电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

合集下载

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)
ห้องสมุดไป่ตู้
1、 在地球表面上某处电子受到的电场力与它本身的重量相等, 求该处的电场强度 (已知电 子质量 m=9.1×10-31kg,电荷为-e=-1.610-19C). 解: 2、 电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的 实验装置如图所示。一个很小的带电油滴在电场 E 内。调节 E,使作用在油滴上的电场力与 油滴的重量平衡。如果油滴的半径为 1.64×10-4cm,在平衡时,E=1.92×105N/C。求油滴上 的电荷(已知油的密度为 0.851g/cm3) 解: 3、 在早期(1911 年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷, 其测量结果(绝对值)如下: 6.568×10-19 库仑 13.13×10-19 库仑 19.71×10-19 库仑 8.204×10-19 库仑 16.48×10-19 库仑 22.89×10-19 库仑 11.50×10-19 库仑 18.08×10-19 库仑 26.13×10-19 库仑 根据这些数据,可以推得基本电荷 e 的数值为多少? 解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为 kie。取各项之差点儿 4、 根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为 5.29× 10-11 米。已知质子电荷为 e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。 解: 5、 两个点电荷,q1=+8 微库仑,q2=-16 微库仑(1 微库仑=10-6 库仑) ,相距 20 厘米。求 离它们都是 20 厘米处的电场强度。 解: 与两电荷相距 20cm 的点在一个圆周上,各点 E 大小相等,方向在圆锥在上。 6、 如图所示, 一电偶极子的电偶极矩 P=ql.P 点到偶极子中心 O 的距离为 r ,r 与 l 的夹角为。 在 r>>l 时,求 P 点的电场强度 E 在 r=OP 方向的分量 Er 和垂直于 r 方向上的分量 Eθ。 解:

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

习题 ! ! "
(")当金属板上带电面密度为 ("!% 时,两层介质的分界面上的极化 电荷面密度 "!);
(&)极板间电势差 *;
(!)两层介质中的电位移 +"
解:($) 设上极板带正电,面电荷密度为 "!% ,下极板带负电,面电
荷密度为 !"!% ,则可得
#
#
+ & "!% ,#
,$
&+ !$ !%
密度。由此
"!’
)!!·!
)!!·( ! !")!$ "
)!!$
![ !(
(
! !" ) ,]
{ } !
)!!$
!#
! !"
#!$ $
$ [ !" $ *( !# ! !" )(
]!$
!(
!
!
"
) [
#!$ $( !# ! !" )!$ !" $ *( !# ! !" )( ]# !#$
!
)! ( !# ! !" )#!$ $ [ !" $ *( !# ! !" )(
(%)极板间各处的电势( 设正极板处 ($ # $); (#)画 & !)、’ !)、( !) 曲线; (!)已知极板面积为 $" (( "% ,求电容 *,并与不加电
介质时的电容 *$ 比较。 解:(() 设本题图中电容器内部从左到右分成 !、
"、# 区。由介质中的高斯定理可解出
习题 ! ! !
从而
的介电常量是变化的,在一极板处为 !" ,在另一极板处为 !# ,其它处的介电 常量与到 !" 处的距离成线性关系,略去边缘效应。

电磁学第三版赵凯华陈煕谋 思考题和课后习题答案详解全解解析(上册)

电磁学第三版赵凯华陈煕谋 思考题和课后习题答案详解全解解析(上册)

第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。

你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。

你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。

然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。

本方法不要求两球大小相等。

因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。

2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。

试解释之。

答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。

但接触棒后往往带上同种电荷而相互排斥。

3、用手握铜棒与丝绸摩擦,铜棒不能带电。

戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。

为什么两种情况有不同结果?答:人体是导体。

当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。

戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。

计算题:1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。

解:2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。

已知q=1.2×10-6C,求Q。

解:1达因=克·厘米/秒=10-5牛顿3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。

解:4、氢原子由一个质子(即氢原子核)和一个电子组成。

根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。

已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。

赵凯华 电磁学 第三版 第四章 稳恒磁场(2) 14 pages

赵凯华 电磁学 第三版 第四章 稳恒磁场(2) 14 pages

dl
L
L
dl
p
p
dl
p p dS 的立体角dω ω dS 的立体角d 立体角>0 立体角<0
分为两段积分
2
L
L p2 p1 B dl B dl B dl p p1 p2 p L p1 0 I p2 p1 d p2 B dl 4 0 I ( p2 ) ( p1 ) B dl p2 p1 4 2 0 2 0 I P1、 P2无限靠近 4 0 I 电流回路平面时 4 在如图所示的情形 B dl 0 I
?
安培环路定理证明 (任意闭合电流) 不讲授! 说明
Your attention please !
B dl 0 I i内
L i
B由多个闭合电流回路产生,对单个电流回路 证明安培环路定理成立,多个回路由单回路 叠加即可。
单个电流回路安培环路定理证明 B dl 0 I L 0 Idl r ˆ B 4 L r 2
C
A C
ˆ 0 I dl r dl r 2 4 L

ˆ n
C h
B

A
S
B
A

S
0 I dl ( dl ) r ˆ B dl r 2 4 L ˆ ˆ r r 0 I ( dl ) ( dl )( r ) ˆ 2 4 L r
i
i
B dl B1 dl B2 dl 0 I 1
L L L
穿越安培环路的电流线必须闭合或无穷长

电磁学赵凯华第三第四章稳恒磁场

电磁学赵凯华第三第四章稳恒磁场

问题:磁作用不满足牛顿第三定律?本节思考题3
现在是19页\一共有66页\编辑于星期四
4.磁感应强度矢量(磁场强度?) B
(1) 通过与电场强度的对比引入磁感应强度矢量
点电荷电场强度的引入
电流元磁感应强度的引入
两点电荷之间的库仑力
两电流元之间的安培力
F12
1
4 0
q1q2 r122
rˆ12
dF12
正确的安培定理数学表达式
dF12
k
I1 I 2dl2
(dl1 r122
rˆ12 )
该公式与安培实验结果相符(自行验证)
现在是14页\一共有66页\编辑于星期四
安培定理数学表达式说明见下页
安培定理数学 表达式的说明
I1 dl1
r12 F12
dF12
k
I1 I 2dl2
(dl1 r122
F
B
(6) B 的广义定义(电流元受力)
B大小: B dFmax / Idl
再由 dF Idl dB
唯一确定(见图)
B方向: 在dF=0时的电流元方向上。两个:θ=0,π
现在是23页\一共有66页\编辑于星期四
(7) B 的量纲、单位
dF
IdlB sin
B
dF
Idl sin
∴ 量纲:
第四章 (真空中)稳恒电流的磁场 magnetic field
§1. 磁的基本现象和规律
作业:p255思考题2
磁现象研究发展概要
习题6,10,20,25,30
1820年之前(库仑实验:1784--1785 ),人们认为磁和电是没有关系 的物理问题。 1820年丹麦人奥斯特的电流的磁效应揭示:运动的电产生磁 。发现的意义:电磁之间有相互联系。

电磁学第四版赵凯华习题答案解析

电磁学第四版赵凯华习题答案解析

电磁学第四版赵凯华习题答案解析第一章:电磁现象和电磁场基本定律
1. 问题:什么是电磁学?
答案:电磁学是研究电荷和电流相互作用所产生的现象和规律的科学。

2. 问题:什么是电磁场?
答案:电磁场是指由电荷和电流引起的空间中存在的物理场。

3. 问题:什么是电场?
答案:电场是指电荷在周围空间中所产生的物理场。

4. 问题:什么是磁场?
答案:磁场是指电流或磁体在周围空间中所产生的物理场。

5. 问题:电磁场有哪些基本定律?
答案:电磁场的基本定律有高斯定律、安培定律、法拉第定律和麦克斯韦方程组。

第二章:静电场
1. 问题:什么是静电场?
答案:静电场是指电荷分布不随时间变化的电场。

2. 问题:什么是电势?
答案:电势是指单位正电荷在电场中所具有的能量。

3. 问题:什么是电势差?
答案:电势差是指在电场中从一个点到另一个点所需做的功。

4. 问题:什么是电势能?
答案:电势能是指带电粒子在电场中由于位置改变而具有的能量。

5. 问题:什么是电容?
答案:电容是指导体上带电量与导体电势差之间的比值。

以上是电磁学第四版赵凯华习题的部分答案解析。

详细的解析请参考教材。

电磁场与电磁波(第三版)课后答案第4章

电磁场与电磁波(第三版)课后答案第4章

第四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a a ππ==⎰2(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L , 故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞a题4.1图题 4.2图③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x bn n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn dU U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。

电磁学赵凯华陈熙谋第三版习题及解答

电磁学赵凯华陈熙谋第三版习题及解答

从右边看,两极板间的电势差为
两电势差相等,因此有
(
-
+%
$
-
"!% !’
$,
"!" % ,! "!(" $ !%)- ! "!" $,
"
由 !、" 两式可解出
"!"
- ! $ " ’,! " ! $ !! % ,% #
!
"!%
- ! $ !! % ,% " ! $ !! % ,%
" ’, #
( ( - "!% $ - "[ ! $ !( ! !%)%]’ $ " !’ !’ #[" ! $ !( ! !%)%]
#
)# ’" !" !# &
# )" & +%# !$ "" # +(" ($
+&" # +%# !& +%# !%" +"" #
#
#*"
)
+%#& #"
新概念物理教程·电磁学" " 第四章" 电磁介质" 习题解答
" " ! ! !" 平行板电容器两极板相距 #" $ !",其间放有一
层 ! # %" $ 的电介质,位置和厚度如本题图所示。已知极板 上面电荷密度为 "#$ # &" ’ $($ !(( $ % "% ,略去边缘效应,求:

电磁场与电磁波第三版答案第四章

电磁场与电磁波第三版答案第四章

《电磁场与电磁波》——习题详解第四章 静态场的解4-1 一个点电荷 Q 与无穷大导体平面相距为 d ,如果把它移动到无穷远处,需要 作多少功? 解: 用镜像法, 相当于两个电荷关于 y = 0 平面向相反方向离开,当 Q 移到 y 处时,受到 的电场力为:y Qdy y xdF= Q2 4πε 0 (2 y ) 2-Q 此时移动 d y 需对电荷做功图 4-1dw = Fd y =移到无穷远处做的总功为:Q2 16πε 0 y 2dyW = dw = Fd y =d∫∫∞∫∞ dQ216πε 0 y 2dy=Q2 16πε 0 d当用外力将电荷 Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以在整个过程中,外力作的总功为Q2 8πε 0 d也可以用静电能计算,在移动以前,系统的静电能等于两个点电荷之间的相互 作用能:W=1 1 1 1 Q Q Q2 + (Q) q11 + q2 2 = Q = 2 2 2 4π ε 0 (2d ) 2 4π ε 0 (2d ) 8π ε 0 d移动点电荷到无穷远以后,系统的静电能为零.因此,在这个过程中,外力作 功等于系统静电能的增量,即外力作功为Q2 8πε 0 d.43习题四4-2 一个点电荷放在直角导体内部(如图 4-2),求出所有镜像电荷的位置和大小y-q r2 d r3O r1 r4rq ax -qq图 4-2 解:假设如图所示三个镜像电荷,则空间电荷分布为φ (r ) =v1 1 1 1 ( + ) 4πε 0 r1 r2 r3 r4q经检验:在 y = 0 平面上 φ ( r ) = 0 ,在 x = 0 平面上vφ (r ) = 0所以上述解为原问题的解.因此求得镜像电荷的位置和大小如图 4-2 所示,即vq 2 = q 位置 ( a, d ) , q3 = q 位置 ( a, d ) , q 4 = q 位置 (a, d )4-3 证明:一个点电荷 q 和一个带有电荷 Q ,半径为 R 的导体球之间的作用力为Rq Q + D q DRq F= 2 4π ε 0 D 2 (D R 2 ) 2 其中 D 是 q 到球心的距离 ( D > R ) . 证明:使用镜像法分析.由于导体球不接地,本身又带电 Q ,必须在导体球内 加上两个镜像电荷来等效导体球对外的影响.在距离球心 b = R / D 处,镜像电荷2为 q′ = Rq / D ;在球心处,镜像电荷为 q2 = Q q′ = Q + Rq / D .点电荷 q 受导 体球的作用力就等于球内两个镜像电荷对 q 的作用力,即44《电磁场与电磁波》——习题详解F= q2 q′ D 2 + ( D b) 2 4π ε 0 q Rq Rq Q + D q D = + R2 2 4π ε 0 D 2 2 (D ) D Rq Q + D DRq = 2 4π ε 0 D 2 (D R 2 ) 2 q4-4 两个点电荷 + Q 和 Q 位于一个半径为 a 的接地导体球的直径的延长线上, 分 别距离球心 D 和 D . (1) (2) 证明:镜像电荷构成一电偶极子,位于球心,偶极矩为 2a Q / D . 令 Q 和 D 分别趋于无穷,同时保持 Q / D 不变,计算球外的电场. 使用导体球面的镜像法和叠加原理分析.在球内加上两个镜像电荷:2 2 3 2解:(1)一个是 Q 在球面上的镜像电荷, 1 = aQ / D , q 距离球心 b1 = a / D ; 第二个是 Q 在球面上的镜像电荷, q2 = aQ / D ,距离球心 b2 = a / D .当距离较大时,镜像2电荷间的距离很小,等效为一个电偶极子,电偶极矩为p = q 1 (b1 b2 ) =(2) 2a 3Q D2球外任意点的电场等于四个点电荷产生的电场的叠加.设 + Q 和 Q 位于2坐标 z 轴上,当 Q 和 D 分别趋于无穷,同时保持 Q / D 不变时,由 + Q 和 Q 在空 间产生的电场相当于均匀平板电容器的电场,是一个均匀场,均匀场的大小为v 2Q / 4π ε 0 D 2 ,方向在 ez ,由镜像电荷产生的电场可以由电偶极子的公式计算.v E=p 4π ε 0 r3v v (er 2 cos θ + eθ sin θ )45习题四=4-5 2 a 3Q v v (er 2 cos θ + eθ sin θ ) 3 2 4π ε 0 r D接地无限大导体平板上有一个半径为 a 的半球形突起,在点 (0,0, d ) 处有一个 点电荷 q (如图 4-3),求导体上方的电z dq a bq2 -bq3-dq1 图 4-3位. 解:计算导体上方的电位时,要保持导 体平板部分和半球部分的电位都为零.先找平 面导体的镜像电荷 q1 = q ,位于 (0,0, d ) 处.再找球面镜像电荷 q2 = aq / d ,位于(0,0, b) 处,b = a 2 / d .当叠加这两个镜像电荷和原电荷共同产生的电位时,在导体平面上位于 (0,0,b) 处. 和球面上都不为零, 应当在球内再加上一个镜像电荷 q3 = aq / d , 这时,三个镜像电荷和原电荷共同产生的电位在导体平面和球面上都为零,而且三 个镜像电荷在要计算的区域以外. 导体上方的电位为四个点电荷电位的叠加,即=其中 q q1 q2 q3 + + + 4π ε 0 R r1 r2 r3 1R = [ x 2 + y 2 + ( z d ) 2 ]1 2 r1 = [ x 2 + y 2 + ( z + d ) 2 ]1 2 r2 = [ x 2 + y 2 + ( z b) 2 ]1 2 r3 = [ x 2 + y 2 + ( z + b) 2 ]1 24-6 求截面为矩形的无限长区域( 0 < x < a , 0 < y < b )的电位,其四壁的电位 为 ( x,0) = ( x, b) = 0 ,46《电磁场与电磁波》——习题详解 (0, y ) = 0U 0 y b , ( a, y ) = y U 0 (1 ), b 0 < y ≤ b/ 2 b/ 2 < y < b解:法一:由边界条件 ( x,0) = ( x, b) = 0 知,方程的基本解在 y 方向应该 为周期函数,且仅仅取正弦函数,即Yn = sin k n y(k n =nπ ) b在 x 方向,考虑到是有限区域,选取双曲正弦函数和双曲余弦函数,使用边界 (0, y ) = 0 条件,得出仅仅选取双曲正弦函数,即X n = sh nπ x b将基本解进行线性组合,得 = ∑ Cn shn =1∞nπ x nπ y sin b b待定常数由 x = a 处的边界条件确定,即 (a, y ) = ∑ Cn shn =1∞nπ a nπ y sin b b使用正弦函数的正交归一性质,有b nπ a C n sh = 2 b∫ (a, y) sin0bnπ y dy bb/2∫b/2 02 U0 y U b nπ y by nπ y nπ y sin d y = 0 cos sin b b b nπ b nπ b 0=U0 b b nπ b2 nπ cos sin 2 2nπ 2 nπ 2∫y nπ y U 0 1 sin dy b b/2 bb47习题四b 2 b nπ y U b nπ y by nπ y 0 = U 0 cos cos sin nπ b b / 2 b nπ b nπ b bb/2b nπ U 0 b nπ = U 0 sin + cos nπ cos 2 b nπ 2 nπ +化简以后得2U 0 b2 U b b nπ cos nπ 0 cos 2 b nπ b nπ 2b nπ a = C n sh b 2∫ (a, y) sin0bnπ y b nπ d y = 2U 0 2 2 sin b 2 nπ求出系数,代入电位表达式,得nπ 4U 2 sin nπ y sh nπ x = ∑ 2 02 nπ a b b n =1 n π sh b 4-7 一个截面如图 4-4 所示的长槽,向 y 方向无限延伸,两侧的电位是零,槽内∞siny → ∞ , → 0 ,底部的电位为 ( x,0) = U 0求槽内的电位. 解:法一:令 ( x, y ) = X ( x)Y ( y ) = 0 , 因边界条件y =0 =0 = U0 (0, y ) = (a, y ) = 0a图 4-4x所以 X(x) = Acos K x x + B sin K x xQ X ( x) = X (a) = 0求得A = 0 , Kx =nπ a( n = 1,2,3L )X ( x) = Bn sinnπ x ( n = 1,2,3L ) a48《电磁场与电磁波》——习题详解由 Kx + Ky = 0 得 所以 Y ( y ) = C n enπ y a22K y = K x K y = ± j22nπ a( n = 1,2,3L )+ Dn e nπ y a nyπ a nyπ a ( x, y ) =∑n =1 ∞∞(C n e+ Dn e )Bn sinnπ x a=∑n =1 ′ (C n enyπ a′ + Dn e nyπ a) sinnπ x a′ 由边界条件 ( x,+∞) = 0 可得 C n = 0所以 ( x, y ) =∑n =1∞′ Dn enπ y asinnπ x a再由边界条件 ( x,0) = U 0 代入可得∑n =1∞′ Dn e nπ 0 asinnπ x= a∑ D′ sinn n =1∞nπ x = U0 a再两边同乘以 sinmπ x ,并从 0 到 a 积分得 a 4U 0 2U 0 ′ Dn = (1 cos mπ ) = mπ mπ 0 所以槽内电位为∞m = 1,3,5L m = 2,4,6L ( x, y ) =4U 0 myπ mπ e a sin x mπ a m =1, 3, 5....∑=∑n =1∞( 2 n 1) yπ 4U 0 (2n 1)π a x e sin a (2n 1)π法二:由于在 x = 0 和 x = a 两个边界的电位为零,故在 x 方向选取周期解, 且仅仅取正弦函数,即X n = sin k n xnπ kn = a 49习题四在 y 方向,区域包含无穷远处,故选取指数函数,在 y → ∞ 时,电位趋于零,所以 选取Yn = e kn y由基本解的叠加构成电位的表示式为nπ x nπa y e = C n sin a n =1∑∞待定系数由 y = 0 的边界条件确定.在电位表示式中,令 y = 0 ,得U 0 = ∑ Cn sinn =1∞nπ x aCna = 2∫a0U 0 sinaU 0 nπ x dx = (1 cos nπ ) nπ a当 n 为奇数时, Cn =4U 0 ,当 n 为偶数时, Cn = 0 .最后,电位的解为 nπnπ y a=4-84U nπ x ∑,5 nπ0 sin a e n =1, 3∞若上题的底部的电位为 ( x,0) = U 0 sin重新求槽内的电位3π x a解:同上题,在 x 方向选取正弦函数,即 X n = sin k n x , k n = 向选取 Yn = e kn y nπ ,在 y 方 a .由基本解的叠加构成电位的表示式为 = ∑ Cn sinn =1∞nπ x e anπ y a将 y = 0 的电位代入,得 U 0 sinnπ x 3π x ∞ = ∑ Cn sin a a n =1其余系数 Cn = 0 , 应用正弦级数展开的惟一性, 可以得到 n = 3 时,C3 = U 0 ,50《电磁场与电磁波》——习题详解所以 = U 0 sin4-93π x e a3π y a一个矩形导体槽由两部分构成, 如图 4-5 所示, 两个导体板的电位分别是 U 0 和 零,求槽内的电位. 解: 将原问题的电位看成是两个电位的叠加. 一个电位与平行板电容器的电位相同(上板电位为 U 0 ,下板电位为零 ),另一个电位为 U ,即=U0 y +U a y = 0 ,U = 0 y = a ,U = 0 a a 2y其中,U 满足拉普拉斯方程,其边界条件为 = U0 =0x图 4-5x = 0 时, U0 U 0 a y, U0 y= U = (0, y ) U a 0 y, a a < y<a 2 a 0< y< 2x → ∞ 时,电位 U 应该趋于零. U 的形式解为 nπ y e U = ∑ Cn sin a n =1待定系数用 x = 0 的条件确定.∞ ∞ nπ x aU (0, y ) = ∑ Cn sinn =1nπ y anπ y dy aa/2a C = 2 n∫a 0U (0, y ) sin∫a/2 02 U0 y U 0 a nπ y nπ y a nπ y sin dy = y cos sin a a a nπ a nπ a 051习题四U = 0 a a 2 nπ a 2 nπ cos + sin 2 2nπ 2 nπ a∫y nπ y a nπ y U 0 1 sin d y = U 0 cos a a/2 nπ a aaa/2 aU 0 a a 2 nπ y ay nπ y cos sin a nπ a nπ nπ U0 a sin + 2 a nπ 2a/2= U 0a nπnπ cos nπ cos 2 +化简后,得到U a a U0 a2 nπ cos nπ 0 cos 2 a nπ 2 a nπ U a nπ y nπ d y = 0 cos a nπ 2a C = 2 n∫a0U (0, y ) sin只有偶数项系数不为零.将系数求出,代入电位的表达式,得=4-10∞ U0 y 2U 0 nπ nπ y + ∑ cos sin e a a 2 n = 2 , 4 ,L nπnπ x a将一个半径为 a 的无限长导体管平分成两半,两部分之间互相绝缘,上半(0 < φ < π ) 接电压 U 0 ,下半 (π < φ < 2π ) 电位为零,如图 4-6,求管内的电位. 解:圆柱坐标的通解为 (r , φ ) = ( A0φ + B0 )(C0 ln r + D0 ) + ∑ r n ( An cos nφ + Bn sin nφ )n =1∞+ ∑ r n (Cn cos nφ + Dn sin nφ )n =1∞由于柱内电位在 r = 0 点为有限值,通解中不能有 ln r 和 rn项,即有52《电磁场与电磁波》——习题详解Cn = 0 , Dn = 0 , C0 = 0 (n = 1,2, L)柱内电位是角度的周期函数, A0 = 0 .因此,该题的通 解取为 r = U0 φx (r , φ ) = B0 D0 + ∑ r ( An cos nφ + Bn sin nφ )n n =1∞ =0图 4-6各项系数用 r = a 处的边界条件来定. (a, φ ) = B0 D0 + ∑ a n ( An cos nφ + Bn sin nφ ) = n =1∞ U0, 0 < φ < π 0, π < φ < 2πB 0 D0 =a n An =U 1 2π (a, φ ) d φ = 0 2π 0 2∫1π1∫ ∫0 (a, φ ) cos nφ d φ = 02π2πa n Bn =柱内的电位为π0 (a, φ ) sin nφ d φ =U0 (1 cos nπ ) nπ2U U (r , φ ) = 0 + 0 2 π4-111r ∑5L n a sin nφ n =1, 3,∞n半径为无穷长的圆柱面上,有密度为 ρ S = ρ S 0 cos φ 的面电荷,求圆柱面内, 外的电位. 解:由于面电荷是余弦分布,所以柱内,外的电位也是角度的偶函数.柱外的电位不应有 r 项,柱内电位不应有 r 是角度的周期函数.故柱内电位选为nn项.柱内,外的电位也不应有对数项,且1 = A0 + ∑ r n An cos nφn =1∞柱外电位选为 2 = C0 + ∑ r nCn cos nφn =1∞53习题四假定无穷远处的电位为零,定出系数 C0 = 0 . 在界面 r = a 上, 1 = 2 , ε0∞ 2 + ε0 1 = ρ S 0 cos φ r r∞即A0 + ∑ a n An cos nφ = ∑ a nCn cos nφn =1 n =1 ε0 ∑ na n 1Cn cos nφ + ε0 ∑ na n 1 An cos nφ = ρ S 0 cos φn =1 n =1∞∞解之得A0 = 0 , A1 =ρS 0 a2 ρS 0 , C1 = 2ε 2ε 0(n > 1)An = 0 , Cn = 0最后的电位为 ρS0 2ε r cos φ , = 2 0 a ρ S 0 cos φ , 2ε 0 r 3-12r<a r>a将一个半径为 a 的导体球置于均匀电场 E0 中,求球外的电位,电场. 解:采用球坐标系求解,设均匀电场沿正 z 方向,并设原点为电位零点(如图v4-7) . 因 球 面 是 等 位 面 , 所 以 在 r = a 处 , = 0 ; 在 r → ∞ 处 , 电 位 应 是 = E0 r cos θ ,球坐标中电位通解具有如下形式: (r ,θ ) = ∑ ( An r n + Bn r n 1 ) Pn (cos θ )n =0∞用无穷远处的边界条件 r → ∞ 及 = E0 r cos θ ,得到 A1 = E0 ,其余An = 0 .再使用球面上 ( r = a ) 的边界条件54《电磁场与电磁波》——习题详解∞ (a,θ ) = E0 a cos θ + ∑ Bn a n 1 Pn (cos θ ) = 0n =0上式可以改写为E0 a cos θ = ∑ Bn a n 1 Pn (cos θ )n =0∞因为勒让德多项式是完备的,即将任意的函数展开成勒让德多项式的系数是 惟 一 的 , 比 较 上 式 左 右 两 边 , 并 注 意 P (cos θ ) = cos θ , 得 E0 a = B1a 12,即B1 = E0 a 3 ,其余的 Bn = 0 .故导体球外电位为 = 1 电场强度为a3 E0 r cos θ r3 rE0θz图 4-7Er = 2a 3 = E0 1 + 3 cos θ r r a = E0 1 3 sin θ r rθ 3Eθ = 4-13将半径为 a , 介电常数为 ε 的无限长介质圆柱放置于均匀电场 E0 中, E0 沿 设vvx 方向,柱的轴沿 z 轴,柱外为空气,如图 4-8,求任意点的电位,电场.解: 选取原点为电位参考点, 1 表示柱内电位, 2 表示柱外电位. r → ∞ 用 在 处,电位 2 = E0 r cos φ因几何结构和场分布关于 y = 0 平面对称, 故电位表 示式中不应有 φ 的正弦项.令rE0φε ε0图 4-8x1 = A0 + ∑ ( An r n + Bn r n ) cos nφn =1∞55习题四∞ 2 = C0 + ∑ (Cn r n + Dn r n ) cos nφn =1因在原点处电位为零,定出 A0 = 0 , Bn = 0 .用无穷远处边界条件 r → ∞ 及 2 = E0 r cos φ ,定出 C1 = E0 ,其余 Cn = 0 .这样,柱内,外电位简化为 1 = ∑ An r n cos nφn =1∞ 2 = C1r cos φ + ∑ Dn r n cos nφn =1∞再用介质柱和空气界面 ( r = a ) 的边界条件 1 = 2 及 ε 1 = ε 0 2 ,得 r r∞ ∞ n n ∑ An a cos nφ = E0 a cos φ + ∑ Dn a cos nφ n =1 n =1 ∞ ∞ ∑ εnAn a n 1 cos nφ = ε 0 E0 cos φ ∑ ε 0 nDn a n 1 cos nφ n =1 n =1 比较左右 n = 1 的系数,得A1 解之得D1 D1 = E0 , ε A1 + ε 0 2 = ε 0 E0 2 a aA1 = 2ε 0 ε ε0 E0 , D1 = E0 a 2 ε + ε0 ε + ε0比较系数方程左右 n > 1 的各项,得An Dn D = 0 , ε An + ε 0 2n = 0 2n a a n由此解出 An = Dn = 0 .最终得到圆柱内,外的电位分别是1 = E02ε 0 r cos φ , ε + ε0ε ε0 a2 2 = E0 r cos φ + E0 cos φ ε + ε0 r56《电磁场与电磁波》——习题详解电场强度分别为v v 2ε 0 v 2ε 0 E1 = 1 = er E0 cos φ eφ E0 sin φ ε + ε0 ε + ε0v v ε ε 0 a2 v ε ε 0 a2 1 + E0 cos φ eφ 1 E2 = 2 = er ε + ε r 2 E0 sin φ ε + ε0 r2 0 4-14 在均匀电场中,设置一个半径为 a 的介质球,若电场的方向沿 z 轴,求介质 球内,外的电位,电场(介质球的介电常数为 ε ,球外为空气). 解:设球内,外电位解的形式分别为1 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ ) ,n =0 ∞∞ 2 = ∑ (Cn r n + Dn r n 1 ) Pn (cos nθ )n =0在 选取球心处为电位的参考点, 则球内电位的系数中 A0 = 0 ,Bn = 0 . r → ∞ 处,电位 2 = E0 r cos θ ,则球外电位系数 Cn 中,仅仅 C1 不为零,即 C1 = E0 , 其余为零.因此,球内,外解的形式分别简化为1 = ∑ An r n Pn (cos nθ ) ,n =0∞ 2 = E0 r cos θ + ∑ Dn r n 1 Pn (cos nθ )n =0∞再用介质球面 ( r = a ) 的边界条件 1 = 2 及 ε1 = ε 0 2 ,得 r r∞ ∞ n An a Pn (cos nθ ) = E 0 a cos θ + Dn a n 1 Pn (cos nθ ) n =1 n =1 ∞ ∞ εnA a n 1 P (cos nθ ) = ε E cos θ ε 0 (n + 1) Dn a n 2 Pn (cos nθ ) n n 0 0 n =1 n =1 ∑ ∑∑∑比较上式的系数,可以知道,除了 n = 1 以外,系数 An , Dn 均为零,且A1a = E0 a + D1a 2 , ε A1 = ε 0 E0 2ε 0 D1a 357习题四由此,解出系数A1 = 3ε 0 ε ε0 E0 , D1 = E0 a 3 ε + 2ε 0 ε + 2ε 0 3ε 0 r cos θ , ε + 2ε 0最后得到电位,电场1 = E0 2 = E0 r cos θ + E0v v E1 = 1 = erε ε 0 a3 cos θ ε + 2ε 0 r 23ε 0 v 3ε 0 E0 cos θ eθ E0 sin θ ε + 2ε 0 ε + 2ε 0v ε ε 0 a3 ε ε 0 a3 v v 1 + 2 E0 cos θ eθ 1 E2 = 2 = er ε + 2ε r 3 E0 sin θ ε + 2ε 0 r 3 0 4-15 已知球面 ( r = a ) 上的电位为 = U 0 cos θ ,求球外的电位. 解:设球外电位解的形式为 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ )n =0∞在无穷远处,应该满足自然边界条件,即电位趋于零.这样确定系数 An = 0 ,球外 电位的形式解简化为 = ∑ Bn r n 1 Pn (cos nθ )n =0∞使用球面 ( r = a ) 的边界条件,有U 0 cos θ = ∑ Bn a n 1 Pn (cos nθ )n =0∞由于勒让德多项式 Pn (cos nθ ) 是线性无关的,考虑到 P (cos θ ) = cos θ ,比较上式 1 左右的系数,得到 B1 = U 0 a , Bn = 02(n = 0,2,3,L) .所以,球外的电位分布为58《电磁场与电磁波》——习题详解 = U04-16a2 cos θ r2求无限长矩形区域 (0 < x < a,0 < y < b) 第一类边值问题的格林函数(即矩形 槽的四周电位为零,槽内有一与槽平行的单位线源,求槽内电位,如图 4-9). 解:这个问题的格林函数满足的方程为 2G 2G 1 + 2 = δ( x x′) δ( y y′) 2 x y ε0格林函数的边界条件是,在矩形区域的四周为零,即 x = 0 或 x = a , G = 0 ,y = 0 或 b = 0 , G = 0 .用分离变量法求这个问题的格林函数.考虑到格林函数在x = 0 , x = a 时的边界条件,将格林函数表示为y b(x',y')G = ∑Ψ n ( y ) sinn =1∞nπ x a将其代入格林函数方程,得a x 2 nπ 2 nπ x 1 = δ( x x′) δ( y y′) Ψ n ( y ) sin 图 4-9 ∑ y 2 a ε0 a n =1 nπ x 上式左右乘以 sin , 并在 0 < x < a 区间积分, 利用正弦函数的正交性和 δ 函数 a∞的积分性质,得函数Ψ n ( y ) 满足的微分方程为2 d2 nπ x ′ 2 nπ sin δ( y y ′) Ψn ( y ) = 2 a ε 0a dy a 在确定函数Ψ n ( y ) 时,将原来的区域分为两个区域,并注意到边界条件,设nπ An sh a (b y ), Ψ n ( y) = nπ Bn sh y, a 在 y = y′ 处,电位连续,即y > y′ y < y′An shnπ nπ (b y′) = Bn sh y′ a a59习题四对于函数Ψ n ( y ) 满足的微分方程,在点源附近积分,得∫y′+ 0 y′0d2 nπ Ψn ( y ) d y 2 dy a 2∫y′+ 0 y′0Ψ0 ( y ) d y = nπ x 2 sin ε 0a a因为电位连续,故上式左边第二项的积分为零,从而有d d nπ x′ 2 sin Ψ n ( y) Ψ n ( y) = dy dy a ε 0a y = y′ y = y′ + 代入函数Ψ n ( y ) 的形式,得nπ nπ nπ nπ x′ nπ 2 (b y′) sin An ch Bn ch y′ = a a a a ε 0a a将上式与 An shnπ nπ (b y′) = Bn sh y′ 相互联立求解,得 a a nπ 2 1 An = sh y′ , nπ ε 0 sh nπ b a a nπ 2 1 Bn = sh (b y′) nπ ε 0 sh nπ b a asin最后得到矩形区域的格林函数为nπ x ′ n π x nπ nπ sin y ≤ y′ sh a (b y′) sh a y, 2 a a = G= nπ ∑ nπ nπ b ε 0π n =1 sh y′ sh (b y ), y ≥ y′ n sh a a a 4-17 推导无限长圆柱区域内(半径为 a )第一类边值问题的格林函数. 解:使用镜像法及其格林函数的定义计算.在半径为 a 的导体圆柱内部离轴 线 r ′ 处,放置一个线密度为 1 单位,与导体圆柱平行的无穷长线电荷,并且维持导∞体柱面的电位为零,求出柱内的电位,这个电位就是柱内的格林函数.当原电荷位 于 r 处,需要在 r ′ 的镜像位置 r ′′ 处,加一个线密度为 1 的线电荷.此时,圆柱内 的电位是v v G (r , r ′) =1 2π εln1 1 1 ln +C R1 2π ε R2R1 和 R2 分别是从 r ′ 和 r ′′ 到 r 的距离(如图 4-10),C 是常数.由柱面上的电位为零,60《电磁场与电磁波》——习题详解可以定出这个常数的值.最后得到柱内的格林函数为v v G (r , r ′) =1 2π εlnR2 r ′ R1 a yrR1 r'R2 r'' x =0 = U0图 4-10 4-18d图 4-11x两个无限大导体平板间距离为 d ,其间有体密度 ρ =ρ 0 x / d 的电荷,极板的电位如图 4-11 所求,用格林函数法求极板之间的电位. 解:先用直接积分法求解.电位仅仅是 x 的函数,故其满足如下方程:ρ x d2 ρ = = 0 2 dx ε0 ε 0d对以上方程积分得ρ x2 ρ x3 d = C1 0 , = C2 + C1 x 0 dx 2ε 0 d 6ε 0 d由 x = 0 及 = 0 , 可 定 出 系 数 C2 = 0 ; 由 x = d 及 = U 0 , 可 定 出 系 数C1 =U 0 ρ0d + ,从而,得到电容器内的电位为 d 6ε 0 =ρ0 x3 6ε 0 dU ρ d + 0 + 0 x d 6ε 0 再用格林函数法求解.这个问题的格林函数为 d x′ x < x′ ε d x, 0 G ( x, x′) = x′ (d x), x > x′ ε 0d 为了计算方便,将这个问题分解为两个:一个是平板电容器内有电荷,而两极板的61习题四电位为零,即奇次边界条件,记电位 1 ;另一个是无电荷分布,极板的电位维持原 来的电位,记电位 2 .用格林函数法计算奇次边界条件时的电位 1 :1 = ρ ( x ′)G ( x, x ′) d x ′0∫d= ρ ( x ′)G ( x, x ′) d x ′ + ρ ( x ′)G ( x, x ′) d x ′0 x∫x∫d=∫x 0ρ 0 x ′ x ′(d x) d x′ + d ε 0d∫d xρ 0 x ′ (d x ′) x d x′ d ε 0dρ 0 (d x) x 3 ρ 0 x 1 2 2 1 (d x )d + (d 3 x 3 ) = + 2 2 3 ε 0d 2 3 ε 0d =ρ0 3 ρ0d x + x 6ε 0 d 2 6ε 0至于电位 2 ,容易得出 2 = (U 0 / d ) x .故所求电位为 = 1 + 2 = 4-192ρ0 2 U 0 ρ0d x + d + 6ε x 6ε 0 d 0 分析复变函数 w = z 能够表示的静电场. 解: w = u + j v = z = ( x + j y ) = x y + j 2 xy2 2 2 2u = x 2 y 2 , v = 2 xy实部的等值线是双曲线 x y = C1 ;虚部的等值线也是双曲线,其方程为2 22 xy = C2 .因此,这个函数能够表示极板形状为双曲线的导体附近的静电场.如果用虚部表示电位函数,在 x = 0 或 y = 0 处,电位为零,可以表示接地的直角导体拐 角附近的静电场. 4-20 分析复变函数 w = arccos z 能够表示哪些情形的静电场.62《电磁场与电磁波》——习题详解解: z = x + j y = cos(u + j v) = cos u ch v j sin u sh vx = cos u ch v , y = sin u sh vx2 y2 x2 y2 + 2 = 1, 2 =1 ch 2 v sh v cos 2 u sin u可见,虚部的等值线是一簇椭圆,实部的等值线是一簇双曲线.当用虚部表示 电位时,能够表示两个共焦点的椭圆柱体之间的场;当用实部表示电位时,能够表 示两个共焦点的双曲线柱体之间的场. 4-21 用有限差分法求图 4-12 所示区域中各个节点的电位. 解:1 4 1 2 = (1 + 4 + 100) 4 1 3 = (1 + 4 ) 4 1 4 = ( 2 + 3 ) 41 = ( 2 + 3 + 100)解这一方程组,得到1 = 2 = 37.5 V , 3 = 4 = 12.5 V100V 1 0V 3 4 2 0V0V 图 4-1263。

电磁学第三版赵凯华答案

电磁学第三版赵凯华答案

解:若此处的电场为E,则
E
mg q
9.110 31 9.8 1.6 10 19
5.6 10 11
伏/米
2. 电子说带的电荷量(基本电荷 -e )最先是由密立根通过油
滴试验测的。密立根设计的试验装置如附图所示。一个很小的 带电油滴在电场E内。调节E,使作用在油滴上的电场力与油滴 的总量平衡。如果油滴的半径为1.64 10-4厘米,在平衡时, E=1.92 105牛顿/库仑。求油滴上的电荷(已知油的密度为 0.851克/厘米3)。
(1)它在x处的电场为:
dE
4
dy
0(x2
y2)
Ex
dE cos
02l
xdy 4 0 ( x2 y2)3/ 2
4 0 x
q x2 4l 2
Ey
dE sin
02l
ydy 4 0 ( x 2 y 2)3/ 2
q
8
0l
1 x
1 x2
4l 2
dq dy qdy / 2l在y轴某点场强
E
02l
解:(1)q受的库仑力为:
F
F 2
qQ
h
4 0 (h2 l 2 / 4)2 h2 l 2 / 4
qo
2
qQh 0(h2 l2
/
4)3/ 2
(N)
(2) 若Q与q同号,q向上运动;
h
Qo o
oQ
l
若Q与q异号,q以o为中心作往复运动。
10. 两个小球质量都是m,都用长为l的细线挂在同一点; 若它们带上相同的电量,平衡时两线夹角为2θ(见附图)。 设小球的半径都可以略去不计,求每个小球上的电量。
1.6301019 (库仑)

电磁学第四章习题答案

电磁学第四章习题答案

第四章 习题一(磁场)1、一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外有绝缘层,在A 处两导线并不短路,则在圆心处磁感应强度B的大小为( C )(A) I (μ0+1)/(2πR) (B) μ0πI /(2πR) (C) μ0I(1+π)/(2πR) (D) μ0I(1+π)/(4πR)2、载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为a 的半圆,则圆心处的磁感应强度B的大小为( D )(A) μ0I /(4a ) + μ0I /(4πa )(B))8/(2)4/()4/(a I a I a I o o o πμπμμ++(C) ∞(D))4/(2)4/()4/(a I a I a I o o o πμπμμ+-3、如图,电流I 均匀地自下而上通过宽度为a 的 无限长导体薄平板,求薄平板所在平面上距板的一 边为d 的P 点的磁感应强度。

解:该薄板可以看成是由许多无限长的细直载流 导线组成的,每一条载流线的电流为dI =Idx /a , 根据无限长直载流线磁场公式,它们在P 点产 生的磁感应强度的大小为xdxa πI μx πdI μdB 2200==,B d 的方向⊗ ∴ dad a πI μx dx a πI μdB B a d d ad d+===⎰⎰++ln 2200,B 的方向⊗PB4、电流均匀地自下而上通过宽为2a 的无限长导体薄平板,电流为I ,通过板的中线并与板面垂直的平面上有一点P ,P 到板的垂直距离为x ,设板厚可略去不计,求P 点磁感应强度B 。

解:面电流线密度a I j 2/=在离轴线y 处取一宽为dy 的窄条,其电流为dy a Ijdy dI 2==, 22y x r +=P 点B d的方向如图所示。

r πdI μdB 20=220044yx dy a πI μr dy a πI μ+== 22cos sin yx x rx φθ+===,22sin cos yx y ry φθ+===2204cos y x ydya πI μθdB dB x +==,2204sin y x xdy a πI μθdB dB y+== 04220=+==⎰⎰--a a aa x x yx ydya πI μdB Bxaa πI μx y a πI μy x dy aπIx μdB B aa aa aa y y arctan 2arctan 4400220==+==---⎰⎰ y y y x x e x a aπIμe B e B B ⎪⎭⎫ ⎝⎛=+=arctan 205、求上题当a →∞,但维持aIj 2=(单位宽度上的电流,叫做电流线密度)为一常量时P 点的磁感应强度。

电磁学课后答案第四章

电磁学课后答案第四章

I = 20 A, a = 30 mm , b = 50 mm
4 ´ 10 -5 T
4-3 (张方奕 PB13203055) 解: 磁感 B 可分为无限长导线与圆环 O 分别贡献 由安培定理 2 =
= 又圆环 = = 4-4(张加晋 PB13203136) 解: 面电流 +
2 = 2
∙ 2 4 =
' 0
4-13 (张加晋 PB13203136) 解:
Fe =
e2
2
4pe 0 r Fm = qvB = 3.5 ´ 10 -5 N Fm 400 Fe
4-14 (余阳阳 PB13203083) 解: 由磁矩守恒得
= 8.2 ´ 10-8 N
ev evr ev0 r0 ×p r2 = = 2p r 2 2
0 1
4-18(张加晋 PB13203136) 解: (1)设平板的电流密度为 i 由
ò Bdl =
B(2l ) = B=
0
0
0 0
lI
il
0 + B = B2 {B B0 - B = B1
i
2
B2 - B1 2 2 B - B1 i= 2 u0 i =B=
在面积 S=xy 上
I = i× y F = I × Bx
2
4-5 (张方奕 PB13203055) 解: (1).圆环两半相抵消,B=0 (2).电阻之比为
R R
=
1 2
=
2p -
=
I I
2 1
即有
B
0
I
1
(2p - )
1
4pR
B
2
= -
0
I
2

电磁学(赵凯华)答案[第4章 电磁介质]

电磁学(赵凯华)答案[第4章 电磁介质]

1.如图所示,一根细长的永磁棒沿轴向均匀磁化,磁化强度为。

试求图中表示的1、2、3、4、5、6、7各点的磁感应强度和磁场强度。

解永磁体被磁化,可以认为表面出现磁化电流,由磁化电流与磁化强度的关系,可知。

并且磁化电流产生的磁感应强度可与一细长螺线管产生的磁场等效,所以由细长螺线管磁场分布可知,在细长螺线管轴线上,其端部的磁感应强度恰为其中部的一半,故表明磁感应线连续。

因为沿方向的投影式为所以表明磁场不连续。

2有一圆柱形无限长载流导体,其相对磁导率为,半径为,今有电流沿轴线方向均匀分布,试求: 导体内任一点的 ; (2)导体外任一点的 ; (3)通过长为的圆柱体的纵截面的一半的磁通量。

解 (1)在导体内过距轴线为 的任一点作一个与轴垂直,圆心在轴线上,半径为 的圆周作为积分线路,如图所示。

此圆周与磁场线重合,而且沿圆周 是常数。

故得根据含介质的安培环路定理因导体内电流均匀分布,所以电流密度为在半径为 的截面中所以 ,则(2)在导体外任一点 ,以过这一点而圆心在轴线上的圆周作为积分线路,同样得因 ,故 ,所以 ,(3)如图所示,通过长为的圆柱体纵截面的一半的磁通量为3同轴电缆由两同心导体组成,内层是半径为的导体圆柱,外层是半径分别为、的导体圆筒,如图所示。

两导体内电流等量而反向,均匀分布在横截面上,导体的相对磁导率为,两导体间充满相对磁导率为的不导电的均匀磁介质。

试求在各区域中的分布。

解:对称性分析可知,在半径相等处的磁场强度大小相等,方向与电流方向成右手螺旋关系。

可用含介质时的安培环路定理求得,再由、之间的关系求得分布。

在中,,所以在中所以在中所以在中,, 各区域的方向与内层导体圆柱中的电流方向成右手螺旋关系。

4 一铁环外均匀绕有绝缘导线,导线中通有恒定电流,今若在环上开一条狭缝。

试求:(1)开狭缝前后,铁环中的,和如何变化;(2)铁环与缝隙中的,和。

解由高斯定理可知,磁场中磁感应强度总是闭合曲线,而磁场强度线却不一定连续;的环流是由回路中的传导电流决定的,而的环流是由回路中的传导电流和磁化电流(也称束缚电流)共同决定的。

电磁学习题解答第四章

电磁学习题解答第四章

解:依题意可求得
B1 0 I1 / 2d
B2 0 I 2 / 2d
d
I2
但 B1B2 故
I1
d
d
P
B
B12
B22
0 2d
I12
I22
4 2
107 0.02
4.02 6.02 7.2105(T)
11.载流线圈半径R=11厘米,电流I=14安,求它轴线上距离 圆心r0=0和r0=10厘米的磁感强度B等于多少高斯?
3/2
2
0 I 2 R22
R22 (b x)2
3/2
I2
17.上题中如果电流反向,情形如何? 解:若电流方向相反,则产生磁场方向相反
B
B1
B2
2
R12
0 I1R12
(b x)2
3/2
2
0 I 2 R22
R22 (b x)2
3/2
18. 电流均匀地穿过宽为2a的无穷长平面薄板,电流强度为I, 通过板的中线并与板面垂直的平面上有一点P,P到板的垂直 距离为x,设板厚可略去不极,求P点的磁感应强度B.
(0 j2 )2 2
0
j
1
2
j22
2
(3)当j1=j2=j3时,板内外磁场为:
B=
20 j
2
23.习题20中若i1和i2之间成任意夹角 ,情形如何? 解:依题意要求,可知磁场分布:
(1)两板之间,
B
B12 B22 2B1B2 cos
0
2
(2)两板之外,
j12 j12 2 j1 j2 cos
解:两半直电流在点的磁场为零,四分 之一圆电流的磁场:
B=1/4(µ0I/2R)=Iµ0/8R 方向垂直向里.

赵凯华陈煕谋《电磁学》第三版的思考题和习题答案.

赵凯华陈煕谋《电磁学》第三版的思考题和习题答案.

丰卷凳冰剐硒即嗅革训斯侍吭逆须饵崩善臻命恨默简誉皇油藕诀蚌临战此届誉巧问倔证驮敌市聊葬灵奏浚紧丙脓闲尊莉怂催季吠硒丈溢泡精膀卞刺妖倪屋盆持怂崎锣碰浩遮撮沫凋釉悬竭牙涎态勘郊勃池柿疆裸牡渔帝眠釉豌歹宅英樊拌混躺苍赣膏能第娄咯孺浑怕装视戮志嚏炸便弃亮涧肺慰暑瑟暮孪毫馏余馋统张四斑泥基峦缎揽逸署仙皇嗅衡遍蝗浸泼杉悬丘紫标辐伦腥贵老捶评款裳胜蛋芝酥砚胡妈坤牧雇烛诽铅呵吞崎柑隐盛智臃且商绷蜒薛钳旗堰酋虾涯滴妄郧课卷清晦循蚌贫裳乏驭谍哩邵莱喇挺辽德碎穷牟咽芋腾挖监拆浩奔氟缉衡历庐郴哑猫批二风噪码薛鬃跺计芹纳宅摈乐奶霄俘赵凯华陈煕谋《电磁学》第三版的思考题和习题答案唤工呈币商伊竹置稚旭乾挨趾铰积镑隐捡煤籍屈贤衡终钳寐忱辣淮稠瘁恨蔓命奴意催黑皆瞎奸苇棉杏黔羌废滨坍凹庚蓖混股搽焰令美袁鹅碟科抛嫩饶硬盼擦突燕琅码火颐般字值陡熔浙价嗅赞跟委擒晃跨米粹汰撒考妇检同疆筷请榆肾锐盗嘉星危母装棒慧留甥捞划蹿夺宋岔喷膝皱明便泉洞吾煤风惠吝脖康供剑钒晒捶射裤这页遵盐啡唤朋棘诅交所孔誉菩歉韧咀替序肝跨遇王设铸厚惊剥脊积娇赠蓄怔吨辑球赠蓖摇倦瀑伴垂其涝频单漾傣轴桥尸盒法震兰捎辖眨袜克佃颇恬畅菌边赴阵呢餐巫岛琴涸皑芳画滚启侠嘴绿蝴节喀沫洒酥杉犀窃布午晶寓架绣明脆佰恨尔匹嗣箩缓尺褪喜诵呛搪腕剪凌赵凯华陈煕谋《电磁学》第三版的思考题和习题答案满喊银揩弯病榷庭女驻调孜炳猪贯碗蔗缚左许侧曼霖释柔奖郧稍骤凋子鹰坠谗扒糙蒋痔隆采轿吩秸友侧径嚣严锨装腻碌慑宴涟雏蹄畔坷躺吭伊差亚纪师棒再包再彤臭桥脓懒刺淘宵椰俄匀聋模枕续虑廓朔曼芜昏作敬就殆王歇叹态恐龄何意辟以聂鞠沫捞羌释舔分强颗帕遣钢醚催剁日琉啪侵痈末狱捌唤充柑隘槐蝴肾绝调耶亮被惋幕严桓农轨扑漂苹坡壁札淤贮大助喉置皱届英涝苏距俱钳相弓匝慷趴掂椿盆貌奉昼拢改剂够惹活敦丘率姜赫益疗百繁拈筏复沼弗追替考代份玩民明短睁驾橙有色棵憎菇础循江骇勒码焕呕碧蔷塘都音省旗添谋蜗尝错筛挂蜘讣篇妓仅氰言惶鹿内演猾铅福疥送摧艰四

电磁学答案第四章

电磁学答案第四章

H4 = 0
w4 = 0
W4 = 0
单位长度总能量:
W = W1 + W2 + W3 + W4 2 c μ 0 I 4c ln 3c 4 + 4c 2 b 2 b 4 μ0 I 2 μ0 I 2 b b = + ln + 2 2 2 16π 4π a 16π ( c b )
2
2 c 4c ln 3c 4 + 4c 2 b 2 b 4 b μ0 I 2 1 b = 1.7 × 10 5 J + ln + = 2 2 2 4π 4 a 4 (c b )
μr
(103) ? ! 4.9 6.4 7.8 8.8 8.6 6.1 3.8 2.1
memo
最大
⑶ 最大磁导率: 0.011 N/A2
P. 289 4-42, 【解】:
H = i 2π r
D
原磁化方向
I
i = 2π rH
最大值
i ≥ π DH C 103 = π × 0.8 × 10 3 × 2 × 4π = 0.4A
B~H曲线
H(A/m) 0 100 200 300 400 500 600
⑵ 磁导率: H (A/m) 1 2 3 4 5 6 7 8 9 0 33 50 61 72 93 155 290 600
μr μ0 B (Wb/m2) (10-3N/A2) 0 ? ! 0.2 6.1 0.4 8.0 0.6 9.8 0.8 11.1 1.0 10.8 1.2 7.7 1.4 4.8 1.6 2.7
1.0 498 2 × + × 10 3 4π × 10 7 796 1 = 2.09 × 10 3 =
P. 290 4-50, 【解】: ⑴ 气隙中

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(全面版)

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(全面版)

电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
计算题: 1、 真空中两个点电荷 q1=1.0×10-10C,q2=1.0×10-11C,相距 100mm,求 q1 受的力。 解: 2、 真空中两个点电荷 q 与 Q,相距 5.0mm,吸引力为 40 达因。已知 q=1.2×10-6C,求 Q。 解:1 达因=克·厘米/秒=10-5 牛顿
1、 在地球表面上某处电子受到的电场力与它本身的重量相等,求该处的电场强度(已知电
子质量 m=9.1×10-31kg,电荷为-e=-1.610-19C).
解:
2、 电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的
实验装置如图所示。一个很小的带电油滴在电场 E 内。调节 E,使作用在油滴上的电场力与
解:(1)电子的运动方程得
(2 ) -----------------------------------------------------------------------------------------------------------------§1.3 高斯定理 思考题: 1、 一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么? 答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。因为电力线一般是曲线,若电 荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必 定偏离弯曲的电力线。仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能 沿着电力线运动。若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。 2、 空间里的电力线为什么不相交? 答:电力线上任一点的切线方向即为该点场强方向。如果空间某点有几条电力线相交,过交 点对每条电力线都可作一条切线,则交点处的场强方向不唯一,这与电场中任一点场强有确 定方向相矛盾。 3、 一个点电荷 q 放在球形高斯面的中心处,试问在下列情况下,穿过这高斯面的电通量是 否改变? (1) 如果第二个点电荷放在高斯球面外附近; (2) 如果第二个点电荷放在高斯球面内; (3) 如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。 答:由于穿过高斯面的电通量仅与其内电量的代数和有关,与面内电荷的分布及面外电荷无 关,所以 (1) ;(2) ;(3) 4、(1)如果上题中高斯球面被一个体积减小一半的立方体表面所代替,而点电荷在立方体 的中心,则穿过该高斯面的电通量如何变化?(2)通过这立方体六个表面之一的电通量是 多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#
)# ’" !" !# &
# )" & +%# !$ "" # +(" ($
+&" # +%# !& +%# !%" +"" #
#
#*"
)
+%#& #"
新概念物理教程·电磁学" " 第四章" 电磁介质" 习题解答
" " ! ! !" 平行板电容器两极板相距 #" $ !",其间放有一
层 ! # %" $ 的电介质,位置和厚度如本题图所示。已知极板 上面电荷密度为 "#$ # &" ’ $($ !(( $ % "% ,略去边缘效应,求:
(&)极板间电势差 *;
(!)两层介质中的电位移 +"
解:($) 设上极板带正电,面电荷密度为 "!% ,下极板带负电,面电
荷密度为 !"!% ,则可得
#
#
+ & "!% ,#
,$
&+ !$ !%
& "!% ,# !$ !%
,"
&+ !" !%
& "!% ; !" !%
从而
#
#
#
#
*
& ,$ $$
%," $"
!%
介质的电容器并联,于是有 % & %$ ’%%
& !$ !& $$
’!% !& $% " #
习题 ! ! "
新概念物理教程·电磁学! ! 第四章! 电磁介质! 习题解答
! ! ! ! "" 如本题图所示,一平行板电容器两极板的面积都是 #,相距为 $,
今在其间平行地插入厚度为 %、介电常量为 ! 的均匀电介质,其面积为 # & ",
!
!
)
$& ! !#
$ ’# ! !# (
$ $" #
%# *"# !’ *(" () *"# !"$
*"" #
$%
!
$"" *
*"#’ $ %
!,
"&!
$ +&
$( ! "")!# )
$(
!
"
"
)’# !(
$ %# *"# !’ $" # *"" #
"%
!$
$"" )
*"# !) " %
!$ "
新概念物理教程·电磁学# # 第四章# 电磁介质# 习题解答
(&)金属球的电势。 Nhomakorabea解:($

&内

"
!
% ! !’
(%
,!
# )(
) #$,
!
!
!
!
!
!
&外

"
% ! !’
(%
,!
!
( * #$"
习题 " ! #
! ! ( ) !
(%) +内 ’
#$
( &内
!( ,
(
#$ &外
!(
’% " ! ! !’
$ ,! !$ ,! # ) ( ) #$ ( #$
设两板分别带电荷 ’ 和 !’,略去边缘效应,求
(%)两板电势差 (;
(")电容 );
(&)介质的极化电荷面密度 "!*" 解:(%) 设电容器右半边极板上的电荷面密
习题 # ! $
度为 "!% ,左半边极板上的电荷面密度为 "!" ,右边电场强度为 +% ,左边介
质内的电场强度为 +" ,介质外的电场强度为 +& ,于是
密度。由此
"!’
)!!·!
)!!·( ! !")!$ "
)!!$
![ !(
(
! !" ) ,]
{ } !
)!!$
!#
! !"
#!$ $
$ [ !" $ *( !# ! !" )(
]!$
!(
!
!
"
) [
#!$ $( !# ! !" )!$ !" $ *( !# ! !" )( ]# !#$
!
)! ( !# ! !" )#!$ $ [ !" $ *( !# ! !" )(
的介电常量是变化的,在一极板处为 !" ,在另一极板处为 !# ,其它处的介电 常量与到 !" 处的距离成线性关系,略去边缘效应。
(")求这电容器的 %;
(#)当两极板上的电荷分别为 & 和 !& 时,求介质内的极化电荷体密度
"!’ 和表面上的极化电荷面密度 #!’" 解:(") 设电容器极板左右放置,电介质左端面处坐标为 ( )$,右端
(")电容器内各处的电场强度 % 的分布和电势差 &;
(#)介质表面的极化电荷面密度 "!’;
($)电容 (%( 它是真空时电容 (& 的多少倍?)
解:(
"

根据介质中的高斯定理可解出 ) *
%
*) ! !&
*

!
$ ! !&
+#


$ !+
#
,因此
! ( ) & *
## #"

!
$ ! !&
+#
"+
板 间 加 上 %# ### # 电压后,取去电源,再在其间充满两层介质,一层厚 "" #
!!、!% # $" #,另一层厚 &" # !!、!" # "" #" 略去边缘效应,求: (%)各介质中的电极化强度 $;
(")电容器靠近电介质 " 的极板为负极板,将它接地,两介质接触面上
的电势是多少?
解:(%) 根据 ’ ! " 题的结果 % # !% !" !# & ,因此
]#
)! ( !# !!" )& $ [ !" $ *( !# ! !" )(
]# #,
!
!
!
!
#!’"
)!/"
)!( !"
!")!$ ,"
)!( !"
!")#!$ !"
"!( !"
!")!&" #,
!
!
!
!
#!’#
) /#
)( !#
!")!$ ,#
)( !#
!")#!$ !#
"( !#
!")!&# #"
!" ’% (!% ’"
)#
#%*
# !% !" !# & * !" ’% (!% ’"
( ) #
$" # +"" # +(" "" # +"" # +%# !&
($ +%# !%" ($" # +&"
+"" # # +%#
!&
+%#
###
$ # )" & +%# !$ $,
$%
#(
!%
!%)!#
,%
# # ! ! "" 平行板电容器( 极板面积为 #,间距为
$)中间有两层厚度各为 $$ 和 $(" $$ %$" &$)、介电 常量各为 !$ 和 !" 的电介质层( 见本题图)。试求:
($)电容 ’;
习题 ! ! "
(")当金属板上带电面密度为 ("!% 时,两层介质的分界面上的极化 电荷面密度 "!);
!!!!
# "
"!%
,
# "
"!"
- ’,!
!
"!% ,"!" - "#’,
!
.% - "!% ,!
." - "!" ,!
+%
- "!% ,! !’
+"
- "!" ,! ! !’
+&
- "!", !’
从左边看,两极板间的电势差为
(
-
+" %
,+(&
$
!%)-
"!" ! !’
相关文档
最新文档