实变函数与泛函分析基础(第三版)-----第三章_复习指导
实变函数与泛函分析概要第1~3章复习
![实变函数与泛函分析概要第1~3章复习](https://img.taocdn.com/s3/m/b495bfc8be1e650e53ea9925.png)
2020/4/20
40
第五节 集的势·序集
2020/4/20
41
5. 连续势集的定义
定义:与[0,1]区间对等的集合称为连续势集,
其势记为 , 显然:n 0
例:1)R~ (0,1) ~ [0,1] ~ [0,1) ~ R+~ (a,b)
存在大量既不开又不闭的集合,如: E=[0,1)
2020/4/20
25
定理3.3 任何集E的导集 E`为闭集
2020/4/20
26
闭集性质:
任意一簇闭集之交为闭集; 任意有限个闭集之并仍为闭集。
2020/4/20
27
例8 f(x)是直线上的连续函数当且仅当 对任意实数a,E={x|f(x)≤a}和 E1={x|f(x)≥a}都是闭集
2020/4/20
48
2 连续势集的性质(卡氏积)
有限个、可数个连续势的卡氏积仍为连续势集
定理:设A {(x1, x2, , xn, ) : xi (0,1)},则A
2020/4/20
49
推论 n维Euclid空间Rn的势为
平面与直线有“相同多”的点
2020/4/20
50
推论
例1 闭区间[0,1]与闭正方形[0,1;0,1]
(即可数集 是无限集中具有最小势的集合)
2020/4/20
15
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2020/4/20
16
例:有限个可数集的卡氏积是可数集
设A,B是可数集,则A×B也是可数集
《实变函数与泛函分析》教学大纲
![《实变函数与泛函分析》教学大纲](https://img.taocdn.com/s3/m/fd6cbe3b4a35eefdc8d376eeaeaad1f34693118a.png)
《实变函数与泛函分析》教学大纲《实变函数与泛函分析》教学大纲课程编码:110840课程名称:实变函数与泛函分析学时/学分:72/4先修课程:《数学分析》、《复变函数》适用专业:信息与计算科学开课教研室:分析与程教研室一、课程性质与任务1.课程性质:《实变函数与泛函分析》是大学数学系的重要专业方向课之一,它是数学分析的延续和发展。
2.课程任务:通过这门课程的教学应使学生掌握近代抽象分析的基本思想,培养学生综合运用分析数学的几何观点和方法,理解和研究分析数学中的许多问题,为进一步学习现代数学理论和理解现代科学技术提供必要的基础。
二、课程教学基本要求实变函数与泛函分析包括两部分内容:“实变函数”与“泛函分析”。
“实变函数”主要学习测度论、可测函数论、积分论、微分与不定积分;“泛函分析”是通过在集合中引入各种结构,包括代数结构,拓扑结构、测度结构、序结构以及这些基本结构的各种复合,形成了各种各样的抽象空间,本课程主要研究这些抽象空间中的距离空间,赋范线性空间,内积空间的性质及其映射(线性算子和线性泛函)性质。
三、课程教学内容第一章集合1.教学基本要求通过本章的系统学习,使学生熟悉集合列的上极限集、下极限集、极限集的定义与交、并运算表示,集合的对等、基数概念;掌握有限集、可数集、不可数集的概念,可数集是最小的无限集的结论以及可数集的基本运算性质,自然数集、整数集、有理数集等的可数性,有理数集在实数轴上的稠密性。
2.要求学生掌握的基本概念、理论通过本章教学使学生熟悉集合列的上、下极限集、极限集的定义与交、并运算表示;掌握单调集合列{Ak}的概念及其极限集的求法。
熟悉集合的对等概念,熟悉对等是一个等价关系;熟悉集合对等的Cantor-Bernstein定理; 掌握集合对等的夹挤定理。
熟悉集合的基数概念;掌握有限集、可数集、不可数集的概念;掌握可数集是最小的无限集的结论以及可数集的基本运算性质; 掌握自然数集、整数集、有理数集等的可数性;掌握有理数集在实数轴上的稠密性;熟悉无理数集、实数集、区间点集等的不可数性。
实变函数及泛函分析概要第1~3章复习
![实变函数及泛函分析概要第1~3章复习](https://img.taocdn.com/s3/m/f63632e089eb172ded63b741.png)
定义
称集合:E {E的孤立点全体} E E
' '
为E的闭包, 记为E.
E' E
若 E E ,则称 E为完全集.
'
2019/1/25 福州大学数学与计算机学院聂建英
定义3.3
闭集的(等价)定义 若EE ,则E为闭集.
R中只有空集和R既开又闭, 存在大量既不开又不闭的集合,如: E=[0,1)
福州大学数学与计算机学院聂建英
第三节一维开 集· 闭集 及其性质
2019/1/25 福州大学数学与计算机学院聂建英
定义3.1 若集合 E 的每一个点都 E 的内点, 则称E为开集。
2019/1/25
福州大学数学与计算机学院聂建英
4.开集的性质
A
B
定理3.1 a. 空集,R为开集; b. 任意多个开集之并仍为开集; c. 有限个开集之交仍为开集。
2019/1/25 福州大学数学与计算机学院聂建英
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2019/1/25
福州大学数学与计算机学院聂建英
例:有限个可数集的卡氏积是可数集 设A,B是可数集,则A×B也是可数集
A B {( x, y) | x A, y B}
E ( A ) ( E A )
2019/1/25
福州大学数学与计算机学院聂建英
定理1.2 (De Morgan公式)
( A )
c
A
c
( A )
c
A
c
019/1/25 福州大学数学与计算机学院聂建英
实变函数论与泛函分析课后答案
![实变函数论与泛函分析课后答案](https://img.taocdn.com/s3/m/dca45c5ae87101f69f31953a.png)
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数与泛函分析
![实变函数与泛函分析](https://img.taocdn.com/s3/m/caf0fdc1b9d528ea80c77905.png)
开 G n , 集 E 使 G n 且 m ( G 得 n E ) 1 n
令O
n 1
Gn
,则 O为 G型集, EO 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 , L
故m(OE)0
例: 设E为[0,1]中的有理数全体, 试各写出一个与E只相差一 零测度集的G 型集或 F 型集。
可测集可由 G 型集去掉一零集, 或 F 型集添上一零集得到。
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
(1).若E可测,则存在G 型集 O, 使 E O 且 m (O E )0
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
证明:若(1)已证明,由Ec可测可知
(2)若 E可测 , 0 则 ,闭F 集 , 使F 得 E且 m(EF)
(1)若 E可测 , 则 0,开G 集 , (2)若 E可测 , 0 则 ,闭F 集 , 使E 得 G且 m(GE) 使F 得 E且 m(EF)
证明:若(1)已证明,由Ec可测可知
0 , 开 G , 集 E c 使 G 且 m ( G 得 E c )
令 O n 1 G n , 则 O 为 G 型 集 , E O 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 ,
故m(OE)0 从 而 E O (O E ) 为 可 测 集
例:设E为[0,1]中的有理数全体, 试各写出一个与E只相差一小
测度集的开集和闭集。E{r1,r2,r3,}
取F=G c,则F为闭集 FE
且 m (EF )m (E F c)
m (E (c)c F c)m (F cE c)m (G E c)
《实变函数与泛函分析基础》目录简介
![《实变函数与泛函分析基础》目录简介](https://img.taocdn.com/s3/m/50e82eb3eff9aef8951e0691.png)
《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。
实变函数与泛函分析要点说明
![实变函数与泛函分析要点说明](https://img.taocdn.com/s3/m/8a6c6aebaff8941ea76e58fafab069dc5022472d.png)
实变函数与泛函分析要点说明实变函数与泛函分析概要第⼀章集合基本要求:1、理解集合的包含、⼦集、相等的概念和包含的性质。
2、掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、会求已知集合的并、交、差、余集。
4、了解对等的概念及性质。
5、掌握可数集合的概念和性质。
6、会判断⼰知集合是否是可数集。
7、理解基数、不可数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第⼆章点集基本要求:1、理解n维欧⽒空间中的邻域、区间、开区间、闭区间、体积的概念。
2、掌握点、聚点的概念、理解外点、界点、孤⽴点的概念。
掌握聚点的性质。
3、掌握开核、导集、闭区间的概念及其性质。
4、会求⼰知集合的开集和导集。
5、掌握开核、闭集、完备集的概念及其性质,掌握⼀批例⼦。
6、会判断⼀个集合是⾮是开(闭)集,完备集。
7、了解Peano曲线概念。
主要知识点:⼀、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点? P0的任⼀邻域,⾄少含有⼀个属于E⽽异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A?B,则A?B,·A?·B,-A?-B。
T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E?R?,?是开集,E′和―E都是闭集。
(?称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel有限覆盖定理)设F是⼀个有界闭集,?是⼀开集族{Ui}i?I它覆盖了F(即Fс∪i?IUi),则?中⼀定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F?m∪ Ui)(i?I)4、开(闭)集类、完备集类。
实变函数论与泛函分析(曹广福)1到5章课后答案
![实变函数论与泛函分析(曹广福)1到5章课后答案](https://img.taocdn.com/s3/m/ade29c61b9d528ea80c7798b.png)
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ =}1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈=}1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数与泛函分析课程教学大纲汇总
![实变函数与泛函分析课程教学大纲汇总](https://img.taocdn.com/s3/m/d69309ca81c758f5f61f6763.png)
《实变函数与泛函分析》课程教学大纲一、课程基本信息课程代码:110047课程名称:实变函数与泛函分析英文名称:Real variable analysis And Functional analysis课程类别:专业基础课学时:50学分:3适用对象:信息与计算科学专业本科考核方式:考试,平时成绩30%,期末成绩70%先修课程:数学分析和高等代数二、课程简介中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。
它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。
泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。
英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning.三、课程性质与教学目的本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。
实变函数与泛函分析基础(第三版)----第五章_复习指导
![实变函数与泛函分析基础(第三版)----第五章_复习指导](https://img.taocdn.com/s3/m/dcc0c2a7aeaad1f346933f59.png)
主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有(3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理,勒贝格控制收敛定理(定理,和法都定理(定理同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。
实变函数与泛函分析基础完整版
![实变函数与泛函分析基础完整版](https://img.taocdn.com/s3/m/ba91baab998fcc22bcd10df1.png)
bi
ai
bi ai
f(x), 当xF,
g(x)f(ai)
f(bbi)i afi(ai( ) xai),当x(ai,bi),ai,bi有限 ,,
f(ai), 当x(ai,bi),bi , f(bi), 当x(ai,bi),ai .
则g(x)满足要求,且在R上连续.(参见课本p91)
0 ,及 E i , 每 E i中 作 个 的 F i , m ( 闭 E i 使 F i) n 子 ( i 1 ,2 , 集 ,n
当x∈Ei时,f(x)=ci,所以f(x)在Fi上连续,而Fi为两
两不交闭集,故f(x)在 n 上连续,显然F为闭集,
且有
F
i 1
Fi
m ( i n 1 E i i n 1 F i) m ( i n 1 ( E i F i) )i n 1 m ( E i F i) i n 1 n
kj
若 fk:Ek R为连续f函 (x)数 fk(x), :xE 令 k,f则 (x): k 1Ek R上的连
事实上x0, k 1, 由 Ek, 于 x0为开 (k 1, 集 Ek)c的内点,
kk0
kk0
20,使U 得 (x0,: 2) (k 1, Ek)c,即 U(x: 0,2) k 1, Ek。
注2:鲁津定理的逆定理成立。
设f(x)为E上几乎处处有限的实函数,若 0,闭F 集 E,
使得 m(E-F)<ε且f(x)在F上连续,则f(x)在E上为可 测函数。
证明: 1n,则闭集 Fn F,使得m: (EFn)1n, f(x)在Fn上连续(可测函数
k
,必有
33实变函数与泛函分析第三章 测度论
![33实变函数与泛函分析第三章 测度论](https://img.taocdn.com/s3/m/a67dfac133687e21af45a9bd.png)
Ei )
2i
令G
i1
Gi
,ห้องสมุดไป่ตู้
则G为开集,E
G,且
m(G
E)
m( i 1
Gi
i 1
Ei
)
m(i1(Gi
Ei ))
i 1
m((Gi
Ei )
i 1
2i
例1.设E Rn,若 0, 开集G,使得E G 且m(G E) ,则E是可测集。
证明:对任意的1/n,
开集 Gn,使得 E
Gn且m (Gn
证明:若(1)已证明,由Ec可测可知
G型O,使得E c O且m(O E c ) 0
取H=O c,则H为 F 型集 ,H E 且
m(E H ) m(E H c ) m((Ec )c H c ) m(H c Ec ) m(O Ec ) 0
下证(1):
(1).若E可测,则存在G 型集 O, 使 E O且m(O E) 0
n
2i1
, ri
)) n
2i1
F 型集:空集
注:上面的交与并不可交换次序
例5:设E*为[0,1]中的无理数全体,试各写出一个与E*只相差一 零测度集的G 型集或F 型集。
G型集: (0,1)
F 型集:H
[0,1] n1(i1(ri
1 n
2i1
, ri
1
)) n
2i1
定理7:若E可测,则
(1) mE inf{mG : G是开集,E G} (2) mE sup{mK : G是开集,K E} 外、内正规性
有理数集可看成可数个单点集的并,而单点集是闭集;
通过取余G 型集与 F 型集相互转化(并与交,开集与闭集互换)
实变函数论与泛函分析曹广福1到5章课后答案
![实变函数论与泛函分析曹广福1到5章课后答案](https://img.taocdn.com/s3/m/ffb0351f195f312b3069a573.png)
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有)(inf 0=⇒=⇒∉≥x A x m n k m A nm A k χχ,故)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =; 当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
![《实变函数论与泛函分析(曹广福)》1到5章课后习题答案](https://img.taocdn.com/s3/m/3624739269dc5022abea0005.png)
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数和泛函分析基础第三版答案
![实变函数和泛函分析基础第三版答案](https://img.taocdn.com/s3/m/6561734e3a3567ec102de2bd960590c69ec3d86f.png)
实变函数和泛函分析基础第三版答案泛函分析习题解答1、设(,)X d 为⼀度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在⼀般度量空间中不成⽴00(,)(,)U x S x εε=,例如:取1R 的度量⼦空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],⽽(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C ab ∞是区间[,]a b 上⽆限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =?()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-?=+-?,[,]r t a b ??∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =?∈时有|()()|0f t g t -=?[,]t a b ?∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从⽽对,,[,]f g h C a b ∞∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三⾓不等式成⽴(,)(,)(,)d f g d f h d h g ≤+。
实变函数与泛函分析基础(第三版)-----第三章_复习指导
![实变函数与泛函分析基础(第三版)-----第三章_复习指导](https://img.taocdn.com/s3/m/ca487cffaf1ffc4fff47ac01.png)
主要内容本章介绍了勒贝格可测集和勒贝格测度的性质. 外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义3.2.3),为此,首先讨论了外测度的性质(定理3.1.1). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用. 本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ⊆,*m E 都存在。
(√ )2、对任意n E R ⊆,mE 都存在。
(× )3、设nE R ⊆,则*m E 可能小于零。
(× )4、设A B ⊆,则**m A m B ≤。
(√ ) 5、设A B ⊆,则**m A m B <。
(× ) 6、**11()n nn n m S m S∞∞===∑U 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0 可编辑可修改主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ⊆,*m E 都存在。
(√ )2、对任意nE R ⊆,mE 都存在。
(× )3、设nE R ⊆,则*m E 可能小于零。
(× )4、设A B ⊆,则**m A m B ≤。
(√ ) 5、设A B ⊆,则**m A m B <。
(× ) 6、**11()n n n n m S m S ∞∞===∑。
(× )7、**11()n n n n m S m S ∞∞==≤∑。
(√ )8、设E 为n R 中的可数集,则*0m E =。
(√ ) 9、设Q 为有理数集,则*0m Q =。
(√ )10、设I 为n R 中的区间,则*m I mI I ==。
(√ ) 11、设I 为n R 中的无穷区间,则*m I =+∞。
(√ )12、设E 为nR 中的有界集,则*m E <+∞。
(√ ) 13、设E 为nR 中的无界集,则*m E =+∞。
(× )14、E 是可测集⇔cE 是可测集。
(√ ) 15、设{n S }是可测集列,则1n n S ∞=,1n n S ∞=都是可测集。
(√ ) 16、零测集、区间、开集、闭集和Borel 集都是可测集。
(√ ) 17、任何可测集总可表示成某个Borel 集与零测集的差集。
(√ ) 18、任何可测集总可表示成某个Borel 集与零测集的并集。
(√ ) 19、若E =∅,则*0m E >。
(× )20、若E 是无限集,且*0m E =,则E 是可数集。
(× ) 21、若mE =+∞,则E 必为无界集。
(√ ) 22、在nR 中必存在测度为零的无界集。
(√ )23、若A ,B 都是可测集,A B ⊆且mA mB =,则()0m B A -=。
(× ) 24、∅和n R 都是可测集,且0m ∅=,nmR =+∞。
(√ ) 25、设12,E E 为可测集,则12()m E E -≥12mE mE -。
(× )26、设12,E E 为可测集,且12E E ⊇,则12()m E E -=12mE mE -。
(× )二、填空题1、若E 是可数集,则*m E = 0 ;E 为 可测 集;mE = 0 。
2、若12,,,n S S S 为可测集,则1n i i mS = 小于或等于 1ni i mS =∑;若12,,,n S S S 为两两不相交的可测集,则1n i i mS = 等于 1ni i mS =∑。
3、设12,E E 为可测集,则122()m E E mE -+ 大于或等于 1mE ;若还有2mE <+∞,则12()m E E - 大于或等于 12mE mE -。
4、设12,E E 为可测集,且12E E ⊇,2mE <+∞,则12()m E E - 等于 12mE mE -。
5、设0x 为E 的内点,则*m E 大于 0。
6、设P 为康托三分集,则P 为 可测 集,且mP = 0 。
7、m ∅= 0 ,nmR = +∞ 。
8、叙述可测集与G δ型集的关系 可测集必可表示成一个G δ型集与零测集的差集 。
9、叙述可测集与F σ型集的关系 可测集必可表示成一个F σ型集与零测集的并集 。
三、证明题1、证明:若E 有界,则*m E <+∞。
证明:因为E 有界,所以,存在一个有限区间I ,使得E I ⊂,从而m E m I I **≤=<+∞。
2、证明:若*0m E =,则E 为可测集。
证明:对任意A E ⊂,cB E ⊂,因为*0m E =,可得*0m A =,所以,*****()m B m A B m A m B m B ≤⋃≤+=,从而***()m A B m A m B ⋃=+,所以,E 为可测集。
3.设E 为[0,1]中的全体有理数,则0*=E m .(10分) 证明 因为E 为可数集, 记为 ,...},...,,{21n r r r E =, 对任意0ε,取 ,2,1,2,211=⎪⎭⎫ ⎝⎛+-=++n r r I n n n n n εε,显然, ∑∑∞=∞=∞===≤≤⊂1112*0,n n nn n n I E m I E εε所以 ,让ε→0得 0*=E m ,从而E 是可测集且0mE =.证毕.4、证明:有理数集Q 为可测集,且0mQ =。
证明:因为有理数集Q 可数集,从而0m Q *=,所以,Q 为可测集,且0mQ m Q *==。
5、证明:若E ,F 都是可测集,且mE <+∞,E F ⊆,则()m F E mF mE -=-;若mE =+∞,则上面的结论还是否成立。
证明:因为()F F E E =-⋃,且()F E E -⋂=∅,所以,()mF m F E mE =-+。
又mE <+∞,所以,()m F E mF mE -=-。
若mE =+∞,则上面的结论不一定成立。
6、若1R 中的区间为可测集,则1R 中的开集为可测集。
证明:由1R 中开集的结构得,1R 中的开集或为空集,显然是可测集;或为至多可数个互不相交的开区间的并集,而区间是可测集,至多可数个可测集的并集还是可测集,所以,它还是可测集。
综上所述,结论成立。
7.证明对任意可测集合A 和B 都有 ()().m A B m A B mA mB +=+证:因)(B A B A B A -=,又φ=-)(B A B A ,所以))(()(B A B A m B A m -=又B B A ⊂ ,故 )()(B A m mB B A B m -=-于是得)()(B A m mB mA B A m -+=.移项即证毕.8.证明Cantor 集合的测度为零.证:设cantor 集合C ,并设A 是[0,1]中被挖去的点的集合. A=2222121278(,)(,)(,)333333⎧⎫⎧⎫⎨⎬⎨⎬⎩⎭⎩⎭则A C-=]1,0[,由于A 为互不相交的开区间的并,故为可测集,于是C 亦为可测集.∵ ++==])32,31([])32,31([,1]1,0[22mA m 2223122122[1()]1333333=+++=+++=∴011]1,0[=---=mA m mC . 证毕9.设nR E ⊂,E A k ⊂且k A 是可测集, ,2,1=k .若)(0)\(∞→→*k A E m k ,证明E 是可测集. 证:令 ∞==1k kAA ,则E A ⊂.因为),2,1( =k A k 是可测集,所以A 是可测集,又由)(0)\()\(0∞→→≤≤**k A E m A E m k可知0)\(=*A E m .因此,A E \是可测集.而A A E E )\(=,故E 是可测集. 10.设{}n E 是[0,1]中的可测集列,若1n mE =,1,2,n =,证明:1()1n n m E ∞==.证明 令[0,1]E =,则0(m E ≤-1)(n n E m E ∞==1())Cn n E ∞=1(())n n m E E ∞==-1()n n m E E ∞=≤-=∑1()0n n mE mE ∞=-=∑.其中1mE =, 1n mE =,∴1()0n n m E E ∞=-=,∴11()(())n n n n m E m E E E ∞∞===--1()1n n mE m E E ∞==--=.。