知b =0.当a ≠0时,f (x )在R 上单调⇔f ′(x )≥0恒成立或f ′(x )≤0恒成立.∵f ′(x )=3ax 2+2bx -3,∴⎩⎪⎨⎪⎧Δ=4b 2+36a ≤0,a ≥-1.∴a ≤-19b 2且a ≥-1.因此满足条件的点P (b ,a )在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-19x 2与直线y =-1所围成的封闭图形.联立⎩⎪⎨⎪⎧y =-19x 2,y =-1,解得⎩⎪⎨⎪⎧ x =-3,y =-1或⎩⎪⎨⎪⎧x =3,y =-1,如图,其面积S =⎠⎛3-3⎝⎛⎭⎫1-19x 2d x =⎝⎛⎭⎫x -x 327⎪⎪⎪3-3=(3-1)-(-3+1)=4.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=sin α-cos x ,则f ′(x )等于( ) A .sin x B .cos x C .cos α+sin xD .2sin α+cos x解析:选A 函数是关于x 的函数,因此sin α是一个常数.2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 解析:选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.4.函数f (x )=x 2-ln x 的单调递减区间是( ) A. ⎝⎛⎦⎤0, 22 B.⎣⎡⎭⎫22,+∞ C. ⎝⎛⎦⎤-∞,-22,⎝⎛⎭⎫0, 22 D.⎣⎡⎭⎫-22, 0,⎝⎛⎦⎤0, 22 解析:选A ∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0,故f (x )的单调递减区间为⎝⎛⎦⎤0,22. 5.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0D .-1解析:选A f ′(x )=3-12x 2,令f ′(x )=0, 则x =-12(舍去)或x =12,f (0)=0,f (1)=-1,f ⎝⎛⎭⎫12=32-12=1,∴f (x )在[0,1]上的最大值为1.6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,∵f ′(-3)=0. ∴3×(-3)2+2a ×(-3)+3=0,∴a =5.7.函数f (x )=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝⎛⎭⎫-310,67 B.⎝⎛⎭⎫-85,-316 C.⎝⎛⎭⎫-83,-116 D.⎝⎛⎭⎫-∞,-310∪⎝⎛⎭⎫67,+∞ 解析:选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即⎝⎛⎭⎫103a +1⎝⎛⎭⎫-76a +1<0,解得a <-310或a >67. 故选D.8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )解析:选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.9.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时, g (x )<0,即2f (x )<x +1,故选B.10.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .6千台B .7千台C .8千台D .9千台解析:选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.11.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a <b ,则一定有( ) A .af (a )<bf (b ) B .af (b )<bf (a ) C .af (a )>bf (b )D .af (b )>bf (a )解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0, ∴函数x ·f (x )是R 上的减函数, ∵a <b ,∴af (a )>bf (b ).12.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a >bB .a <bC .a =bD .a ,b 的大小不能确定解析:选A f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x-cos x =-x sin x .∵0<x <1,∴g ′(x )<0,即函数g (x )在(0,1)上是减函数,得g (x )<g (0)=0,故f ′(x )<0,函数f (x )在(0,1)上是减函数,得a >b ,故选A.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.解析:f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.答案:2314.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.解析:S =⎠⎛0ax d x =23x 32a0=23a 32=a 2,∴a =49. 答案:4915.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.解析:f (2)=f (π-2),f (3)=f (π-3), 因为f ′(x )=1+cos x ≥0, 故f (x )在⎝⎛⎭⎫-π2,π2上是增函数, ∵π2>π-2>1>π-3>0, ∴f (π-2)>f (1)>f (π-3),即c <a <b . 答案:c <a <b 16.若函数f (x )=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1). 又f (x )在(m,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧m ≥-1,m <2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. 解:(1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x . 因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2.18. (本小题满分12分)(北京高考)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 解:(1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设有⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f(x)=x e2-x+e x.由f′(x)=e2-x(1-x+e x-1)及e2-x>0知,f′(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g′(x)=-1+e x-1.所以当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f′(x)>0,x∈(-∞,+∞),故f(x)的单调递增区间为(-∞,+∞).19.(本小题满分12分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.(1)求a,b的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.解:(1)由投资额为零时收益为零,可知f(0)=-a+2=0,g(0)=6ln b=0,解得a=2,b=1.(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).设投入经销B商品的资金为x万元(0<x≤5),则投入经销A商品的资金为(5-x)万元,设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).S′(x)=6x+1-2,令S′(x)=0,得x=2.当0<x<2时,S′(x)>0,函数S(x)单调递增;当2<x≤5时,S′(x)<0,函数S(x)单调递减.所以当x=2时,函数S(x)取得最大值,S(x)max=S(2)=6ln 3+6≈12.6万元.所以,当投入经销A商品3万元,B商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.20.(本小题满分12分)已知函数f (x )=ax 2+2ln(1-x )(a 为常数).(1)若f (x )在x =-1处有极值,求a 的值并判断x =-1是极大值点还是极小值点; (2)若f (x )在[-3,-2]上是增函数,求a 的取值范围. 解:(1)f ′(x )=2ax -21-x,x ∈(-∞,1), f ′(-1)=-2a -1=0, 所以a =-12.f ′(x )=-x -21-x =(x +1)(x -2)1-x. ∵x <1,∴1-x >0,x -2<0, 因此,当x <-1时f ′(x )>0, 当-1<x <1时f ′(x )<0, ∴x =-1是f (x )的极大值点.(2)由题意f ′(x )≥0在x ∈[-3,-2]上恒成立, 即2ax -21-x≥0在x ∈[-3,-2]上恒成立 ∴a ≤1-x 2+x 在x ∈[-3,-2]上恒成立,∵-x 2+x =-⎝⎛⎭⎫x -122+14 ∈[-12,-6], ∴1-x 2+x ∈⎣⎡⎦⎤-16,-112, ∴⎝⎛⎭⎫1-x 2+ x min =-16,a ≤-16.即a 的取值范围为⎝⎛⎦⎤-∞,-16. 21.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.解:(1)由f (x )≥h (x ), 得m ≤xln x在(1,+∞)上恒成立. 令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2, 当x ∈(1,e)时,g ′(x )<0;当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增. 又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).22.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则l n(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x∈(1,ln(-2a))时,f′(x)<0;当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。

定积分的简单应用(老师版)

定积分的简单应用(老师版)

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题.知识点一 定积分在求几何图形面积方面的应用1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,⎠⎛ab f (x )d x >0,所以S =⎠⎛ab f (x )d x .(2)如图②,f (x )<0,⎠⎛ab f (x )d x <0,所以S =⎪⎪⎪⎪⎠⎛a bf (x )d x =-⎠⎛ab f (x )d x .(3)如图③,当a ≤x ≤c 时,f (x )≤0,⎠⎛a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,⎠⎛ab f (x )d x >0.所以S =⎪⎪⎪⎪⎠⎛acf (x )d x +⎠⎛cbf (x )d x =-⎠⎛a c f (x )d x +⎠⎛cb f (x )d x .2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =⎠⎛ab [f (x )-g (x )]d x .(2)如图⑤,当f (x )>0,g (x )<0时,S =⎠⎛ab f (x )d x +⎪⎪⎪⎪⎠⎛abg (x )d x =⎠⎛ab[f (x )-g (x )]d x . 3.当g (x )<f (x )≤0时,同理得S =⎠⎛ab [f (x )-g (x )]d x .思考 (1)怎样利用定积分求不分割型图形的面积? (2)当f (x )<0时,f (x )与x 轴所围图形的面积怎样表示?答案 (1)求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. (2)如图,因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以 S =⎠⎛a b (0-f (x ))d x =-⎠⎛ab f (x )d x .4.利用定积分求平面图形面积的步骤:(1)画出图形:在平面直角坐标系中画出曲线或直线的大致图象;(2)确定图形范围,通过解方程组求出交点的横坐标(或纵坐标),确定积分上、下限;(3)确定被积函数;(4)写出平面图形面积的定积分表达式;(5)利用微积分基本定理计算定积分,求出平面图形的面积,写出答案. 知识点二 定积分在物理中的应用 1.在变速直线运动中求路程、位移路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s ′分别为: (1)若v (t )≥0,则s =⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(2)若v (t )≤0,则s =-⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(3)若在区间[a ,c ]上v (t )≥0,在区间[c ,b ]上v (t )<0, 则s =⎠⎛a c v (t )d t -⎠⎛c b v (t )d t ,s ′=⎠⎛ab v (t )d t .2.定积分在物理中的应用(1)做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛ab v (t )d t .(2)一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s (单位:m),则力F 所做的功为W =Fs ;而若是变力所做的功W ,等于其力函数F (x )在位移区间[a ,b ]上的定积分,即W =⎠⎛ab F (x )d x .思考 下列判断正确的是 .(1)路程是标量,位移是矢量,路程和位移是两个不同的概念; (2)利用定积分求变速直线运动的路程和位移是同一个式子⎠⎛t 1t 2v (t )d t ;(3)利用定积分求变速直线运动的路程和位移不是同一个式子⎠⎛t 1t 2v (t )d t .答案 (1)(3)解析 (1)显然正确.对于(2)(3)两个判断,由于当v (t )≥0时,求某一时间段内的路程和位移均用⎠⎛t 1t 2v (t )d t 求解;当v (t )<0时,求某一时间段内的位移用⎠⎛t 1t 2v (t )d t 求解,这一时段的路程是位移的相反数,即路程为-⎠⎛t 1t 2v (t )d t .所以(2)错(3)正确. 题型一 利用定积分求平面图形的面积问题例1 求由抛物线y 2=x5,y 2=x -1所围成图形的面积.解 在同一个平面直角坐标系上画出两个抛物线的大致图形,如图. 方法一 以x 为积分变量.由⎩⎪⎨⎪⎧y 2=x 5,y 2=x -1,得两个抛物线的两个交点坐标分别为A ⎝⎛⎭⎫54,12,B ⎝⎛⎭⎫54,-12. 设点P (1,0),则所求面积S =2⎝ ⎛⎭⎪⎫⎠⎜⎛054x 5d x -⎠⎜⎛154x -1d x=2()355324420312x x ⎤--⎥⎢⎥⎣⎦=23. 方法二 以y 为积分变量.由⎩⎪⎨⎪⎧y 2=x 5,y 2=x -1,可得两个抛物线的两个交点坐标分别为A ⎝⎛⎭⎫54,12,B ⎝⎛⎭⎫54,-12. 设点P (1,0),则所求面积S =2⎠⎜⎛012 (y 2+1-5y 2)d y=2⎝⎛⎭⎫y -43y 3⎪⎪⎪⎪120=23. 反思与感悟 若以x 为积分变量,则被积函数的原函数不易确定,而且计算也比较麻烦;若以y 为积分变量,则可以避免这种情况.选取积分变量有时对解题很关键.跟踪训练1 在曲线y =x 2(x ≥0)上的某一点A 处作一切线,使之与曲线以及x 轴所围成图形的面积为112.试求:切点A 的坐标和过切点A 的切线方程.解 如图所示,设切点A (x 0,y 0),由y ′=2x 得过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20. 令y =0,得x =x 02即C ⎝⎛⎭⎫x 02,0. 设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,则S =S 曲边△AOB -S △ABC .S 曲边△AOB =00x ⎰x 2d x =13x 3⎪⎪⎪x 00=13x 30,S △ABC =12|BC |·|AB |=12⎝⎛⎭⎫x 0-x 02·x 20=14x 30, 即S =13x 30-14x 30=112x 30=112,所以x 0=1. 从而切点为A (1,1),切线方程为y =2x -1 题型二 运用定积分求解物理问题例2 一点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求: (1)此点在t =4 s 时的位置; (2)此点在t =4 s 时运动的路程.解 因为位置决定于位移,所以它是v (t )在[0,4]上的定积分,而路程是位移的绝对值之和,所以需要判断在[0,4]上哪些时间段的位移为负. (1)在t =4 s 时,该点的位移为⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪40=43(m). 即在t =4 s 时该点在距出发点43 m 处.(2)∵v (t )=t 2-4t +3=(t -1)(t -3), ∴在区间[0,1]及[3,4]上,v (t )≥0, 在区间[1,3]上,v (t )≤0, ∴该点在t =4 s 时的路程为S =⎠⎛01(t 2-4t +3)d t +⎪⎪⎪⎪⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =4(m).反思与感悟 解决此类问题的一般步骤:(1)求出每一时间段上的速度函数;(2)根据定积分的物理意义,求出对应时间段上的定积分.跟踪训练2 有一辆汽车以每小时36 km 的速度沿平直的公路行驶,在B 处需要减速停车.设汽车以2 m/s 2的加速度刹车,问:从开始刹车到停车,汽车行驶了多远?解 设从开始刹车到停车,汽车经过了t s. v 0=36 km/h =10 m/s ,v (t )=v 0-at =10-2t . 令v (t )=0,解得t =5.所以从开始刹车到停车,汽车行驶的路程为s =⎠⎛05(10-2t )d t =(10t -t 2)⎪⎪⎪50=25(m). 故从开始刹车到停车,汽车行驶了25 m. 题型三 用定积分解决变力做功问题例3 设有一个长为25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,求使弹簧由25 cm 伸长到40 cm 所做的功.解 设x 表示弹簧伸长的长度,f (x )表示加在弹簧上的力,则f (x )=kx (其中常数k 为比例系数). 因为当f (x )=100时,x =5,所以k =20. 所以f (x )=20x .弹簧由25 cm 伸长到40 cm 时,弹簧伸长的长度x 从0 cm 变化到15 cm ,故所做的功W =⎠⎛01520x d x =10x 2⎪⎪⎪150=2 250(N·cm)=22.5(J).反思与感悟 (1)根据物理学知识,求出变力f (x )的表达式;(2)由功的物理意义知,物体在变力f (x )的作用下,沿力的方向做直线运动,使物体由一个位置移到另一个位置,因此,求功之前应先求出位移的起始位置和终止位置;(3)根据变力做功的公式W =⎠⎛ab f (x )d x 求出变力所做的功.跟踪训练3 如图所示,设气缸内活塞一侧存在一定量气体,气体做等温膨胀时推动活塞向右移动一段距离,若气体体积由V 1变为V 2,求气体压力所做的功.解 由物理学知识知,气体膨胀为等温过程,所以气体压强为P =CV (V 表示气体体积,C 为常数),而活塞上的压力为F =PQ =CQ V =CL(Q 表示截面积,L 表示活塞移动的距离,V =LQ ).记L 1,L 2分别表示活塞的初始位置和终止位置,于是有W =⎠⎛L 1L 2F (L )d L =⎠⎛L 1L 2C L d L =C ⎠⎛V 1V 21V d V =C (ln V )⎪⎪⎪V 2V 1=C (ln V 2-ln V 1).所以气体体积由V 1变为V 2,气体压力所做的功为C (ln V 2-ln V 1). 用定积分求平面图形面积时,因对图形分割不当致误例4 求由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积. 错解 由题意,作出图形如图由⎩⎪⎨⎪⎧ y 2=8x (y >0),x +y -6=0得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4), 所以所求面积为S =⎠⎛04(6-x -8x )d x=3242012623x x x ⎛⎫-- ⎪⎝⎭=24-8-423×324=16-3223.错因分析 S =⎠⎛04(6-x -8x )d x =⎠⎛04(6-x )d x -⎠⎛048x d x .⎠⎛04(6-x )d x 表示由直线y =6-x 与直线x =0,直线x =4,直线y =0围成的图形的面积,⎠⎛048x d x 表示由抛物线y 2=8x (y >0)与直线x =0,直线x =4,直线y =0围成的图形的面积.上述S 显然不是所求图形的面积. 正解 S =⎠⎛028x d x +⎠⎛26(6-x )d x=3223x ⎫⎪⎭⎪⎪⎪ 20+⎝⎛⎭⎫6x -12x 2⎪⎪⎪62=163+⎣⎡⎦⎤⎝⎛⎭⎫6×6-12×62-⎝⎛⎭⎫6×2-12×22 =163+8=403. 防范措施 合理划分积分上、下限及正确选择积分变量,最好结合图形进行处理. 1.在下面所给图形的面积S 及相应表达式中,正确的有( )S =⎠⎛ba [f (x )-g (x )]d x S =⎠⎛08(22x -2x +8)d x① ②S =⎠⎛14f (x )d x -⎠⎛47f (x )d x S =⎠⎛0a [g (x )-f (x )]d x +⎠⎛ab [f (x )-g (x )]d x③ ④A.①③B.②③C.①④D.③④答案 D解析 ①应是S =⎠⎛ab [f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.曲线y =cos x (0≤x ≤32π)与坐标轴所围图形的面积是( )A.2B.3C.52 D.4答案 B解析 S =⎠⎜⎛0π2cos x d x -⎠⎜⎜⎛π23π2cos x d x =sin x ⎪⎪⎪⎪π20- sin x ⎪⎪⎪3π2 π2=sin π2-sin 0- sin 3π2+sin π2=1-0+1+1=3.3.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车刹车后前进多少米才能停车( )A.405B.540C.810D.945 答案 A解析 停车时v (t )=0,由27-0.9t =0,得t =30, ∴s =⎠⎛030v (t )d t =⎠⎛030(27-0.9t )d t =(27t -0.45t 2)⎪⎪300=405. 4.由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积是 . 答案193解析 由图形可得S =⎠⎛01(x 2+4-5x )d x +⎠⎛14(5x -x 2-4)d x=⎝⎛⎭⎫13x 3+4x -52x 2⎪⎪⎪ 10+⎝⎛⎭⎫52x 2-13x 3-4x ⎪⎪⎪41 =13+4-52+52×42-13×43-4×4-52+13+4 =193. 5.一个弹簧压缩x cm 可产生4x N 的力,把它从自然长度压缩到比自然长度短5 cm ,求弹簧克服弹力所做的功. 解 设F (x )=kx ,∵弹簧压缩x cm 可产生4x N 的力,∴k =4. ∴弹簧克服弹力所做的功为W =4⎠⎛05x d x =4×⎝⎛⎭⎫12x 2⎪⎪⎪50=50(N·cm)=0.5(J). 1.利用定积分求平面图形面积的一般步骤:(1)在平面直角坐标系中画出图形;(2)通过解方程求出交点坐标;(3)写出平面图形面积的定积分表达式,当被求平面区域较复杂时,可分割求和;(4)运用微积分基本定理计算定积分,求出平面图形的面积. 2.路程问题.(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算. 3.变力做功问题.(1)变力做功问题,首先要将变力用其方向上的位移表示出来,这是关键一步.(2)根据变力做功的公式,将其转化为求定积分的问题. 一、选择题1.用S 表示图中阴影部分的面积,则S 的值是( ) A. ⎠⎛ac f (x )d xB.⎪⎪⎪⎪⎠⎛acf (x )d x C. ⎠⎛ab f (x )d x +⎠⎛bc f (x )d xD.⎠⎛b c f (x )d x -⎠⎛ab f (x )d x答案 D解析 ∵x ∈[a ,b ]时, f (x )<0,x ∈[b ,c ]时,f (x )>0,∴阴影部分的面积S =⎠⎛b c f (x )d x -⎠⎛ab f (x )d x .2.一物体沿直线以v =2t +1 (t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在1~2 s 间行进的路程为( ) A.1 m B.2 m C.3 m D.4 m 答案 D解析 s =⎠⎛12(2t +1)d t =(t 2+t )⎪⎪⎪21=4(m).3.一物体从A 处向B 处运动,速度为1.4t m/s(t 为运动的时间),到B 处时的速度为35 m/s ,则AB 间的距离为( ) A.120 m B.437.5 m C.360 m D.480 m答案 B解析 从A 处到B 处所用时间为25 s.所以|AB |=⎠⎛0251.4t d t =0.7t 2⎪⎪⎪250=437.5 (m).4.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为( ) A.⎠⎛ab [f (x )-g (x )]d xB.⎠⎛a b [g (x )-f (x )]d xC.⎠⎛ab |f (x )-g (x )|d x D.⎪⎪⎪⎪⎠⎛a b[f (x )-g (x )]d x 答案 C解析 当f (x )>g (x )时,所求面积为⎠⎛a b [f (x )-g (x )]d x ;当f (x )≤g (x )时,所求面积为⎠⎛ab [g (x )-f (x )]d x .综上,所求面积为⎠⎛ab |f (x )-g (x )|d x .5.以初速度40 m/s 竖直向上抛一物体,t s 时速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 m D.203m 答案 A解析 v =0时物体达到最高, 此时40-10t 2=0,则t =2 s. 又∵v 0=40 m/s ,∴t 0=0 s.∴h =⎠⎛02(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪20=1603(m). 6.如果1 N 的力使弹簧伸长1 cm ,在弹性限度内,为了将弹簧拉长10 cm ,拉力所做的功为( ) A.0.5 J B.1 J C.50 J D.100 J 答案 A解析 由于弹簧所受的拉力F (x )与伸长量x 成正比,依题意,得F (x )=x ,为了将弹簧拉长10 cm ,拉力所做的功为W =⎠⎛010F (x )d x =⎠⎛010x d x =12x 2⎪⎪⎪100=50 (N·cm)=0.5 (J).二、填空题7.由曲线y =x 与y =x 3所围成的图形的面积可用定积分表示为 . 答案 ⎠⎛01(x -x 3)d x解析 画出y =x 和y =x 3的草图,所求面积为如图所示阴影部分的面积,解方程组⎩⎨⎧y =x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01(x -x 3)d x . 8.有一横截面的面积为4 cm 2的水管控制往外流水,打开水管后t 秒末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为 cm 3. 答案 144解析 由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4 ⎠⎛06(6t -t 2)d t =4⎝⎛⎭⎫3t 2-13t 3⎪⎪⎪60=144 (cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3.9.如图所示,将一弹簧从平衡位置拉到离平衡位置l m 处,则克服弹簧力所做的功为 J.答案 12kl 2 解析 在弹性限度内,拉伸(压缩)弹簧所需的力与弹簧拉伸(压缩)的长度成正比,即F (x )=kx ,其中k 为比例系数.由变力做功公式得W = ⎠⎛0l kx d x =12kx 2⎪⎪⎪10=12kl 2(J). 10.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是 . 答案 43解析 如图,y =1与y =x 2交点A (1,1),y =1与y =x 24交点B (2,1),由对称性可知面积 S =2⎝ ⎛⎭⎪⎫⎠⎛01x 2d x +⎠⎛121d x -⎠⎛0214x 2d x =43. 三、解答题11.求抛物线y =-x 2+4x -3与其在点A (1,0)和点B (3,0)处的切线所围成图形的面积.解 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6, 由⎩⎪⎨⎪⎧y =2x -2,y =-2x +6,得两直线交点坐标为C (2,2), ∴S =S △ABC -⎠⎛13(-x 2+4x -3)d x =12×2×2- ⎝⎛⎭⎫-13x 3+2x 2-3x ⎪⎪⎪ 31=2-43=23. 12.物体A 以速度v A =3t 2+1(米/秒)在一直线上运动,同时物体B 也以速度v B =10t (米/秒)在同一直线上与物体A 同方向运动,问多长时间物体A 比B 多运动5米,此时,物体A ,B 运动的距离各是多少?解 依题意知物体A ,B 均做变速直线运动.设a 秒后物体A 比B 多运动5米,则A 从开始到a 秒末所走的路程为s A =⎠⎛0a v A d t =⎠⎛0a (3t 2+1)d t =a 3+a ;B 从开始到a 秒末所走的路程为s B =⎠⎛0a v B d t =⎠⎛0a 10t d t =5a 2. 由题意得s A =s B +5,即a 3+a =5a 2+5,得a =5.此时s A =53+5=130(米),s B =5×52=125(米).故5秒后物体A 比B 多运动5米,此时,物体A ,B 运动的距离分别是130米和125米.13.定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F (1,log 2(x 2-4x +9))的图象为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n ,t )(n >0),设曲线C 1在点A 、B 之间的曲线段与OA 、OB 所围成图形的面积为S ,求S 的值.解 ∵F (x ,y )=(1+x )y ,∴f (x )=F (1,log 2(x 2-4x +9))=2log 2(x 2-4x +9)=x 2-4x +9,故A (0,9),f ′(x )=2x -4. 又∵过O 作C 1的切线,切点为B (n ,t )(n >0),∴⎩⎪⎨⎪⎧ t =n 2-4n +9,t n=2n -4,解得B (3,6). ∴S =⎠⎛03(x 2-4x +9-2x )d x = ⎝⎛⎭⎫13x 3-3x 2+9x ⎪⎪⎪30=9.。

定积分的应用(论文)

定积分的应用(论文)

定积分的应用中文摘要:本文简要的讨论了定积分在数学、物理学的基本应用。

数学方面包括应用定积分计算平面曲线的弧长、平面图形的面积以及立体图形的体积;物理方面包括应用定积分去求变力对物体所做的功以及求电场的场强。

此外定积分在求数列极限、证明不等式、求和以及因式分解等方面也有广泛的应用;本文在阐述定积分的应用时,充分使用了“微元法”这一基本思路,它是我们解决许多实际问题的核心。

关键词:微元法 定积分 电场强度 数列极限Abstract: This paper discussed the definite integral in mathematics, physics of basic applications. Mathematics including application of definite integral calculation plane curve arc length, the plane figure of the area and volume of three-dimensional graph, Physical aspects including application of definite integral to change to the object force and the work done for electric field. Besides definite integral in the beg sequence limit, proof, inequality summation factoring decomposition and has a wide application in, Based on the expatiation of the definite integral of application, make full use of the "micro element method" the basic idea, it is we solve many practical problems at the core.Key W ords: Micro element method definite integral electric intensity sequence limit引言:恩格斯曾经指出,微积分是变量数学最重要的部分,微积分是数学的一个重要的分支,它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具;如复杂图形的研究,求数列极限,证明不等式等;而在物理方面的应用,可以说是定积分最重要的应用之一,正是由于定积分的产生与发展,才使得物理学中精确的测量计算成为可能,从而使物理学得到了长足的发展,如:气象、弹道的计算,人造卫星轨迹的计算,运动状态的分析等,都要用得到微积分。

定积分的应用

定积分的应用

1.求平面图形的面积(i)曲线围成的曲边梯形面积是.事实上,由所求平面图形面积S分布在区间[a,b]上.(1)选取,.(2).注:计算时,需去绝对值进行定积分计算.(ii)特别地围成的平面图形面积S为.(iii)同理所围成的平面图形面积S为.(iv)特别地所围成的平面图形面积S为.如果所求平面图形是属于上述情形之一,就不需画图,直接用上述公式,否则就需画图选用相应公式.求平面图形的步骤:(1)求出边界曲线交点,画出经过交点的边界曲线,得所求平面图形(若边界曲线简,可在画图的过程中求交点)。

2.根据具体情形选择x或y作为自变量,选择上述相应的公式计算或把所求平面形分成几块,每一块可选用上述相应公式计算,然后大块面积等于小块面积之和。

例1 计算由抛物线及直线所围成的平面图形的面积。

解由即交点为(2,-2),(8,4). 故所求的曲边形是由直线,曲线及直线所围成(图5-7),其面积.本题如用公式(4.3)来计算,就需要将整个面积分成两部分S1及S2,分别计算S1,S2,相加才得读者可以计算一下,这样做就复杂多了。

例2计算曲线及直线所围成的平面图形面积。

解曲边形如图5-8所示,故有注:曲线较简单时,可在画曲线的过程中求交点。

图5-8 图5-9例3计算椭圆所围成的平面图形面积。

解由于椭圆关于Ox轴及Oy轴对称,所以只需计算位于第一象限部分的面积,然后乘以4就得到所求平面图形面积S(图5-9). 由,解得,故上半椭圆的方程是从而特别地,当时,得圆的面积注:计算平面图形面积时,尽可能利用图形的对称性,以简化计算。

例4求曲线所围成平面图形的面积.解解此方程,得当即时,y1及y2才有实数值。

设则所求的面积为注:利用几何意义知表示半个圆面的面积。

2.求曲边扇形的面积曲线与射线围成的曲边扇形的面积,证所求的面积分布在区间上。

(1)取(把dS看成扇形面积)(2)例1由下列极坐标方程式所表曲线围成的面积S,方程中的(1)(双纽线);(2)(心脏形线);(3)(三叶线);解(1)由图形关于x轴与y轴对称,只需计算第一象限面积S1,再乘以4即可,由在第一象限时,,知,即S1看成与所围成,故(2)由图形关于x轴对称,在第一,二象限,当时,需求,知,故所求面积为.(3)由图形知,所求面积S为第一象内面积S1的3倍,由时,要求,由于,知,即时,,于是例2变为极坐标,求曲线(笛卡尔叶形线)(a>0)围成的面积。

定积分的计算与应用

定积分的计算与应用

定积分的计算与应用定积分是微积分的重要概念之一,用于计算曲线下的面积、质量、体积等问题。

本文将介绍定积分的计算方法和应用场景。

一、定积分的计算方法定积分的计算基于微积分中的积分运算,可以通过以下方法进行计算:1. 几何解释法:定积分可以视为曲线下的面积,因此可以利用几何图形的面积公式进行计算。

将曲线下的区域分割成无数个小矩形,并求取它们的面积之和,即可得到定积分的近似值。

通过增加小矩形的个数,可以不断提高计算精度。

2. 集合解释法:定积分可以被视为一组数的和,其中这组数是将函数值与对应的间隔长度相乘而得到的。

通过将曲线下的区域分割成若干个小区间,并计算每个小区间内的函数值与对应的间隔长度的乘积,再将这些乘积进行加和,即可得到定积分的近似值。

3. 牛顿-莱布尼茨公式:对于可微函数,可以使用牛顿-莱布尼茨公式进行定积分的计算。

该公式表达了函数的原函数(即不定积分)与定积分之间的关系。

通过求取函数的原函数,并在积分的上下限处进行代入计算,即可得到定积分的准确值。

二、定积分的应用场景定积分在物理学、经济学、工程学等领域都有广泛的应用。

以下将介绍一些常见的应用场景:1. 面积计算:最简单的应用是计算平面图形的面积。

通过确定曲线的方程以及积分的上下限,可以计算出曲线所围成区域的面积。

2. 质量计算:如果将曲线下的区域视为物体的密度分布,则可以利用定积分计算物体的质量。

通过将物体分割成无数个小区域,并计算每个小区域内的密度值与对应的区域面积的乘积,再将这些乘积进行加和,即可得到物体的总质量。

3. 体积计算:类似质量计算,定积分可以被用于计算三维物体的体积。

通过将物体分割成无数个小体积,并计算每个小体积的大小,再将这些体积进行加和,即可得到物体的总体积。

4. 概率计算:在概率论中,定积分可以用于计算随机变量的概率密度函数下的概率。

通过计算概率密度函数在某个区间上的定积分,可以得到该区间内事件发生的概率。

5. 积累量计算:定积分还可以用于计算积累量,例如距离、速度、加速度等。

例谈利用定积分求解平面图形的面积

例谈利用定积分求解平面图形的面积

例谈利用定积分求解平面图形的面积定积分是一种强大的数学工具,可以用于计算曲线、曲面和复杂图形的面积,但也可以用于计算平面图形的面积,这里以计算平面图形面积为例,探讨利用定积分来求解平面图形的面积。

先来阐述定积分的概念,定积分指的是求解某一函数的积分,它的计算方法要求曲线的一侧被划分为多个区域,而该函数的值则是这些小区域的函数值之和,并最终求解函数的定积分。

定积分可以用于计算曲线及曲面的面积,也可以应用于计算复杂图形的面积,但它同样可以用于求解平面图形的面积。

回到本文的要点:如何使用定积分来求解平面图形的面积。

首先需要将平面图形划分为若干小区域,并计算每个小区域的定积分,然后求这些小区域的定积分之和,从而得到图形的总面积。

以三角形为例,令其由点${mathbf{P_1}}(x_1,y_1)$, ${mathbf{P_2}}(x_2,y_2)$,${ mathbf{P_3}}(x_3,y_3)$确定。

根据三角不等式:$S=frac{1}{2}|x_2y_3-x_3y_2+x_3y_1-x_1y_3+x_1y_2-x_2y_1| $可求出简单三角形的面积,但是,如果三角形有更复杂的形状,则可以将它划分为多个小三角形,然后使用定积分技术,将每个小三角形的面积乘以其定积分值,最终求出该图形的总面积。

同样,多边形也可以采用上述方法求解。

首先,多边形要被划分为多边形,然后将每个小三角形的面积乘以其定积分值,最终求出该图形的总面积。

除了三角形和多边形,定积分还可以用于计算椭圆的面积。

椭圆的面积计算公式为:$S=pi ab$其中,a和b分别是椭圆的长轴和短轴。

而定积分求椭圆的面积则采用分段法,即将椭圆划分成半径为r的多个小园,然后将每个小园的面积乘以它们的定积分,最终求出椭圆的总面积。

本文探讨了用定积分求解平面图形的面积的方法,定积分主要应用于将复杂的图形划分为若干小区域,然后求这些小区域的定积分之和来计算图形的总面积。

数学《定积分的应用》讲义

数学《定积分的应用》讲义

第十章 定积分的应用1 平面图形的面积一、直角坐标系下平面图形连续曲线()(0)y f x =≥直线,x a x b ==和x 轴所围成的曲边梯形面积为S=()bbaaf x dx ydx =⎰⎰;若()y f x =在[,]a b 上不是非负的, 则上述围成图形的面积为S=|()|||bbaaf x dx y dx =⎰⎰.一般地,1) 由上下两根连续曲线2()y f x =和1()y f x =以及直线,x a x b ==所围成平面图形面积为 21S=()()ba f x f x dx -⎰.2) 由两条曲线1()y f x =,2()y f x =围成的平面图形面积为21S=()()ba f x f x dx -⎰,其中,x a x b ==与曲线1()y f x =与2()y f x =所有交点中横坐标最小值和最大值.例 1 求曲线1, 0, 2xy x y x =-==围成的平面图形面积.例 2 求由抛物线2y x =直线230x y --=所围成的平面图形面积.设[,]a b 上的曲边梯形的曲边由方程()x t χ=,()y y t =,t αβ≤≤,()a χα=,()b χβ=. 又设()0t χ'>(())t χ↑,于是存在反函数1t=()x χ-, 则曲边方程为[]1()(()),,y y t y x x a b χ-==∈.从而,曲边梯形面积为1(())ba S y x dx χ-=⎰()'()y t t dt βαχ=⎰y dx βα=⎰例 3 求由摆线(sin ),(1cos )(0)x a t t y a t a =-=->的一拱与x 轴所围成的平面图形面积.例 4 求椭圆22221x y a b+=所围成图形面积.二、极坐标下平面图形的面积设曲线C 由极坐标方程() [,]r r θθαβ=∈给出,其中()r θ在[,]αβ上连续,2βαπ-≤下求由曲线C 与两射线,θαθβ==所围成的平面图形(称之为扇形)面积.221121()21()21()2i i i n ni i i i i A r A A r A r d βαξθξθθθ==∆≈∆=∆≈⋅∆⇒=∑∑⎰例 5 求由双纽线22cos 2r a θ=所围成平面图形的面积.(35cos 20,[,][,]4444ππππθθ≥∈-或)[ 简单介绍微元法:x 的范围a≤x≤b微元 dx, ds=f(x)dx (△s ≈f(x)△x )⇒()ba S f x dx =⎰ 微元 d θ 21()2dA r d θθ=21()2A r d βαθθ=⎰ ]“化曲为直”,“以直代曲”.三、微元法若令()()xa x f t dt Φ=⎰,则当f 为连续函数时,()()x f x 'Φ=或()()d x f x dx Φ=,且()0, ()()baa b f x dx Φ=Φ=⎰.(现在把问题倒过来) 如求的量Φ是分布在某区间[,]a x 上的, 或说其是x 的函数()x Φ=Φ,[,]x a b ∈,且当x=b 时,()b Φ就是最终所求值.任取小区间[,][,]x x x a b +∆⊂,若能把Φ的微小增量∆Φ近似表示为x ∆的线性形式 ()f x x ∆Φ≈∆其中f 为某一连续函数,且0x ∆→时,()()f x x o x ∆Φ-∆=∆, 即 ()d f x dx Φ=从而只要把()ba f x dx ⎰积分出来就是所求结果.上述方法称为微元法. 使用微元法时要求:i)所求量Φ关于分布区间是代数可加的 ()f x x ∆Φ≈∆ii)微元法的关键是正确给出∆Φ的近似表达式,在一般情形下,要严格检验()f x x ∆Φ-∆是否为x ∆的高阶无穷小.2211() ()22A y x dA y dxA r dA r d θθθθ∆≈∆=∆≈∆=2. 由平行截面面积求体积一、已知平行截面面积() () ()ba a xb v A x xdv A x dx v A x dx≤≤∆≈∆=⇒=⎰祖暅原理:夫幂势相同,则积不容异.[亦可通过分割,求和取极限方法得到]例 1 由两个圆柱面222x y a +=和222x z a +=所围成立体体积.例 2 求由椭球面2222221x y z a b c++=所围成立体(椭球)的体积.二、旋转体设f 为[,]a b 上的连续函数(f(x)≥0),则曲线y=f(x)绕x 轴旋转一周得到的旋转体V ,易证V 的体积为2()ba V f x dx π=⎰例 3 求圆锥体的体积公式.例 4 求圆222(),(0)x y R r r R +-≤<<绕x 轴旋转一周所得到的环状立体体积.1) 22[[rrrrV R dx R dx ππ--=--⎰⎰222) ()2rrV A x dx r R π-==⎰例 5 sin ,0y x x π=≤≤,绕x 轴(y 轴)旋转所得立体体积.220sin 2V xdx πππ==⎰1()V A y dy =⎰22()[(arcsin )(arcsin )]A y y y ππ=--3 平面曲线的弧长1、弧长的定义设平面曲线c AB =,在A,B 上取点011,,,n n A P P P P B -==构成AB 的一个分割,记作T ,11i i i i P P P P --≈,11ni i i s PP -=≈∑,11||||max i i i nT P P -≤≤=,11()ni i i s T P P -==∑.定义 1 对于曲线c 上无论怎样的分割T ,如果存在有限数s ,使0lim ()T s T s →=,那么称曲线c 是可求长的,并把极限s 定义为曲线c 的弧长.2、弧长的计算设曲线方程(),y f x a x b =≤≤, 由微元法, ds ==as ⇒=⎰进一步, 若曲线c 的方程为[](),(),,x x t y y t t αβ==∈,则ds ==s βα=⎰(提出光滑曲线概念) ,x y ''连续定义 2 设平面曲线c 由参数方程 [](),(),,x x t y y t t αβ==∈ (*)给出.若()x t ,()y t 在[],αβ上有连续导数,22()()0x t y t ''+≠,则称c 为一条光滑曲线.定理 设曲线c 由参数方程(*)给出,若c 为一条光滑曲线,则c 是可求长的,且 弧长为s βα=⎰.例 1 求摆线一拱(sin ),(1cos ),(0)x a t t y a t a =-=->一拱的弧长.(202sin 2ts a dt π=⎰)例 2 求悬链线2x xe e y -+=,从x a =-到x a =一段的弧长.若曲线c 由极坐标方程[](),,r r θθαβ=∈给出,则[]()cos ,()sin ,,x r y r θθθθθαβ==∈从而 ()()cos ()sin ,x r r θθθθθ''=- ()()sin ()cos y r r θθθθθ''=+. 故 2222()()()()x y r r θθθθ'''+=+则当()r θ'在[],αβ上连续,且()r θ与()r θ'不同时为0时,此极坐标曲线为一光滑曲线. 此时弧长公式为s βαθ=⎰.例 3 求心形线(1cos ),(0)r a a θ=+⋅>的弧长.弧长01lim ni T i s s →==∆∑, ()()()222i i i s x y ∆=∆+∆ ,1i i i x x x -∆=-,1()()()i i i i i y f x f x f x ξ-'∆=-=∆, 11n ni i i i s x ==⇒∆=∑as ⇒=⎰(f '连续)下面反过来求弧长微分dS . 考察从A 到AB 上一点(,)M x y 的弧长()s x ,则()as x =⎰()ds S x dx'⇒==ds ⇒=几何意义 ds 为s ∆的线性主要部分直线段MP 之长就和曲线MM '之长很接近(相差一个高阶无穷小). 若[](),,r r θθαβ=∈, 则s βαθ=⎰.4 旋转曲面的面积设平面光滑曲线C 的方程为()y f x =,[],x a b ∈,(()0)f x ≥此段曲线绕x 轴旋转一周得到一旋转曲面.下面求其面积.[]()()S f x f x x π∆≈++∆[]2()f x y x π=+∆由于0y ∆→→(0)x ∆→(2()2(()f x y x f x x o x ππ⇒+∆-=∆2(dS f x π⇒=2(ba S f x π⇒=⎰若曲线C 由参数方程(),()x x t y y t ==,[],t αβ∈,且()0y t ≥,则曲线C 绕x 轴旋转所得的旋转曲面的面积为2(S y t βαπ=⎰.例 1 求圆222x y R +=在[][]12,,x x R R ⊂-上的弧段绕x 轴旋转所得球带的面积.例2求内摆线33==绕x轴旋转所得旋转曲面的面积.x a t y a tcos,sin5 定积分在物理中的某些应用一、液体静压力例1如图所示为一管道的圆形闸门,半径为3米. 问水面齐及直径时, 闸门所受到的水的静压力有多大?二、引力例2一根长为l的均匀细杆,质量为M, 在其中垂线上相距细杆为a处有一质量为m的质点,试求细杆对质点的万有引力.三、功与平均功率例3一圆锥形水池,池口直径30米,深10米,池中盛满水,试求将全部池水抽出池外所作的功.例 4 在地面上将质量为m 的物体沿着轨线((),(),())t x t y t z t →举起,()a t b ≤≤,(t 为时间,,,x y z 为空间笛卡尔坐标) 要求在时间段[],a b 内克服重力做的功.这样所做的功只依赖于(),()r a r b ,即只依赖于物体在初始时刻和结束时刻离地球中心的距离.令()GMU r r =,从而将质量为m 的物体从半径为0r 的球面上任一点移动到半径为1r 的球面上任一点,克服重力所做的功01,01(()())r r W m U r U r =-,称()U r 为牛顿位势. 设R 为地球半径,则2()gR U r r =,2()GMg R=.现将质量为m 的物体从地球表面飞到距地心无限远的地方, 所需的功为,lim R r r W →+∞,即22,lim ()R r gR gR W W m mgR R r∞→+∞==-=. 由能量守恒定律,要求初速度0v 至少为2012mv mgR =.0v =. ——第二宇宙速度264()P。

定积分的简单应用+平面图形的面积

定积分的简单应用+平面图形的面积

定积分的简单应用+平面图形的面积课时目标 进一步理解定积分的概念和性质,能用定积分求简单的平面曲线围成图形的面积;了解定积分在旋转体体积方面的应用.平面图形的面积表示一般地,设由曲线y =f (x ),y =g (x )以及直线x =a ,x =b 所围成的平面图形的面积为S ,则________________________.一、选择题1.将由y =cos x ,x =0,x =π,y =0所围图形的面积写成定积分形式为( ) A .ʃπ0cos x d xB .⎰20πcos x d x +|⎰ππ2cos x d x | C .ʃπ02sin x d x D .ʃπ02|cos x |d x 2.由直线x =12,x =2,曲线y =1x及x 轴所围图形的面积为( ) A.154 B.174 C.12ln2 D .2ln2 3.由曲线y =x 3、直线x =-2、x =2和x 轴围成的封闭图形的面积是( ) A . ⎰-22x 3d x B .| ⎰-22x 3d x | C .⎰-22|x 3|d xD .⎰20x 3d x +⎰-02x 3d x4.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积是( )A .ʃ20(x 2-1)d xB .|ʃ20(x 2-1)d x |C .ʃ20|x 2-1|d xD .ʃ10(x 2-1)d x +ʃ21(x 2-1)d x5.由y =x 2,x =0和y =1所围成的平面图形绕x 轴旋转所得旋转体的体积可以表示为( )A .V =πʃ10(y )2d y =π2B .V =πʃ10[12-(x 2)2]d x =45π C .V =πʃ10(x 2)2d y =π5D .V =πʃ10(12-x 2)d x =45π 二、解答题6.求由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积.7.已知直线x=k平分由y=x2,y=0,x=1所围图形的面积,求k的值.8.计算曲线y=x2-2x+3与直线y=x+3所围成的图形的面积.9.求由曲线y=x2,y=x3围成的封闭图形面积。

高中数学同步学案 平面图形的面积 简单几何体的体积

高中数学同步学案 平面图形的面积  简单几何体的体积

§3 定积分的简单应用3.1 平面图形的面积 3.2 简单几何体的体积学 习 目 标核 心 素 养1.会用定积分求平面图形的面积.(重点) 2.会用定积分求简单几何体的体积.(难点) 3.理解建立实际问题的积分模型的基本过程和方法.(重点、难点)1.借助定积分求平面图形的面积和几何体的体积,提升学生的直观想象和数学运算的核心素养. 2.通过建立实际问题的模型,培养了学生的数学建模的核心素养.1.当x∈[a ,b]时,若f(x)>0,由直线x =a,x =b(a≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积S =⎠⎛a bf(x)dx.2.当x∈[a ,b]时,若f(x)<0,由直线x =a,x =b(a≠b),y =0和曲线y =f(x)围成的曲边梯形的面积S =-⎠⎛a bf(x)dx.3.当x∈[a ,b]时,若f(x)>g(x)>0,由直线x =a,x =b(a≠b)和曲线y =f(x),y =g(x)围成的平面图形的面积S =⎠⎛a b[f(x)-g(x)]dx.(如图)4.旋转体可看作由连续曲线y =f(x),直线x =a,x =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的几何体,该几何体的体积为V =⎠⎛abπ[f(x)]2dx.1.由y =x 2,x =1和y =0所围成的平面图形绕x 轴旋转所得的旋转体的体积为( ) A.π6 B.π4 C.π5D.4π5 C [V =π⎠⎛01y 2dx =π⎠⎛01(x 2)2dx =π5x 5⎪⎪⎪1=π5.] 2.直线y =x,x =1及x 轴围成的图形绕x 轴旋转一周所得旋转体的体积是( ) A .πB .π3C .13D .1B [V =⎠⎛01πx 2dx =π3x 3|10=π3.]3.由y =x 2,y =14x 2及x =1围成的图形的面积S =________.14[图形如图所示,S =⎠⎛01x 2dx -⎠⎛0114x 2dx=⎠⎛0134x 2dx=14x 3⎪⎪⎪1=14.]利用定积分求平面图形的面积【例1】 (1)求由直线y =x +3,曲线y =x 2-6x +13所围图形的面积S ; (2)求由曲线y =x 2,直线y =2x 和y =x 围成的图形的面积.思路探究:(1)作出两函数的图像,并求其交点坐标.确定积分区间,利用定积分求面积S.(2)求出三条曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.[解] (1)作出直线y =x +3,曲线y =x 2-6x +13的草图,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =x 2-6x +13,y =x +3,得交点坐标为(2,5)和(5,8).因此,所求图形的面积S =⎠⎛25(x +3)dx -⎠⎛25(x 2-6x +13)dx =⎠⎛25(-x 2+7x -10)dx =⎝ ⎛⎭⎪⎫-13x 3+72x 2-10x ⎪⎪⎪52=92. (2)法一:由⎩⎪⎨⎪⎧y =x 2,y =x 和⎩⎪⎨⎪⎧y =x 2,y =2x 解出O,A,B 三点的横坐标分别是0,1,2.故所求的面积S =⎠⎛01(2x -x)dx +⎠⎛12(2x -x 2)dx=x 22⎪⎪⎪1+⎝⎛⎭⎪⎫x 2-x 33⎪⎪⎪21=12-0+⎝ ⎛⎭⎪⎫4-83-⎝ ⎛⎭⎪⎫1-13=76. 法二:由于点D 的横坐标也是2, 故S =⎠⎛02(2x -x)dx -⎠⎛12(x 2-x)dx=x 22⎪⎪⎪2-⎝ ⎛⎭⎪⎫x 33-x 22⎪⎪⎪21=2-⎝ ⎛⎭⎪⎫83-2+⎝ ⎛⎭⎪⎫13-12=76.法三:因为⎝ ⎛⎭⎪⎫14y 2′=y 2,⎝ ⎛⎭⎪⎫23y 32-y 24′=y -y2.故所求的面积为S =⎠⎛01⎝ ⎛⎭⎪⎫y -y 2dy +⎠⎛14⎝ ⎛⎭⎪⎫y -y 2dy=14y 2⎪⎪⎪1+⎝ ⎛⎭⎪⎫23y 32-y 24⎪⎪⎪41=14+⎝ ⎛⎭⎪⎫23×8-14×16-⎝ ⎛⎭⎪⎫23-14=76.求由两条曲线围成的平面图形的面积的解题步骤1.画出图形;2.确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; 3.确定被积函数,特别要注意分清被积函数图像上、下位置; 4.写出平面图形面积的定积分表达式;5.运用微积分基本公式计算定积分,求出平面图形的面积.1.由抛物线y =x 2-x,直线x =-1及x 轴围成的图形的面积为( ) A .53 B .1 C .52D .23⎝ ⎛⎭⎪⎫x 33-x 22B [由图可知,所求面积S =⎠⎛-10(x 2-x)dx +⎠⎛01(x -x 2)dx =⎪⎪⎪-1+⎝ ⎛⎭⎪⎫x 22-x 33⎪⎪⎪1=56+16=1.]求简单几何体的体积【例2】 求由曲线y =12x 2与y =2x 所围成的平面图形绕x 轴旋转一周所得旋转体的体积.思路探究:所求旋转体的体积可由两个不同的旋转体的体积作差得到,再利用定积分求解即可. [解] 曲线y =12x 2与y =2x 所围成的平面图形如图阴影部分所示.设所求旋转体的体积为V,根据图像可以看出V 等于曲线y =2x,直线x =2与x 轴围成的平面图形绕x 轴旋转一周所得旋转体的体积(设为V 1)减去曲线y =12x 2,直线x =2与x 轴围成的平面图形绕x 轴旋转一周所得旋转体的体积(设为V 2).V 1=⎠⎛02π(2x)2dx =2π⎠⎛02xdx =2π·12x 2|20=4π,V 2=⎠⎛02π⎝ ⎛⎭⎪⎫12x 22dx =π4⎠⎛02x 4dx =π4×15x 5|20=8π5,所以V =V 1-V 2=4π-8π5=12π5.定积分求几何体体积的方法1.两个曲线围成的图形的面积旋转而成的图形的体积是两个体积的差,即V =π⎠⎛abf 2(x)dx -π⎠⎛a b g 2(x )dx,而不能写成V =π⎠⎛ab[f(x)-g(x)]2dx.2.求简单旋转体的体积时,首先要画出平面图形,分析旋转体的形状,再利用体积的定积分表达式V =π⎠⎛ab f 2(x )dx 求解.2.设平面图形由⎣⎢⎡⎦⎥⎤0,π2上的曲线y =sin x 及直线y =12,x=π2围成,求此图形绕x 轴旋转一周所得旋转体的体积.[解] 先画草图.设f(x)=sin x,x∈⎣⎢⎡⎦⎥⎤0,π2,g(x)=12. 则f(x)与g(x)的交点为⎝ ⎛⎭⎪⎫π6,12. V =⎠⎜⎜⎛π6π2π⎣⎢⎡⎦⎥⎤sin 2x -⎝ ⎛⎭⎪⎫122dx=⎠⎜⎜⎛π6π2π⎝⎛⎭⎪⎫1-cos 2x 2-14dx =⎠⎜⎜⎛π6π2π⎝ ⎛⎭⎪⎫14-12cos 2x dx =π⎝ ⎛⎭⎪⎫14x -14sin 2x ⎪⎪⎪⎪π2π6=π212+38π.定积分的综合应用[探究问题]1.设a >0,若曲线y =x 与直线x =a,y =0所围成封闭图形的面积为a 2,试求a 的值. [提示] 由已知得S =⎠⎛axdx =23x 32| a 0=23a 32=a 2,所以a 12=23,所以a =49.2.若两曲线y =x 2与y =cx 3(c>0)围成图形的面积是23,试求c 的值.[提示] 由⎩⎪⎨⎪⎧y =x 2,y =cx 3,得x =0或x =1c.∵0<x<1c时,x 2>cx 3,∴S=⎠⎜⎛01c (x 2-cx 3)dx =⎝ ⎛⎭⎪⎫13x 3-14cx 4⎪⎪⎪⎪1c=13c 3-14c 3=112c 3=23. ∴c 3=18,∴c=12.【例3】 在曲线y =x 2(x≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成图形的面积为112,试求切点A 的坐标及过切点A 的切线方程.思路探究:设出切点坐标,写出切线方程,利用定积分可列方程,解方程求得切点坐标,进一步求出切线方程.[解] 设切点A(x 0,x 20),切线斜率为k =2x 0, ∴切线方程为y -x 20=2x 0(x -x 0). 令y =0,得x =x 02,如图,.∴112x 30=112,x 0=1.∴切点A 的坐标为(1,1),切线方程为y =2x -1.定积分求面积的易错点1.本例中求面积S 时,易错误地写成S =⎠⎛0x0[x 2-(2x 0x -x 20)]dx.错误原因是没能分割好图形.2.关于导数与积分的综合题,要充分利用导数的几何意义,求切线的斜率或方程,利用定积分的几何意义求面积,进而解决问题.3.如图,设点P 在曲线y =x 2上,从原点向A(2,4)移动,如果直线OP,曲线y =x 2及直线x =2所围成的面积分别记为S 1,S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值.[解] (1)设点P 的横坐标为t(0<t<2),则P 点的坐标为(t,t 2), 直线OP 的方程为y =tx.S 1=⎠⎛0t (tx -x 2)dx =16t 3,S 2=⎠⎛t 2(x 2-tx)dx =83-2t +16t 3.因为S 1=S 2,所以t =43,点P 的坐标为⎝ ⎛⎭⎪⎫43,169.(2)S =S 1+S 2=16t 3+83-2t +16t 3=13t 3-2t +83,S′=t 2-2, 令S′=0得t 2-2=0.因为0<t<2,所以t =2,当0<t<2时,S′<0;2<t<2时,S′>0. 所以,当t =2时,S 1+S 2有最小值83-423,此时点P 的坐标为(2,2).1.求定积分和利用定积分计算平面图形的面积是两个不同的概念,定积分是一个和式的极限,它可正、可负、可为零,而平面图形的面积在一定意义下总为正,特别是当曲线有一部分在x 轴下方时,计算平面图形的面积易出错.2.求解简单平面图形的面积,可直接运用定积分的几何意义.先确定积分上、下限,一般为两交点的横坐标(或纵坐标),再确定被积函数,一般是上方曲线与下方曲线对应函数的差.这样求平面图形的面积问题就转化为运用微积分基本定理计算定积分了.1.判断(正确的打“√”,错误的打“×”)(1)曲线y =sin x,x∈⎣⎢⎡⎦⎥⎤π2,3π2与x 轴围成的图形的面积为⎠⎜⎜⎛π23π2sin xdx.( )(2)曲线y =x 3与直线x +y =2,y =0围成的图形的面积为⎠⎛01x 3dx +⎠⎛12(2-x)dx.(3)曲线y =3-x 2与直线y =-1围成的图形的面积为⎠⎛-22(4-x 2)dx.( )[答案] (1)× (2)√ (3)√2.用S 表示图中阴影部分的面积,则S 的值是( )A.⎠⎛acf(x)dxB.⎪⎪⎪⎪⎠⎛a cf (x )dx C.⎠⎛a bf(x)dx +⎠⎛bcf(x)dxD.⎠⎛bcf(x)dx -⎠⎛abf(x)dxD [∵x∈[a ,b]时,f(x)<0,x∈[b ,c]时,f(x)>0, ∴阴影部分的面积 S =⎠⎛b cf(x)dx -⎠⎛abf(x)dx.]3.由y =x 2,y =x 所围成的图形绕y 轴旋转所得到的旋转体的体积V =________.π6 [V =π⎠⎛01(y -y 2)dy =π6.] 4.计算由曲线y 2=x,y =x 2所围图形的面积S.[解] 由⎩⎪⎨⎪⎧y 2=x ,y =x2得交点的横坐标为x =0及x =1.因此,所求图形的面积为 S =S 曲边梯形OABC -S 曲边梯形OABD =⎠⎛1xdx -⎠⎛01x 2dx =23x 32⎪⎪⎪1-13x 3⎪⎪⎪1=23-13=13.。

北师大版数学高二课件 4.3.1 平面图形的面积

北师大版数学高二课件 4.3.1 平面图形的面积

y=0和曲线y=f(x)所围成的曲边梯形的面积
bf(x)dx
S= a
.
2.当x∈[a,b]时,若f(x)<0,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)
围成的曲边梯形的面积
-bf(x)dx
S= a
.
答案
3.(如图)当x∈[a,b]时,若f(x)>g(x)>0时,由直线x=a,x=b(a≠b)和曲线 y=f(x),y=g(x)围成的平面图形的面积
解析答案
1234
4 3.由曲线y=x2与直线y=2x所围成的平面图形的面积为____3____.
解析
解方程组yy==x22x,,
得xy= =00, ,
x=2, y=4.
∴曲线y=x2与直线y=2x交点为(2,4),(0,0).
∴S=2(2x-x2)dx= 0
x2-13x320
=4-83-0=43.
12 解 设切点 A(x0,x20),切线斜率为 k=f′(x0)=2x0.
∴切线方程为 y-x20=2x0(x-x0).
令 y=0,得 x=x20,
x0
∴S= 2
0
x2dx+
x0 x0
[x2-(2x0x-x20)]dx=112x30.
2
∴112x30=112,x0=1. ∴切点为(1,1),切线方程为y=2x-1.
解析答案
1234
19 4.由曲线y=x2+4与直线y=5x,x=0,x=4所围成平面图形的面积是__3__.
解析 由图形可得
S=1(x2+4-5x)dx+4(5x-x2-4)dx=
0
1
31x3+4x-52x210 + 25x2-13x3-4x41

定积分的简单应用面积

定积分的简单应用面积

= 23x23+16x210+ 2x-12x2+16x213
=23+16+ 2x-13x231 (10 分)
=56+6-13×9-2+13=163.
(8 分) (12 分)
课前探究学习
课堂讲练互动
活页规范训练
法二 若选积分变量为 y,则三个函数分别为
x=y2,x=2-y,x=-3y.
(4 分)
因为它们的交点分别为(1,1),(0,0),(3,-1). (6 分)
成图形的面积.
审题指导 解答本题可先求
题型三 由两条曲线和直
出曲线与直线交点的横坐
线所围成图形面积
标,确定积分区间,然后
分段利用公式求解.
【解题流程】 作图 → 求出两曲线的交点坐标 →
确定积分区间 → 确定被积函数 定 的――积 性→分 质 分解 → 求值
[规范解答] 法一 画出草图,如图所示.
3.1 平面图形的面积
§3 定积分的 简单应用
【课标要求】
1.进一步理解定积分的概念和性质. 2.能应用定积分计算简单的平面曲线围成图形的面积.
【核心扫描】
1.利用定积分求平面图形的面积.(重点). 2.准确认识平面图形的面积与定积分的关系.(易混点)
一般地,设由曲线 y=f(x),y=g(x)以及直线 x=a,x=b 所围成的平面图形(如图)的面积为 S,则
S=-轴上cf(方x)的dx定+积分bf(减x)去dxx,轴故下选方的D定. 积分.
a
c
我们知道,当函数 f(x)在区间[a,b]上恒为正时, 定积分bf(x)dx 的几何意义是以曲线 f(x)为曲边的曲边梯形
a
的面积.在一般情况下,定积分bf(x)dx 的几何意义是介

定积分的几何应用

定积分的几何应用

ρ 2 = a 2 cos 2θ
例 6 求心形线r = a (1 + cosθ ) 所围平面图形的 面积( a > 0) .
1 2 解 dA = a (1 + cosθ )2 dθ 2
利用对称性知

1 2 π A = 2 ⋅ a ∫ (1 + cos θ ) 2 dθ 2 0 2 π = a ∫ (1 + 2 cos θ + cos 2 θ )dθ 0 π 1 = 3 πa 2 . 2 3 θ + 2 sinθ + sin 2θ =a 2 4 0 2
定积分几何应用 定积分
一、元素(微元)法 二、平面图形的面积 三、立体的体积 四、平面曲线的弧长 五、旋转曲面的侧面积
一、元素(微元)法
1.回顾曲边梯形求面积的问题 回顾
曲边梯形由连续曲线
y
y = f ( x ) ( f ( x ) ≥ 0) 、
x 轴与两条直线 x = a 、
y = f ( x)
成的图形的面积. 成的图形的面积
解 两曲线的交点
y = x−4
y2 = 2x y = x−4
⇒ ( 2,−2), (8,4).
y2 = 2 x
选 y 为积分变量
y ∈ [−2, 4] −
A = ∫ dA = 18.
−2 4
y2 dA = y + 4 − dy 2
2 参数方程所表示的函数
2)设想把区间[a , b ]分成 n 个小区间,取其中任 ) 个小区间, 一小区间并记为[ x , x + dx ],求出相应于这小区 的近似值.如果 间的部分量 ∆ U 的近似值 如果 ∆ U 能近似地表示 为[a , b ]上的一个连续函数在 x 处的值 f ( x ) 与 dx 的乘积, 的乘积,就把 f ( x )dx 称为量U 的元素且记作 dU ,即 dU = f ( x )dx ;

第十章定积分的应用

第十章定积分的应用

g
a
b
2
( y ) g1 ( y ) dy. 如
图所示。
a o y—区域
x
3
如果平面区域既不是x—型区域,也不是y—型区域,则用一组 平行于坐标轴的直线,把平面区域分成尽可能少的若干个x—型 区域与y—型区域,然后计算每一区域的面积,则平面区域总 的面积等于各区域面积之和。如右下图: 上曲线由三条不同的曲线: AB、BC与CD 构成;下曲 线由两条不同曲线:EF与 FG所构成。为计算其面积, 可分别过点B、C与F作平行 于 y轴的直线,则把平面区 域分成4个x—型区域。
15
2
2
2、旋转体体积公式
设f 是[ a, b]上的连续函数, 是由平面图形: 0 y f ( x ) , x [ a, b(右图阴影部分)绕 ] x轴旋转一周所得的旋转体, 那么易知截面面积函数为 A (x) f ( x ) , x [ a, b],
2
y
y f ( x)
a b
y
y1 f1 ( x)
o y b
y2 f 2 ( x)
若平面区域是 y —区域: 由左曲线 x1 g1 ( y ) 、右曲线 x2 g 2 ( y ) 、 下直线 y a 、上直线 y b
所围成, 则其面积公式为: A
a
x—区域
b
x
x g1 ( y )
x g 2 ( y)

2
y (t ) 0,t [ , ,
2
x(t ) y (t )
2
2
.dt
(1)
证明 2)、若光滑线 C 由直角坐标方程:y f ( x), x [a, b] (或: x g ( y ), y [a, b] ) 给出,则由()易得其弧长公式为: 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的面积。
y
y=x-2
解:阴影部分面积
2
S=S1+S2.
S1由y= x ,y= - x , 1
x=1围成:
s1 s2
o 12
4
x
S2由y= x,y= x-2 , -1
x=1围成:
-2 x=1
y2
x=
1
s1
[
0
x (
x )]dx,
4
s2
[
1
x (x 2)]dx,
1
4
s 0 2 xdx 1 ( x x 2)dx.
例 1 计算由两条抛物线 y2 x和 y x2所围成的
图形的面积.

y y
x x2
x
0及x
1
两曲线的交点 O(0,0) B(1,1)
y
y2 x
B
C y x2
D
o
Ax
S S曲梯形OABC - S曲梯形OABD
1 xdx 1 x2dx
0
0
S
1
(
0
x - x2 )dx
2 3 x3 1 3 x 2 3 0
9 2
学习小结: 求在直角坐标系下平面图形的面积步骤: 1.作图象; 2.求交点的横坐标,定出积分上、下限; 3.确定被积函数,用定积分表示所求的面积, 特别注意分清被积函数的上、下位置; 4.用牛顿-莱布尼茨公式求定积分.
课外练习
作业:课本 P67 A 组 T2
y x4
4
y 2x
2 S1
S2 y x 4
S1
8
2
S 2S1 S2 2 0
8
2xdx ( 2
2x x 4)dx
y2 2x
2
8
0 2 2xdx 2 ( 2x x 4)dx
42 3
3
x2
|02
(2 2 3
3
x2
1 2
x2
4x)
|82
16 3
64 3
26 3
18
例3.求曲线x= y2 和直线y=x-2所围成的图形
y y f (x)
图y2.如图
y f2(x)
oa
bx
b
A1 a f ( x)dx
图y3.如图
a
b
0
x
y f (x)
bHale Waihona Puke A3 a f ( x)dx
y f1( x)
oa
bx
b
A2 a [ f2( x) f1( x)]dx
图4.如图
y
y f2(x)
a
0
bx
y f1( x)
b
b
b
A4 a f2(x)dx a f1(x)dx a [ f2(x) f1(x)]dx
1. 3
例 2 计算由曲线 y 2x ,直线 y x 4以及 x 轴所
围成的图形的面积.
y 2x
解: 两曲线的交点
y
2x
(0,0), (8, 4).
y x 4
S2 S1 y x 4
直线与x轴交点为(4,0)
4
8
8
S S1 S2 0
2xdx [ 4
2xdx (x 4)dx] 4
b
(1)当f(x) ≥0时,a f (x)dx 表示的是y=f(x)
与x=a, x=b和x轴所围曲边梯形的面积。
(2)当f(x) <0时,y=f(x)与x=a, x=b和x轴
b
b
所围曲边梯形的面积为 | f (x)dx | f (x)dx
a
a
思考:试用定积分表示下面各平面图形的面积值:
图1.曲边梯形
4
8
8
8
8
(0 2xdx 4 2xdx) 4 (x 4)dx 0 2xdx 4 (x 4)dx
2
2 3
3
x2
|80
( 1 2
x2
4x)
|84
40 3
练习1
练习2
练习 1(课本变式题):
计算由曲线 y2 2x和直线 y x 4所围成的图形的面积.
解: 两曲线的交点
y2 2x
(2,2), (8,4).
我们知道定积分 b f ( x)dx 的几何意义: a
它是介于 x 轴、函数 f ( x) 的图象及两条直线 x a, x b 之间的各部分面积的代数和.(在 x 轴 上方的面积取正号,在 x 轴下方的面积取负号)
如直线y=x-4在(0,2),(2,4),(0,4) 上的面积
结论(一)
定积分的几何意义
定积分的简单应用(一)
前面,我们运用分割→近似代替→求和→取极限 的过程,求出了一些曲边梯形(由函数 y f ( x) ( f (x)≥0 )的图象和直线 x a , x b , x 轴围成的 平面图形)的面积.
并把它们浓缩成了一个结果:定积分( b f ( x)dx ) a
做课本p88练习 1 2
相关文档
最新文档