统计学之概率分布与抽样分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.
第5、6、7章
概率分布、抽样分布及参数估计
Probability Distributions & Sampling Distributions
& Parameter Estimation
Wednesday, January 16, 2019
Statistical Research Office
1
本部分主要研究的问题有:
● 遵循随机性原则 --- 体现在在每一层抽选中;
● 每一层内应包含足够多的个体;
● 在同等条件下,抽样误差要小于简单随机抽 样和系统抽样的抽样误差。
Wednesday, January 16, 2019 Statistical Research Office 12
Wednesday, January 16, 2019
Statistical Research Office
7

常用的随机抽样组织方式
► 简单随机抽样(Simple random sampling)
►分层随机抽样(Stratified sampling)
►系统随机抽样(Systematic sampling)
►整群随机抽样 (Cluster sampling) 常用的随机抽样方法: ►重复抽样 (Sampling with replacement) ►不重复抽样(Sampling without replacement)
8
Wednesday, January 16, 2019
Statistical Research Office
★ 简单随机抽样 -定义:从总体中,按照随机的原则,使得总体 中每个个体都有同等被选中的机会,而先后抽 出的n个个体作为一个容量为n的样本。

统计学第3章-概率、概率分布与抽样分布

统计学第3章-概率、概率分布与抽样分布
3-15
互斥事件及其概率
(例题分析)

解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6


合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学抽样与抽样分布

统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。

概率与统计中的抽样分布与假设检验

概率与统计中的抽样分布与假设检验

概率与统计中的抽样分布与假设检验概率与统计是一门研究随机事件及其规律的学科,其中抽样分布与假设检验是概率与统计学中至关重要的概念。

本文将介绍抽样分布的概念及其重要性,并探讨假设检验的原理和应用。

一、抽样分布在统计学中,抽样是指从总体中选取一部分样本进行观察和测量,通过对样本的分析和推断,得出对总体特征的结论。

而抽样分布则是在多次抽取样本的基础上得到的一组统计量的概率分布。

抽样分布的重要性在于它为统计推断提供了理论基础。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

这意味着通过对样本数据的分析,我们可以对总体特征进行合理的推断和估计。

二、假设检验假设检验是概率与统计学中常用的分析方法,用于检验关于总体参数的某种假设。

它基于样本数据,通过比较样本统计量与假设值之间的差异,来判断是否拒绝或接受某个假设。

假设检验的基本步骤包括:1. 建立原假设(H0)和备择假设(H1):原假设通常是关于总体特征的某种陈述,而备择假设则是与原假设相对立的假设。

2. 选择适当的检验统计量:根据具体问题选择合适的统计量进行计算和分析。

3. 确定显著性水平(α):显著性水平是进行假设检验时预先设定的一个界限,用来判断是否拒绝原假设。

通常将显著性水平设定为0.05或0.01。

4. 计算检验统计量的观察值:通过对样本数据进行计算,得到实际的检验统计量的值。

5. 判断检验统计量的观察值是否落在拒绝域内:拒绝域是指在显著性水平下,根据分布函数得到的一组临界值。

如果观察值落在拒绝域内,则拒绝原假设;否则,接受原假设。

6. 得出结论:根据判断结果,对于原假设的合理性进行结论。

假设检验在实际问题中有着广泛的应用。

例如,在医学研究中,可以使用假设检验来判断新药物是否对疾病有显著疗效;在工商管理中,可以使用假设检验来判断某种市场策略是否能够提高销售业绩。

总结:概率与统计中的抽样分布与假设检验是概率与统计学的重要概念。

袁卫《统计学》(第3版)课后习题-概率、概率分布与抽样分布(圣才出品)

袁卫《统计学》(第3版)课后习题-概率、概率分布与抽样分布(圣才出品)

5.离散型随机变量和连续型随机变量的概率分布的描述有哪些不同?连续型随机变量
的概率密度与分布函数之间是什么关系?
答:(1)离散型随机变量 X 只取有限个可能的值 x1,x2,…, xn ,而且是以确定的概
率取这些值,即
P(X=xi)=pi( i =1,2,…,n)。因此,可以列出 X 的所有可能取值 x1,x2,…, xn ,以 及取每个值的概率 p1,p2,…, pn ,将它们用表格的形式表现出来,就是离散型随机变量
1 / 26
圣电子书

(3)主观概率
十万种考研考证电子书、题库视频学习平台
古典概率和统计概率都属于客观概率,它们的确定完全取决于对客观条件的理论分析或
是大量重复试验的事实,不以个人的意志为转移。而有些事件,特别是未来的某一事件,既
不能通过等可能事件个数来计算,也不能根据大量重复试验的频率来估计,但决策者又必须

对于连续型随机变量,其均值和方差分别为:
= E(X ) = xf (x)dx, 2 = E(X 2) − E2(X ) = − x2 f (x)dx


7.二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
答:(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后
对其进行估计从而作出相应的决策,那就需要应用主观概率。
主观概率需要人们根据经验、专业知识、对事件发生的众多条件或影响因素进行分析,
以此确定主观概率。
3.概率密度函数和分布函数的联系与区别表现在哪些方面? 答:(1)区别 概率密度函数只是给出了连续型随机变量某一特定值的函数值,这一函数值不是真正意 义上的取值概率,连续型随机变量在给定区间内取值的概率对应的是概率密度函数 f(x)曲 线(或直线)在该区间上围成的面积,这一特征恰恰意味着连续型随机变量在某一点的概率 值为 0,因为它对应的面积为 0。而分布函数 F 在 x 处的取值,就是随机变量 X 的取值落在 区间(-∞,x)的概率。 (2)联系

3-理论分布与抽样分布

3-理论分布与抽样分布

68-95-99.7规则
➢ 正态分布有其特定的数据分布规则: ▪ 平均值为, 标准差为σ的正态分布 ▪ 68%的观察资料落在的1σ之内 ▪ 95%的观察资料落在的2σ之内 ▪ 99.7%的观察资料落在的3σ之内
19
20
三、68-95-99.7规则
68.26% 的资料 95.45% 的资料 99.73% 的资料 -3 -2 -1 0 1 2 3 -3s -2s -s +s +2s +3s
体称为样本平均数的抽样总体。其平均数和标准差分
别记为 和 。x
s x
是样s x本平均数抽样总体的标准差,简称标准误 (standard error),它表示平均数抽样误差的大小。统 计学上已证明x总体的两个参数与x 总体的两个参数有 如下关系:
u=(x-μ)/σ
x~N(0,1)
上一张 下一张 主 页 退12出
3.3.3 正态分布的概率计算 1. 标准正态分布的概率计算
设u服从标准正态分布,则u在[u1,u2 )内取 值的概率为:
=Φ(u2)-Φ(u1)
(3-16)
Φ(u1)与Φ(u2)可由附表1查得。
上一张 下一张 主 页 退13出
例如,u=1.75时,由附表1可以查出 Φ(1.75)=0.95994
图3-6 μ相同而σ不同的3个正态分布比较大 8
(6)分布密度曲线与横轴所围成的区间面积为1, 即:
(7) 正态分布的次数多数集中在平均数μ的附 近,离均数越远,其相应次数越少,在3σ以外的 极少,这就是食品工业控制中的3σ 原理的基础。
上一张 下一张 主 页 退 9出
3.3.2 标准正态分布
上一张 下一张 主 页 退16出
(1) P(u<-1.64)=0.05050 (2) P (u≥2.58)=Φ(-2.58)=0.024940 (3) P (|u|≥2.56)

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

统计学的概率分布与抽样

统计学的概率分布与抽样

统计学的概率分布与抽样统计学是一门研究数据的收集、分析和解释的学科,它在许多领域中起着重要的作用。

其中一个关键的概念是概率分布和抽样。

本文将介绍统计学中的概率分布和抽样方法,并讨论它们在实际应用中的作用。

一、概率分布概率分布是指描述一个随机变量所有可能取值的概率。

常见的概率分布包括离散概率分布和连续概率分布。

离散概率分布是指随机变量只能取有限个或可列无限个值的分布。

其中最常见的是二项分布和泊松分布。

二项分布描述了在进行有限次的独立重复试验时,成功的次数的概率分布。

而泊松分布用于描述单位时间或者单位空间内某事件发生次数的概率分布。

连续概率分布是指随机变量可以取任意实数值的分布。

其中最常见的是正态分布。

正态分布在自然界和社会科学中广泛应用,它是一个对称的钟形曲线,具有许多重要的特性。

二、抽样方法抽样是指从总体中选取样本的过程。

样本是指总体中的一个子集,通过对样本的研究和分析,可以推断总体的特征。

常见的抽样方法包括随机抽样、系统抽样和分层抽样。

随机抽样是指在总体中随机选择样本,使每个个体被选中的概率相等。

系统抽样是指按照一定的规则,选择样本中的个体。

分层抽样是将总体分为若干层次,然后在每个层次中进行抽样。

抽样方法的选择取决于研究的目的和总体的特点。

合适的抽样方法可以提高样本的代表性和可靠性,从而提高统计分析的准确性。

三、概率分布与抽样的应用概率分布和抽样在许多领域中都有重要的应用。

以下将介绍几个具体的例子。

1. 市场调研:在市场调研中,研究者通常需要从总体中选取样本,然后通过对样本的调查和分析来推断总体的特征。

这时候可以使用随机抽样或者分层抽样的方法,并根据样本数据的概率分布来进行统计分析。

2. 医学研究:医学研究中经常需要进行临床试验,以评估某种治疗方法的有效性和安全性。

在临床试验中,研究者需要随机选取一部分患者接受治疗,然后比较治疗组和对照组的结果。

这时候可以使用随机抽样的方法,并根据结果的概率分布做出结论。

统计学 抽样分布和理论分布

统计学  抽样分布和理论分布

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。

样本分布:样本中所有个体关于某个变量大的取值所形成的分布。

抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。

即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。

样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。

那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。

由样本平均数x 所构成的总体称为样本平均数的抽样总体。

它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。

统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。

但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。

于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。

样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。

相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。

2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。

初级统计学

初级统计学

初级统计学
初级统计学是数据分析的基础,它主要包括以下几个方面:
1. 描述性统计:描述性统计是指对收集到的数据进行整理、概括和描述。

这包括测量中心趋势(如平均数、中位数、众数),测量变异性(如范围、方差、标准差)和数据分布等。

2. 概率分布和抽样:概率分布是描述随机变量取值及其概率分布的数学模型。

统计学中常用的概率分布包括正态分布、t分布和样本均匀分布等。

抽样是指从总体中选择一个或多个样本,以便对样本中的数据进行分析和作出总体的推断。

3. 参数估计和假设检验:在统计学中,参数估计是使用样本数据估计总体参数的方法。

假设检验是检验总体参数是否与我们的假设相符的方法。

4. 相关性和回归分析:这些分析方法通常用于探索数据之间的关系。

相关性分析可以测量两个变量之间的相关程度,回归分析可以用于预测一个变量的值与另一个或多个变量之间的关系。

5. 实际应用:统计学可以应用于各种领域,如社会科学、医学、工程和商业等。

例如,通过统计学,我们可以分析一个市场的消费模式,预测未来的销售趋势,或者评估一个医疗治疗方法的有效性。

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。

本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。

首先,我们来理解抽样的概念。

在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。

总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。

通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。

接下来,让我们了解抽样的方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

每种抽样方法都有其特点和适用范围。

简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。

系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。

分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。

整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。

选择合适的抽样方法可以更好地保证样本的代表性和可靠性。

抽样之后,我们需要了解抽样分布的概念。

在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。

常见的抽样分布包括正态分布、t分布和F分布等。

其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。

t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。

F分布常用于分析方差比较和回归模型中的显著性分析。

抽样分布的重要性在于它可以帮助我们进行推断。

根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。

参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。

假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。

通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。

在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。

《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布

《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布

《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆短期的机遇变异
重复投掷一枚均匀硬币六次,观察每次出现的面: (1)正反正反反正 (2)反反反正正正 (3)正反反反反反
直觉认为结果(1)是随机的,结果(2)和结果 (3)很不随机。 从概率的观点认为结果(1)、(2)、(3)的发 生有相同的概率,因而没有哪一个结果比其他结果更多 一点或少一点随机性。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
◆变异性(Variablity)
统计数据和统计资料具有变异性, 即个体之间有 差异,而对同一个体的多次观察,其结果也会不一样, 并且几乎每一次观察都随着时间的不同而改变,因而变 异性是一个重要的统计观念。 抽样结果的差异是变异性的主要表现 不能仅仅根据一次抽样的结果就断下结论!
《概率统计简明教程》第二版
第八章 统计量与抽样分布
二、总体和样本
1.总体
我们关心的是总体中的个体的某项指标(如人的身高、 灯泡的寿命, 汽车的耗油量…) .
由于每个个体的出现是随机的,所以相应的数量指标 的出现也带有随机性 . 从而可以把这种数量指标看作一 个随机变量X ,因此随机变量X的分布就是该数量指标在 总体中的分布.
《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆长期的规律性
在某地的彩票活动中,七年中有人累计中两次大 奖的机会是: 一半对一半
人们的潜意识常常与理性思考的结果有很大差别, 如不善于统计思考,即使面对十分平常的现象,也会闹 出笑话。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
第八章 统计量与抽样分布
二、总体和样本

概率统计基础:第 3 章 随机变量及抽样分布

概率统计基础:第 3 章   随机变量及抽样分布
X1 , X2 , , Xn
这一过程称为抽样 , X1 , X2 , , Xn 称为容量为n的样本.
抽样的特点 在相同条件下对总体X进行n次重复、独立观察
要求各次取样的结果互不影响 每次取出的样品与总体有相同的分布
样本的特点
观察前:X1 , X2 ,, Xn 是相互独立,与总体同分布的随机 变量
0.4
n=2
0.3
n=3
0.2
n=5
n = 10
0.1
n = 15
5 10 15 20 25
设 c 2 ~c 2 (n) X i ~ N (0,1) i 1, 2, , n

E(X i ) 0,
D( X i ) 1,
E
(
X
2 i
)
1
E c 2
E
n
X
2 i
n
i1
E
(
X
4 i
)
1
x4e
1. 期望为:E(c2)=n,方差为:D(c2)=2n(n为自
由度)
2. 可加性:若U和V为两个独立的c2分布随机变 量,U~c2(n1),V~c2(n2),则U+V这一随机变 量服从自由度为n1+n2的c2分布
总体
样本
计算样本统计量 如:样本均值、 比例、方差
几个重要分布 c2-分布(c2-distribution)
1. 由阿贝(Abbe) 于1863年首先给出,后来由海 尔墨特(Hermert)和卡·皮尔逊(K·Pearson) 分 别于1875年和1900年推导出来
定义: 设 X 1 , X 2 , , X n相互独立,都服从正态
个体:随机变量X的值
总体

统计学之抽样与抽样分布

统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值

统计学中的抽样分布理论

统计学中的抽样分布理论

统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。

本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。

一、抽样与样本统计量统计学的基本任务之一是推断总体特征。

但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。

这就是抽样的概念。

抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。

常用的抽样包括简单随机抽样、分层抽样、整群抽样等。

在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。

比如,一个数据集的均值和标准差就是两个重要的样本统计量。

二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。

这里需要区分参数(population)和统计量(sample statistic)之间的关系。

参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。

统计量是在样本中计算出来的数值,比如样本均值、样本方差等。

样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。

抽样分布不同于总体分布。

总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。

抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。

这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。

在实际使用中,我们通过抽样分布来推断总体参数。

具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。

然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。

若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。

这个概率就是所谓的显著性水平(signicance level)。

三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。

统计学简答题参考答案

统计学简答题参考答案

统计学简答题参考答案第一章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。

统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。

2.简要说明统计数据的来源。

答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。

间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。

3.简要说明抽样误差和非抽样误差。

答:统计调查误差可分为非抽样误差和抽样误差。

非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。

抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。

4.解释描述统计和推断统计的概念?(P5)答:描述统计是用图形、表格和概括性的数字对数据进行描述的统计方法。

推断统计是根据样本信息对总体进行估计、假设检验、预测或其他推断的统计方法。

第二章统计数据的描述1描述次数分配表的编制过程。

答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。

按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。

按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。

统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。

2. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。

常用的指标有均值、中位数、众数、极差、方差、标准差、离散系数、偏态系数和峰度系数。

3.怎样理解均值在统计中的地位?答:均值是对所有数据平均后计算的一般水平的代表值,数据信息提取得最充分,具有良好的数学性质,是数据误差相互抵消后的客观事物必然性数量特征的一种反映,在统计推断中显示出优良特性,由此均值在统计中起到非常重要的基础地位。

抽样分布的概念及重要性

抽样分布的概念及重要性

抽样分布的概念及重要性抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本的过程中,统计量的分布情况。

在统计学中,我们通常无法对整个总体进行研究,而是通过抽取样本来推断总体的特征。

抽样分布的概念帮助我们理解样本统计量的变异性,并为统计推断提供了理论基础。

本文将介绍抽样分布的概念及其重要性。

一、抽样分布的概念抽样分布是指在相同条件下,重复从总体中抽取样本,并计算样本统计量的分布情况。

在抽样过程中,每次抽取的样本可能不同,因此样本统计量的取值也会有所不同。

抽样分布描述了样本统计量的所有可能取值及其对应的概率分布。

常见的样本统计量包括样本均值、样本方差、样本比例等。

以样本均值为例,假设总体均值为μ,样本均值为x̄,抽样分布描述了在相同样本容量的情况下,样本均值的所有可能取值及其对应的概率分布。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

二、抽样分布的重要性抽样分布在统计学中具有重要的意义,它对统计推断和假设检验提供了理论基础,具体体现在以下几个方面:1. 参数估计:抽样分布可以用于估计总体参数。

通过抽取样本并计算样本统计量,我们可以对总体参数进行估计。

例如,通过计算样本均值来估计总体均值,通过计算样本比例来估计总体比例等。

抽样分布提供了样本统计量的分布情况,帮助我们确定估计值的可信度和置信区间。

2. 假设检验:抽样分布可以用于假设检验。

在假设检验中,我们通常需要比较样本统计量与假设值之间的差异,以判断差异是否显著。

抽样分布提供了样本统计量的分布情况,可以帮助我们计算出观察到的差异在抽样误差范围内的概率,从而判断差异是否显著。

3. 抽样方法选择:抽样分布可以帮助我们选择合适的抽样方法。

不同的抽样方法会对样本统计量的分布产生不同的影响。

通过了解抽样分布的特点,我们可以选择合适的抽样方法,以提高样本统计量的准确性和可靠性。

4. 统计推断:抽样分布是统计推断的基础。

统计推断是指通过样本数据对总体特征进行推断。

统计学中的统计分布与概率密度函数

统计学中的统计分布与概率密度函数

统计学中的统计分布与概率密度函数统计学是一门涉及数据收集、分析和解释的学科。

在统计学中,我们经常使用统计分布和概率密度函数来了解随机变量的分布和概率性质。

本文将介绍统计分布和概率密度函数的概念及其在统计学中的应用。

一、统计分布统计分布是随机变量取值的可能性及其对应的概率的分布。

通过统计分布,我们可以了解随机变量在不同取值上的概率分布情况,从而得出更多关于数据的信息。

在统计学中,常见的统计分布包括二项分布、正态分布、泊松分布等。

下面我们将分别介绍这些常见的统计分布及其概率密度函数。

1. 二项分布二项分布是一种离散型概率分布,适用于一系列独立的伯努利试验,每个试验有两个可能的结果(成功或失败),且成功的概率保持不变。

二项分布的概率质量函数如下:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,n为试验次数,k为成功次数,p为成功概率,C(n, k)为组合数。

2. 正态分布正态分布是一种连续型概率分布,也是最为常见的分布之一。

正态分布的概率密度函数如下:f(x) = (1/σ√(2π)) * e^(-(x-μ)^2/(2σ^2))其中,μ为均值,σ为标准差,e为自然对数的底。

正态分布具有对称性,呈钟形曲线状分布。

许多自然现象和统计现象都可以用正态分布来描述。

3. 泊松分布泊松分布是一种离散型概率分布,适用于描述计数型事件在给定时间或空间中发生的概率。

泊松分布的概率质量函数如下:P(X=k) = (λ^k * e^(-λ))/(k!)其中,λ为平均发生率,k为发生的次数。

泊松分布的特点是随机事件在时间或空间上是相互独立、出现概率相等的。

二、概率密度函数概率密度函数是用来描述连续型随机变量的概率分布的函数。

对于一个连续型随机变量X,其概率密度函数f(x)满足以下两个条件:1) f(x) ≥ 0,对于所有的x。

2) ∫f(x)dx = 1,其中积分范围为X的全集。

概率密度函数可以用来计算连续型随机变量在某一范围内取值的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单随机抽样的优缺点
▪ 优点:简单随机抽样是最符合随机原则的 抽样方法,能保证总体的每个成员具有已 知的且同等的被选为样本单位的机会,因 此,产生的样本,不论其多大都是总体的 一个有效代表。
•标准正态分布的分布函数表示为
•标准正态分布的图形
•例1 •解
•查表标准正态分布函数表
解 查标准正态分布表
正态分布的转换
1. 任何一个一般的正态分布,可通过下面的线性 变换转化为标准正态分布
X-μ表示将一般正态分布的曲线平衡到标准正态分布的 位置
除以σ表示将一般正态分布的曲线形状转换为标准正态 分布
简单随机抽样
(simple random sampling)
1. 从 得总 每体一N个个总、单体也最位单称基中位纯本随都随的机有机抽地相抽样抽同样方取的,法n机个是之会单应一(位用概作最率为多)被样抽本中,使 2. 抽取元素的具体方法有重复抽样和不重复抽样 3. 特点
➢ 简单、直观,在抽样框完整时,可直接从中抽取样本 ➢ 用样本统计量对目标量进行估计比较方便 ➢ 但是当N很大时,不易构造抽样框 ➢ 抽出的单位很分散,给实施调查增加了困难 ➢ 没有利用其他辅助信息以提高估计的效率
分布函数的性质 • 1、单调不减性:若x1<x2, 则F(x1)F(x2); • 2、归一 性:对任意实数x,0F(x)1,且
•3、右连续性:对任意实数x,
•反之,具有上述三个性质的实函数,必是某个 随机变量的分布函数。故该三个性质是分布函 数的充分必要性质。
•试求出X的分布函数。 •解
连续型随机变量与概率密度
•称为随机变量X的分布函数。 • 有了分布函数定义,任意x1,x2∈R, x1<x2,随 机变量X落在(x1,x2]里的概率可用分布函数来计算:
•P {x1<X x2}=P{X x2}-P{Xx1}= F(x2)-F(x1).
• 在这个意义上可以说,分布函数完整地描述了随机 变量的统计规律性,或者说,分布函数完整地表示了 随机变量的概率分布情况。
正态分布
(例题分析)
•【例】定某公司职员每周的加班津贴服从均值为50元、标 准差为10元的正态分布,那么全公司中有多少比例的职员每 周的加班津贴会超过70元,又有多少比例的职员每周的加班 津贴在40元到60元之间呢?
•解:设=50, =,X~N(50,102)
3.3 常用的抽样方法
▪ 3.3.1 简单随机抽样 ▪ 3.3.2 分层抽样 ▪ 3.3.3 系统抽样 ▪ 3.3.4 整群抽样
统计学之概率分布与抽 样分布
2020年4月29日星期三
第 3 章 概率分布与抽样分布
3.1 随机变量 3.2 正态分布 3.3 常用的抽样方法 3.4 抽样分布 3.5 中心极限定理的应用
3.1 随机变量
(random variables)
1.对随机事件的数值性描述
--例如:抛硬币的结果,正面定义为1,反 面定义为0
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望
2. 方差
3.2 正态分布
(normal distribution)
1. 正态分布是最重要的一种概率分布。正态分布概 念是由德国的数学家(Carl Friedrich Gauss, 1777—1855)和天文学家Moivre于1733年首次 提出的,但由于Gauss率先将其应用于天文学 家▪研究正,态故分正布态是分许布多又统叫计高方法斯的分理布论。基础:
2.一般用 X,Y,Z 来表示 3.根据取值情况的不同分为
离散型随机变量:数轴上可列个孤立的点 连续型随机变量:数轴上一个或多个区间
离散型随机变量
1. 随机变量 X 取有限个值或所有取值都可以 逐个列举出来 x1 , x2,…
2. 以确定的概率取这些不同的值 3. 离散型随机变量的一些例子
连续型随机变量
5. 经典统计推断的基础
正态分布
= 正态随机变量X的均值 = 正态随机变量X的方差 = 3.1415926; e = 2.71828
x = 随机变量的取值 (- < x < )
则称X服从参数为 、 的正态分布,记作 X~N( , )
正态分布函数的性质
1. 图形是关于x=对称钟形曲线,且峰值在x= 处 2. 均值和标准差一旦确定,分布的具体形式也惟一确
1. 连续型随机变量可以取某一区间或整个实数轴 上的任意一个值
2. 它取任何一个特定的值的概率都等于0 3. 不能列出每一个值及其相应的概率 4. 通常研究它取某一区间值的概率 5. 用概率密度函数和分布函数的形式来描述
分布函数的定义

• 定义 设X是一随机变量,X是任意实数,则实值函数 •F(x)=P {Xx}, x∈(-∞,+∞)
设X是随机变量,如果存在定义在整个实数轴上的 函数f(x),满足条件
•则称X是连续型随机变量,f(X)称为X的概率密度函
数,简称概率密度。
注意f(x)不是概 率
• 概率密度函数的性质
•1) •2)
•1
•这两条性质是判定一 •个函数 f(x)是否为某 •个随机变量X的概率 •密度函数的充要条件
•3) X落入区间[a,b]内的概率=
的面积给出,而且其曲线下的总面积等于1
•正态概率密度函数的几何特征
•μ决定曲线的位置,σ决定曲线的“胖瘦”
•正态分布下的概率计算
•方法一:利用统计软件计算
•方法二:转化为标准正态分布查表计算
•标准正态分布
(standardize the normal distribution)
•标准正态分布的概率密度表示为
2. 描述连如续t分型布随、机F变分量布的、最χ2分重布要都的是分在布正态分 3. 许多现布象的都基可础以上由推正导态出分来布的,来此描外述,t分布 4. 可用于、态近二分似项布离分,散布 在型、 一随定Po机条is变件so量下n分,的布可分的以布极按限正为态正分
➢ 例布如布:原理二项来分处布理当。n越来越大,越近似服从正态分
定,不同参数正态分布构成一个完整的“正态分布族”
3. 均值可取实数轴上的任意数值,决定正态曲线的具
体位置;标准差决定曲线的“陡峭”或“扁平”程度
。越大,正态曲线扁平;越小,正态曲线越高陡峭 4. 当X的取值向横轴左右两个方向无限延伸时,曲线的
两个尾端也无限渐近横轴,理论上永远不会与之相交 5. 正态随机变量在特定区间上的取值概率由正态曲线下
相关文档
最新文档