画轴对称图形课件人教版
合集下载
画轴对称图形课件人教版数学八年级上册
![画轴对称图形课件人教版数学八年级上册](https://img.taocdn.com/s3/m/63c3ca146ad97f192279168884868762caaebb8b.png)
说这两个图形关于这条直线成轴对称. 不同的对称轴对应不同的轴对称图形.
练习 如图所示,把一个正方形纸片三次对折后沿虚线剪下,则展开平纸片所得的图形是( ).
求作: △ABC 关于直线 l 对称的图形.
轴垂直平分. 练习 求作△ABC关于直线
l
对称这的△A条′ B′ C直′. 线叫做对称轴,折叠后重合的点
(图1)动手试一试: 如何剪能剪 出B 选项?
(图2)
A
B
C
D
初中数学
例 将一个正方形纸片依次按图1中 a,b的方式对折,
然后沿图 c 中的虚线裁剪,成图 d 样式,将纸展开铺平, 所得到的图形是图2中的(D ).Fra bibliotek(图1)
(图2) B
A
B
C
D
练习 如图所示,把一个正方形纸片三次对折后沿虚线
剪下,则展开铺平纸片所得的图形是( C ).
由一个平面图形可以得到与它关于一条直线 l 对称的图形,
练习 求作△ABC关于直线 l 对称的△A′ B′ C′.
如果它能够与另一个图形重合,那么就 练习 如图,有一个英语单词,三个字母都关于直线 l 对称,请补全字母,补全后的单词是________.
已知:点 A 和直线 l .
上折
右折 右下方折 沿虚线剪开
接这些对称点即可.
初中数学
例 (3)已知: △ABC和直线 l .
求作: △ABC关于直线 l 对称的图形.
B
作法:
A
C
1. 如图,分别作出点 A,B ,
C关于直线 l 的对称点 A′ ,
l B′ ,C′ ;
2. 连接A′ B′ ,B′ C′ ,C′ A′ ;
A′
(人教版) 轴对称图形 教学PPT课件1
![(人教版) 轴对称图形 教学PPT课件1](https://img.taocdn.com/s3/m/b500b073be1e650e52ea9933.png)
•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
人教版画轴对称图形课件1
![人教版画轴对称图形课件1](https://img.taocdn.com/s3/m/f8344889312b3169a551a4bd.png)
第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),
第n次变换后的点B的对应点的为:当n为奇数时,为(2n-3,1);
当n为偶数时,为(2n-3,-1),
∴把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,
则点B的对应点B′的坐标是(11,1).
人教版. 画轴对称图形课件1(PPT优秀课件 )
5 4 C3
A ′(3,5),B ′(4,1),C ′(1,3). 依次了连结A ′ B ′、B ′ C ′、 C ′ A ′、就得到△ABC关于y 轴对称的△A ′ B ′ C ′.
2
B
1
-4 -3 -2 -1-O1
-2 -3
-4
A′
C′ B′
12345 x
人教版. 画轴对称图形课件1(PPT优秀课件 )
△A'B'C',并写出A'、B'、C'的坐标.
人教版. 画轴对称图形课件1(PPT优秀课件 )
新课讲解
解:如图所示:
y
A (0,4)
B (2,4)
C' (3,1)
O
C (3,-1) x
A' (0,-4)
B' (2,-4)
人教版. 画轴对称图形课件1(PPT优秀课件 )
人教版. 画轴对称图形课件1(PPT优秀课件 )
称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(3,4)
B '(-4,-2)
x
C (3,-4)
知识归纳
★关于y轴对称的点的坐标的特点是:
人教八年级数学上册《画轴对称图形》课件(17张)
![人教八年级数学上册《画轴对称图形》课件(17张)](https://img.taocdn.com/s3/m/03dd441617fc700abb68a98271fe910ef12daead.png)
13.2 画轴对称图形
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
人教版八年级数学上册13.画轴对称图形(第2课时)课件
![人教版八年级数学上册13.画轴对称图形(第2课时)课件](https://img.taocdn.com/s3/m/336d03102f3f5727a5e9856a561252d380eb20e6.png)
•课外作业
必做题:1、课本P72 习题13.2 • 第1、2题做在课本上 • 第5、6、7 做在课本上 • 第4题做在作业本上 • 补充题:在平面直角坐标系中先依次连接点A(-
3,5),B(-2,-2),C(1,2),D(1,1), 得到一个几何图形,再画出此图形关于y轴对称的 图形,看看得到的图形像什么?
【课堂练习】
3.点P(-3, 2)与点Q关于y轴对称,则点Q的坐标为 _(_3__,_2__)___.
4.点M(a, -6)与点N(-2, b)关于y轴对称,则a=__2___, b =__-_6__.
(1)本节课学习了哪些内容? (2)在平面直角坐标系中,已知点关于x 轴或y 轴的
对称点的坐标有什么变化规律,如何判断两个 点是否关于x 轴或y 轴对称? (3)说一说画一个图形关于x 轴或y 轴对称的图形的 方法和步骤.
课前回顾
• 1、如何建立平面直角坐标系?各个象限点的坐标的特 征是什么?
• 2、如何在平面直角坐标系中描出点A(-2,3)? • 3、你能画出上图中点A关于X轴对称的点吗?
13.2 画轴对称图形 第2课时
• 1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.
• 2.掌握在平面直角坐标系中作出一个图形的 轴对称图形的方法..
课堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
自学指导2:
看课本P70例2,试着完成其中的填空和画图
讨论点拨
例 如图,四边形ABCD 的四个顶点的坐标分别为
A(-5,1),B(-2,1), C(-2,5),D(-5,4), D C y 分别画出与四边形ABCD 关
人教版八年级上册课件:13.2 画轴对称图形 (共15张PPT)
![人教版八年级上册课件:13.2 画轴对称图形 (共15张PPT)](https://img.taocdn.com/s3/m/49365a9ff8c75fbfc77db29e.png)
D
B
C
•本节课你有。
l
l
A A'
A A'
C'
C
C'
B
B'
B
C B'
画轴对称图形归纳:
先找(特殊点 ), 然后作出其(对称点 ), 最后顺次连结( 对称点 )构成轴对称图形 .
小结
从例题可知: 如果图形是由直线、线段或射线组成时,那
么在画它关于某一条直线的对称图形时,只要画 出图形中的特殊点(如线段的端点、角的顶点等) 的对称点,然后连结对称点,就可以画出关于这 条直线的对称图形.
L
A
·
例:你能画出. 三角形ABC关l 于直线L的对称图形吗?
A
A1
B
B1
画法:
C
C1
1、画出点A、点B和C点关于直线L的对称点A1 、 B1和C1. 2、连结A1 B1、 B1 C1 、A1 C1.
则 A1 B1 C1就是 AB C关于直线L的对称三角形.
图形变式:
已知△ABC,直线L,画出△ABC关于直线
哪个位置的球,小木棍,才能最快 路跑线到:目小明的—地—AD处—。—E——A
D
E
A
C
小明
• 如图,A为马厩,B为帐篷,牧马人某一天要从马 厩牵出马,先到草地边某一处牧马,再到河边给
马喝水,然后回到帐篷,请你帮助他确定这一天 的最短路线。
•如果我们把台球桌做成等边三角形 的形状,那么从AC中点D处发出的 球,能否依次经BC、AB两条边反射 回到D处?如果你认为不能,请说明 理由;如果你认为能,请作出球运 动的路线。 A
试问一题试::在如下图图,中实,线连所构结成对的称图点形的为线已段知与图形对,称直 线轴L有为何对关称系轴,? 请画出已知图形的轴对称图形.
B
C
•本节课你有。
l
l
A A'
A A'
C'
C
C'
B
B'
B
C B'
画轴对称图形归纳:
先找(特殊点 ), 然后作出其(对称点 ), 最后顺次连结( 对称点 )构成轴对称图形 .
小结
从例题可知: 如果图形是由直线、线段或射线组成时,那
么在画它关于某一条直线的对称图形时,只要画 出图形中的特殊点(如线段的端点、角的顶点等) 的对称点,然后连结对称点,就可以画出关于这 条直线的对称图形.
L
A
·
例:你能画出. 三角形ABC关l 于直线L的对称图形吗?
A
A1
B
B1
画法:
C
C1
1、画出点A、点B和C点关于直线L的对称点A1 、 B1和C1. 2、连结A1 B1、 B1 C1 、A1 C1.
则 A1 B1 C1就是 AB C关于直线L的对称三角形.
图形变式:
已知△ABC,直线L,画出△ABC关于直线
哪个位置的球,小木棍,才能最快 路跑线到:目小明的—地—AD处—。—E——A
D
E
A
C
小明
• 如图,A为马厩,B为帐篷,牧马人某一天要从马 厩牵出马,先到草地边某一处牧马,再到河边给
马喝水,然后回到帐篷,请你帮助他确定这一天 的最短路线。
•如果我们把台球桌做成等边三角形 的形状,那么从AC中点D处发出的 球,能否依次经BC、AB两条边反射 回到D处?如果你认为不能,请说明 理由;如果你认为能,请作出球运 动的路线。 A
试问一题试::在如下图图,中实,线连所构结成对的称图点形的为线已段知与图形对,称直 线轴L有为何对关称系轴,? 请画出已知图形的轴对称图形.
《画轴对称图形》优秀课件
![《画轴对称图形》优秀课件](https://img.taocdn.com/s3/m/1548650c68eae009581b6bd97f1922791688bec1.png)
将复杂图形分解为若干个简单的 几何图形,如三角形、矩形、圆
等。
分别绘制这些简单图形,注意保 持它们的相对位置和比例关系。
利用对称轴的性质,只需绘制出 一半的图形,然后通过对称得到
另一半。
组合简单部分形成完整复杂图形
将绘制好的简单图形按照原图形的结构 组合在一起。
调整各个部分的位置和大小,确保它们 检查组合后的图形是否与原图形一致,
教师总结并给出改进建议
教师观察学生的绘制过程和作品,了解学生在绘制轴对 称图形时存在的问题;
同时,教师也要肯定学生的优点和进步,鼓励学生继续 努力;
针对学生的不足之处,给出具体的改进建议,例如加强 对称性的把握、提高绘制精度等;
通过教师的总结和建议,学生可以更加明确自己的不足 之处,为今后的学习指明方向。
拓展延伸:探索更多轴对称现象和应用领域
自然界中的轴对称现象
01
引导学生观察自然界中的轴对称现象,如蝴蝶的翅膀、花朵的
形状等,感受大自然的奇妙和美丽。
轴对称在建筑和艺术中的应用
02
介绍轴对称在建筑和艺术领域的应用,如古代建筑、剪纸艺术
等,让学生了解轴对称在文化传承和发展中的重要作用。
科技领域中的轴对称现象
03
引导学生了解科技领域中的轴对称现象,如机械零件的对称设
计、飞行器的对称结构等,感受科技与美学的结合。
鼓励学生将所学知识应用于实际生活中
创作轴对称图案
鼓励学生运用所学知识,创作具有轴对称特征的图案,培养审美能 力和创造力。
解决实际问题
引导学生运用轴对称的知识解决实际问题,如设计对称的家居摆设、 制作对称的贺卡等,提高实践能力和解决问题的能力。
能够无缝拼接在一起。
人教版八年级上册 13.2轴对称图形 课件(共30张PPT)
![人教版八年级上册 13.2轴对称图形 课件(共30张PPT)](https://img.taocdn.com/s3/m/9d0555f6227916888586d7c9.png)
轴对称与轴对称图形的区别和联系:
区别: 轴对称是说两个图形的形状,大小和位置关系。
轴对称图形是说一个具有特殊形状的图形。
前者是针对两个图形,后者是针对对一个图形。
轴对称与轴对称图形的区别和联系:
联系: 两个概念没有本质的区别,定义中都有一条直线, 都沿这条直线对折重合
轴对称与轴对称图形的基本特征
N (N1)
N (M1) M
以上答案 M1 都不对
M
M
N1
A
B
C
D
练一练:
如下各图,已知线段AB和直线L,试画 出线段AB关于直线L的对称线段A'B' 。
L B
A A
L
B
①
②
练一练:
如下各图,已知线段AB和直线L,试画 出线段AB关于直线L的对称线段A'B' 。
L B
A
A'
A L
A'
B'
B
B' ①
试一试 请同学们尝试解决以下问题:
如图(1),(2)实线所构成的图形为已知图形, 虚线为对称轴,请画出已知图形的轴对称 图形。
(1)你可以通过什么方法来验证你 画的是否正确?
(2)和其他同学比较一下,你的方 法是最简单的吗?
试一试:如图,实线所构成的图形为已知图形,
直线L为对称轴,请画出已知图形的轴对称图形。
2.能利用轴对称进行图案设 计.
过程与方法
通过利用轴对称作图和图案设计,发 展实践能力.
情感态度与价值观
1.通过欣赏轴对称图案,形成了解数 学、应用数学的态度;
2.通过作轴对称图形、设计图案、 锻炼克服困难的意志,培养创新精神.
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
![人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件](https://img.taocdn.com/s3/m/164fa6c4bb0d4a7302768e9951e79b8968026885.png)
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
〔人教版〕轴对称与轴对称图形教学PPT课件
![〔人教版〕轴对称与轴对称图形教学PPT课件](https://img.taocdn.com/s3/m/48ec0b2fa8114431b80dd813.png)
轴对称与轴对称图形
动手做一做
观察下面的图形,动手折一折,把它们 剪出来并与同学交流你的剪法。
观察下面的图Βιβλιοθήκη ,你能发现它们有 什么共同的特征吗?
轴对称、对称轴、对称点
如果把一个图形沿着某一条直 线折叠后,能够与另一个图形 重合,那么这两个图形关于这
条直线成轴对称,这条直线叫 做对称轴。两个图形中的对应 点叫对称点。
47、我们爱我们的民族,这是我们自 信心的 源泉。 —— 周恩来 48、路是脚踏出来的,历史是人写出 来的。 人的每 一步行 动都在 书写自 己的历 史。 —— 吉鸿昌
49、春蚕到死丝方尽,人至期颐亦不 休。一 息尚存 须努力 ,留作 青年好 范畴。 —— 吴玉章 50、学习的敌人是自己的满足,要认 真学习 一点东 西,必 须从不 自满开 始。对 自己,“ 学而不 厌”, 对人家 ,“诲人 不倦”, 我们应 取这种 态度。 ——
40、对人不尊敬,首先就是对自己的 不尊敬 。 —— 惠特曼
41、一个人的真正伟大之处就在于他 能够认 识到自 己的渺 小。 —— 保 罗
42、自我控制是最强者的本能。 —— 萧伯纳
43、勿以恶小而为之,勿以善小而不 为。惟 贤惟德 ,能服 于人。 —— 刘备
44、要使别人喜欢你,首先你得改变 对人的 态度, 把精神 放得轻 松一点 ,表情 自然, 笑容可 掬,这 样别人 就会对 你产生 喜爱的 感觉了 。 —— 卡耐基
毛泽东 名人名言激励励志名言名语名句100句 (励志 古诗词 篇,附 出处) 51、错误和挫折教训了我们,使我们 比较地 聪明起 来了, 我们的 情就办 得好一 些。任 何政党 ,任何 个人, 错误总 是难免 的,我 们要求 犯得少 一点。 犯了错 误则要 求改正 ,改正 得越迅 速,越 彻底, 越好。
动手做一做
观察下面的图形,动手折一折,把它们 剪出来并与同学交流你的剪法。
观察下面的图Βιβλιοθήκη ,你能发现它们有 什么共同的特征吗?
轴对称、对称轴、对称点
如果把一个图形沿着某一条直 线折叠后,能够与另一个图形 重合,那么这两个图形关于这
条直线成轴对称,这条直线叫 做对称轴。两个图形中的对应 点叫对称点。
47、我们爱我们的民族,这是我们自 信心的 源泉。 —— 周恩来 48、路是脚踏出来的,历史是人写出 来的。 人的每 一步行 动都在 书写自 己的历 史。 —— 吉鸿昌
49、春蚕到死丝方尽,人至期颐亦不 休。一 息尚存 须努力 ,留作 青年好 范畴。 —— 吴玉章 50、学习的敌人是自己的满足,要认 真学习 一点东 西,必 须从不 自满开 始。对 自己,“ 学而不 厌”, 对人家 ,“诲人 不倦”, 我们应 取这种 态度。 ——
40、对人不尊敬,首先就是对自己的 不尊敬 。 —— 惠特曼
41、一个人的真正伟大之处就在于他 能够认 识到自 己的渺 小。 —— 保 罗
42、自我控制是最强者的本能。 —— 萧伯纳
43、勿以恶小而为之,勿以善小而不 为。惟 贤惟德 ,能服 于人。 —— 刘备
44、要使别人喜欢你,首先你得改变 对人的 态度, 把精神 放得轻 松一点 ,表情 自然, 笑容可 掬,这 样别人 就会对 你产生 喜爱的 感觉了 。 —— 卡耐基
毛泽东 名人名言激励励志名言名语名句100句 (励志 古诗词 篇,附 出处) 51、错误和挫折教训了我们,使我们 比较地 聪明起 来了, 我们的 情就办 得好一 些。任 何政党 ,任何 个人, 错误总 是难免 的,我 们要求 犯得少 一点。 犯了错 误则要 求改正 ,改正 得越迅 速,越 彻底, 越好。
人教版画轴对称图形课件
![人教版画轴对称图形课件](https://img.taocdn.com/s3/m/a5f8d115d5bbfd0a78567311.png)
人教版. 画轴对称图形课件(PPT优秀课件)
人教版. 画轴对称图形课件(PPT优秀课件)
新课讲解
B
作法:(1)过点A画直线l的垂线,垂
C
足为点O,在垂线上截取OA′=OA,A′
就是点A关于直线l的对称点.
lA
O
(2)同理,分别画出点B、C
A′
关于直线l的对称点B′、C′ .
C′ B′
(3)连结A′B′、B′C′、C′A′,得到△ A′B′C′即为所求.
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
学习目标
1.掌握作轴对称图形的方法.(重点) 2.能够按要求画简单平面图形经过一次对称后的图形. (难点) 3.通过画轴对称图形,增强学生学习几何的趣味感.
情境引入
情境引入
我们前面学习了轴对称图形以及轴对称图形 的一些相关的性质.如果有一个图形和一条直线, 如何画出这个图形关于这条直线对称的图形呢? 这节课我们一起来学习作轴对称图形的方法.
A.20° B.30° C.40° D.50°
方法归纳:折叠是一种轴对称变换,折叠前后的图 形形状和大小不变,对应边和对应角相等.
新课讲解
2 作轴对称图形
问题1:如何画一个点的轴对称图形? 画出点A关于直线l的对称点A′.
作法: (1)过点A作l的垂线,垂足为点O. (2)在垂线上截取OA′=OA.
(1)认真观察,左脚印和右脚印 有什么关系?
P
P'
成轴对称
(2)对称轴是折痕所在的直线,即
直线l,它与图中的线段PP ′是什么
关系?
直线l垂直平分线段PP′
l
知识要点
对称图形,
这个图形与原图形的形状、大小完全相同;新图形上的每一点 都是原图形上的某一点关于直线l的对称点;连结任意一对对应 点的线段被对称轴垂直平分.
人教版. 画轴对称图形课件(PPT优秀课件)
新课讲解
B
作法:(1)过点A画直线l的垂线,垂
C
足为点O,在垂线上截取OA′=OA,A′
就是点A关于直线l的对称点.
lA
O
(2)同理,分别画出点B、C
A′
关于直线l的对称点B′、C′ .
C′ B′
(3)连结A′B′、B′C′、C′A′,得到△ A′B′C′即为所求.
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
学习目标
1.掌握作轴对称图形的方法.(重点) 2.能够按要求画简单平面图形经过一次对称后的图形. (难点) 3.通过画轴对称图形,增强学生学习几何的趣味感.
情境引入
情境引入
我们前面学习了轴对称图形以及轴对称图形 的一些相关的性质.如果有一个图形和一条直线, 如何画出这个图形关于这条直线对称的图形呢? 这节课我们一起来学习作轴对称图形的方法.
A.20° B.30° C.40° D.50°
方法归纳:折叠是一种轴对称变换,折叠前后的图 形形状和大小不变,对应边和对应角相等.
新课讲解
2 作轴对称图形
问题1:如何画一个点的轴对称图形? 画出点A关于直线l的对称点A′.
作法: (1)过点A作l的垂线,垂足为点O. (2)在垂线上截取OA′=OA.
(1)认真观察,左脚印和右脚印 有什么关系?
P
P'
成轴对称
(2)对称轴是折痕所在的直线,即
直线l,它与图中的线段PP ′是什么
关系?
直线l垂直平分线段PP′
l
知识要点
对称图形,
这个图形与原图形的形状、大小完全相同;新图形上的每一点 都是原图形上的某一点关于直线l的对称点;连结任意一对对应 点的线段被对称轴垂直平分.
人教版数学八年级上册画轴对称图形课件
![人教版数学八年级上册画轴对称图形课件](https://img.taocdn.com/s3/m/d52645dbc77da26924c5b040.png)
13.2 画轴对称图形 第2课时
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
人教版数学 八年级上册13.2画轴对称图形课件
人教版数学 八年级上册13.2画轴对称图形课件
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_ 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
人教版数学 八年级上册13.2画轴对称图形课件
CHale Waihona Puke A〞 AC〞人教版数学 八年级上册13.2画轴对称图形课件
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律?
y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等.
B B〞
E〞 D〞1 D E O1
x
C
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
人教版数学 八年级上册13.2画轴对称图形课件
人教版数学 八年级上册13.2画轴对称图形课件
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_ 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
人教版数学 八年级上册13.2画轴对称图形课件
CHale Waihona Puke A〞 AC〞人教版数学 八年级上册13.2画轴对称图形课件
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律?
y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等.
B B〞
E〞 D〞1 D E O1
x
C
《画轴对称图形》课件
![《画轴对称图形》课件](https://img.taocdn.com/s3/m/8167f3b39f3143323968011ca300a6c30c22f10d.png)
副标题:探 索对称之美, 发现数学奥
秘
背景图片: 选择与对称 图形相关的 图片,如蝴 蝶、雪花等
色彩搭配: 选择与背景 图片相协调 的色彩,如 蓝色、绿色
等
字体选择: 选择清晰易 读的字体, 如微软雅黑、
宋体等
布局设计: 将标题、副 标题、图片 和字体合理 布局,确保 封面美观大
方
引言:介绍画轴对称 图形的概念和重要性
添加色彩。
选择“格式”选项卡, 点击“边框”按钮, 选择“无填充”或 “实线”等边框样式, 为轴对称图形添加边
框。
选择“格式”选项卡, 点击“文本框”按钮, 在轴对称图形中添加 文本,如“轴对称图
形”等。
保存PPT,完成轴对称 图形绘制步骤演示。
使用对象:教师、学生、培训师等需要制作PPT课件的人群
动画顺序:设置动画出现的顺序,确保逻辑清晰
动画持续时间:调整动画持续时间,使其与内容相匹配
动画效果:选择合适的动画效果,如淡入淡出、缩放、旋 转等
动画触发器:设置动画触发器,如点击、鼠标移入等
确定主色调:根据主题选择一种或 两种主色调,如蓝色、绿色等。
辅助色搭配:选择与主色调协调的 辅助色,如浅色、深色等。
自我评估:通过自我反思和总结,了解自己的学习成果和存在的问题
同伴互评:通过与同伴的交流和讨论,互相学习,互相评价 教师评价:通过教师的指导和评价,了解自己的学习成果和存在的问 题 测试评估:通过测试和考试,了解自己的学习成果和存在的问题
学习建议:建议 先了解画轴对称 图形的基本概念 和性质,再学习 如何制作PPT课 件。
等基本形状。
在幻灯片中绘制一个基 本形状,作为轴对称图
形的基础。
选择“格式”选项卡, 点击“对齐”按钮, 选择“水平居中”或 “垂直居中”等对齐 方式,使形状位于幻
新人教版13.2.1画轴对称图形ppt课件
![新人教版13.2.1画轴对称图形ppt课件](https://img.taocdn.com/s3/m/1c62ae4a53d380eb6294dd88d0d233d4b14e3f30.png)
1、找点(确定图形中的一些特殊点);
2、画点(画出特殊点关于已知直线的对称点);
3、连线(连接对称点)。
练习 1、如图,把下列图形补成关于直线L的 对称图形。
归纳
几何图形都可以看作由点组成,只要 作出这些点关于对称轴的对应点,再 连接对应点,就可以得到原图形的轴 对称图形
对于一些由直线、线段或射线组成的图 形只要作出图形中的一些特殊点的对称 点,再连接对称点,就可以得到原图形 的轴对称图形
路线:小明——P——A
A
P
小明
? 今天你学到了什么 ?
(1)轴对称变换的定义 (2)轴对称变换的性质 (3)利用轴对称变换的性质作图 (4)轴对称变换在生活中的应用
再 见
3、连接任意一对对应点的线段被对称轴 垂直平分。
讨论:
如果有一个图形和一条直线, 如何作出与这个图形关于这条直线 对称的图形呢?
基础一
已知直线 l 和一个点A,作出与 点A关于直线 l 对称的图形点A′。
┓
A'
M
O
l
∴ 点A′即为所求
基础二
已知直线L和线段AB,作出与线段AB关于直 线 L对称的图形线段A′B′。
(3)过点C作直线l的垂线, 垂足为点M,在垂线上截取 MC′=MC,点C′就是点C关于 直线l的对称点。
(4)连接A′B′、B′C′、C′A′,得 到△A′B′C′即为所求。
我行了:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B
A A
C C
A’ B
l
C Cl
C’
A B’
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
2、画点(画出特殊点关于已知直线的对称点);
3、连线(连接对称点)。
练习 1、如图,把下列图形补成关于直线L的 对称图形。
归纳
几何图形都可以看作由点组成,只要 作出这些点关于对称轴的对应点,再 连接对应点,就可以得到原图形的轴 对称图形
对于一些由直线、线段或射线组成的图 形只要作出图形中的一些特殊点的对称 点,再连接对称点,就可以得到原图形 的轴对称图形
路线:小明——P——A
A
P
小明
? 今天你学到了什么 ?
(1)轴对称变换的定义 (2)轴对称变换的性质 (3)利用轴对称变换的性质作图 (4)轴对称变换在生活中的应用
再 见
3、连接任意一对对应点的线段被对称轴 垂直平分。
讨论:
如果有一个图形和一条直线, 如何作出与这个图形关于这条直线 对称的图形呢?
基础一
已知直线 l 和一个点A,作出与 点A关于直线 l 对称的图形点A′。
┓
A'
M
O
l
∴ 点A′即为所求
基础二
已知直线L和线段AB,作出与线段AB关于直 线 L对称的图形线段A′B′。
(3)过点C作直线l的垂线, 垂足为点M,在垂线上截取 MC′=MC,点C′就是点C关于 直线l的对称点。
(4)连接A′B′、B′C′、C′A′,得 到△A′B′C′即为所求。
我行了:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B
A A
C C
A’ B
l
C Cl
C’
A B’
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
【人教版】八级数学上册课件:《画轴对称图形》实用PPT
![【人教版】八级数学上册课件:《画轴对称图形》实用PPT](https://img.taocdn.com/s3/m/0803ebe93c1ec5da50e270cc.png)
E OH
G
F
l
I
【解题过程】过点E作直线l的垂线,垂足为O ,并截取OH=OE,点H即为点E的对称点;
同理作出点F的对称点I, 连接HG、GI、HI ,△HGI即为所求.
【思路点拨】找准必要的关键点,已知一点在对称轴上,只需分别画出另外两点的对称点 即可,对称点的做法:作垂直,顺延长,取相等.
【人教版】八级数学上册课件:《画 轴对称 图形》 实用PPT
【思路点拨】作点的对称点的方法:作垂直,顺延长,取相等.
【人教版】八级数学上册课件:《画 轴对称 图形》 实用PPT
【人教版】八级数学上册课件:《画 轴对称 图形》 实用PPT
知识回顾 问题探究 课堂小结 随堂检测
探究三: 运用轴对称图形的相关性质解决实际问题
重点、难点知识★▲
活动2 作轴对称图形(图形与对称轴无交点)
探究一: 感知轴对称变换
活动1 动手操作,整合旧知
在一张半透明的纸的左边画上一个三角形,把这张纸对折后描图,打
开这张纸,就能得到相应的另外一个三角形.如图所示:
问题: (1)这两个三角形有什么关系? (2)这条折痕和这两个三角形有什么关系?
A B
C
O
D
E
F l
(3)图中的点A和点D之间的连线和折痕有什么关系? △ABC与△DEF关于直线l对称,直线l叫做对称轴,并且线段AD、BE、CF
A
C
B
D
【人教版】八级数学上册课件:《画 轴对称 图形》 实用PPT
【人教版】八级数学上册课件:《画 轴对称 图形》 实用PPT
知识回顾 问题探究 课堂小结 随堂检测
探究三: 运用轴对称图形的相关性质解决实际问题