圆锥曲线的综合
圆锥曲线的综合课件
PPT学习交流
15
课堂互动讲练
【思路点拨】 由已知易得动点 Q的轨迹方程,然后找出P点与Q点的 坐标关系,代入即可.
【解】 法一:设 Q(x,y),
则Q→A=(-1-x,-y), Q→B=(1-x,4-y),
→→
故 由QA·QB= 4⇒ (- 1- x)(1- x) +(-y)(4-y)=4,
PPT学习交流
D.9π
答案:B
PPT学习交流
8
三基能力强化
3.直线
y=kx-k+1
与椭圆x2+y2 94
=1 的位置关系为( )
A.相交 C.相离 答案:A
B.相切 D.不确定
PPT学习交流
9
三基能力强化
4.(2009 年高考上海卷)过点 A(1,0)
作倾斜角为π的直线,与抛物线 4
y2=2x
交于 M、N 两点,则|MN|=________.
PPT学习交流
4
基础知识梳理
(1)若a≠0,Δ=b2-4ac,则 ①Δ>0,直线l与圆锥曲线有 两交点. ②Δ=0,直线l与圆锥曲线有一 公共点. ③(2)Δ若<a0=,0直,线当l与圆圆锥锥曲曲线线为无双曲公线共时点,.l与双 曲 与抛线物的线渐的近对线称平轴行;平当行圆.锥曲线为抛物线时,l
PPT学习交流
5
基础知识梳理
3.弦长公式
直线 l:y=kx+b,与圆锥曲线 C:F(x,y)=0
交于 A(x1,y1),B(x2,y2)两点,则|AB|= 1+k2 |x1- x2|= 1+k2· (x1+x2)2-4x1x2或 |AB|=
1+k12|y1-y2|=
1+k12 (y1+y2)2-4y1y2.
收藏:圆锥曲线综合五个类型
(一)求圆锥曲线方程求圆锥曲线方程分为五个类型,求解策略一般有以下几种: ①几何分析+方程思想; ②设而不求+韦达定理 ③定义+数形结合; ④参数法+方程思想 类型1——待定系数法待定系数法本质就是通过对几何特征进行分析,利用图形,结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出含有待定系数的方程,解出待定的系数即可。
例1.2014年全国Ⅱ卷(理科20)设 F 1 、 F 2 分别是椭圆 C :x 2a 2+y 2b 2=1 a >b >0 的左、右焦点,M 是 C 上一点且 MF 2 与 x 轴垂直,直线 MF 1 与 C 的另一个交点为 N .Ⅰ 若直线 MN 的斜率为 34,求 C 的离心率;Ⅱ 若直线 MN 在 y 轴上的截距为 2,且 ∣MN ∣=5∣F 1N ∣,求 a ,b .【解法分析】第Ⅱ小题利用试题提供的几何位置关系和数量关系,结合椭圆的几何性质和方程思想,通过待定系数法进行求解。
着重考查椭圆的几何性质,将几何特征转化为坐标表示,突显数形结合的思想。
.21∴.2102-32.,4321∴4322222211的离心率为解得,联立整理得:且由题知,C e e e c b a c a b F F MF ==++==•=72,7.72,7.,,1:4:)23-(,:.23-,,.4,.42222211111122====+===+=+====•=b a b a c b a ace NF MF c e a NF ec a MF c c N M m MF m N F ab MF 所以,联立解得,且由焦半径公式可得两点横坐标分别为可得由两直角三角形相似,由题可知设,即知,由三角形中位线知识可类型2——相关点法求轨迹方程动点P(x ,y)依赖与另一个动点Q(x 0,y 0)变化而变化,并且动点Q(x 0,y 0)又在另一个已知曲线上,则可先用x ,y 表示x 0,y 0,再将x 0,y 0代入已知曲线,可得到所求动点的轨迹方程。
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
圆锥曲线大题综合:五个方程型(学生版)
圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。
圆锥曲线的综合问题(含答案)
课题:圆锥曲线的综合问题 【要点回顾】1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |=1+k 2|x 1-x 2|或 1+1k2|y 1-y 2|.【热身练习】1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1 C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.5.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k2x 1+x 22-4x 1x 2]=2+k 2+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1. 【由题悟法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.【试一试】1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1. 【最值与范围问题】[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -2-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0. 【由题悟法】1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【试一试】2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23. 【定点定值问题】[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a 2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.【由题悟法】1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 【试一试】3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b。
圆锥曲线的综合经典例题(有答案)
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】①.②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
高二数学圆锥曲线综合试题答案及解析
高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。
圆锥曲线综合1:焦半径与焦点弦的三角形式
圆锥曲线综合1:焦半径与焦点弦的三角形式圆锥曲线焦半径和焦点弦的三角形式及其性质(以焦点在x 轴上的曲线为例)设圆锥曲线的焦点弦AB 所在直线的倾斜角为θ,斜率为k ,离心率为e ,焦准距为p (抛物线只需令e=1)性质1:焦半径AF=|cos ||cos 1|2θθc a b e ep -=-,BF=|cos ||cos 1|2θθc a b e ep +=+抛物线:AF=|cos 1|θ-p ,BF=|cos 1|θ-p 性质2:焦点弦AB=|cos 2||cos 12|222222θθc a ab e ep -=-,抛物线:AB=|sin 2|2θp 性质3:222BF 1AF 1b a ep ==+;抛物线:p2BF 1AF 1=+性质4:若→→=FB AF λ,则有|11|12+-+=λλk e ,|11||cos |+-=λλθe 典型例题例1:过椭圆1222=+y x 的左焦点作倾斜角为60°的直互,直线和椭圆交于A 、B 两点,则AB=____例2:已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线l 1和l 2,直线l 1与C 交于A 、B 两点,直线l 2与D 、E 交于两点,则AB+DE 的最小值为_______例3:已知双曲线C :)0,0(12222>>=-b a by a x 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若→→=FB 4AF ,则C 的离心率为______.例4:已知F 是抛物线C :x y 42=的焦点,过F 且斜率为1的直线交C 于A 、B 两点,设FA>FB ,则FA 与FB 的比值等于___________例5:已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A 、B 两点,若AF 2=2F 2B ,AB=BF 1,则C 的方程为________例6设圆的圆心为A ,直线l 过点B(1,0)且与x 轴不重合,l 交圆于C 、D 两点,过B 作AC 的平行线交AD 于点E.(1)证明EA+EB 为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M 、N 两点,过B 且与l 垂直的直线与圆A 交于P 、Q 两点,求四边形MPNQ 面积的取值范围.练习题1.设F 1、F 2分别是C:)0(12222>>=+b a by a x 的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N(1)若直线MN 的斜率为43,求C 的离心率(2)若直线MN 在y 轴上的截距为2,且MN=5F 1N ,求a 、b2.中心在原点O 的椭圆的右焦点为F(3,0),右准线l 的方程为:x =12(1)求椭圆的方程;(2)在椭圆上任取三个不同点P 1、P 2、P 3,使得∠P 1FP 2=∠P 2FP 3=∠P 3FP 1,证明:321FP 1FP 1FP 1=+为定值,并求此定值.。
新高考一轮复习人教版 圆锥曲线的综合问题 作业1
9.5 圆锥曲线的综合问题一、选择题1.(2021浙江,9,4分)已知a,b ∈R,ab>0,函数f(x)=ax 2+b(x ∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是( ) A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线 答案 C 由题意知f(s)=as 2+b,f(s-t)=a(s-t)2+b=(as 2+b)+at(t-2s),f(s+t)=a(s+t)2+b=(as 2+b)+at(t+2s), ∵f(s -t),f(s),f(s+t)成等比数列,∴f(s -t)·f(s+t)=f 2(s)⇒[(as 2+b)+at(t-2s)][(as 2+b)+at(t+2s)]=(as 2+b)2⇒at(as 2+b)(t-2s+t+2s)+a 2t 2(t 2-4s 2)=0⇒2at 2(as 2+b)+a 2t 2(t 2-4s 2)=0,(*) ①当t=0时,s ∈R,故(s,t)的轨迹为一条直线; ②当t ≠0时,(*)式可化为2as 2+2b+at 2-4as 2=0, 即2as 2-at 2=2b,因为ab>0,所以s 2-t22=b a>0,故(s,t)的轨迹为双曲线,故选C.二、解答题2.(2022届广西开学考,22)设双曲线x 23-y 2=1的右焦点为F,过F 的直线与双曲线C 的右支交于A 、B 两点.(1)若直线AB 与x 轴不垂直,求直线的斜率的取值范围; (2)求AB 中点的轨迹方程.解析 (1)由题知F(2,0),设直线AB 的方程为y=k(x-2),代入方程x 23-y 2=1,得(3k 2-1)x 2-12k 2x+12k 2+3=0.设A(x 1,y 1),B(x 2,y 2),则{x 1+x 2=12k 23k 2-1>0,x 1x 2=12k 2+33k 2-1>0,Δ=144k 4-4(3k 2-1)(12k 2+3)=12k 2+12>0, 所以k ∈(-∞,-√33)∪(√33,+∞).(2)设AB 中点坐标为(x 0,y 0),若直线AB 的斜率存在,x 0=x 1+x 22=6k 23k 2-1,y 0=y 1+y 22=k(x 0-2)=2k 3k 2-1,消去k 得,(x 0-1)2-3y 02=1,此时x 0=6k 2-2+23k 2-1=2+23k 2-1>2,所以AB 中点的轨迹方程为(x-1)2-3y 2=1(x>2);若直线AB 的斜率不存在,则x 0=2,y 0=0,满足(x-1)2-3y 2=1.综上,AB 中点的轨迹方程为(x-1)2-3y 2=1(x ≥2).3.(2022届山西怀仁一中期中,21)已知点A(-2,0),B(2,0),设动点P 满足直线PA 与PB 的斜率之积为-34,记动点P 的轨迹为曲线E. (1)求曲线E 的方程;(2)若动直线l 经过点(1,0),且与曲线E 交于C,D(不同于A,B)两点,问:直线AC 与BD 的斜率之比是不是定值?若是定值,求出该定值;若不是定值,请说明理由.解析 (1)设P(x,y),由题意可得k PA ·k PB =-34,所以y x+2·y x -2=-34(x ≠±2),所以曲线E 的方程为x 24+y 23=1(x ≠±2). (2)由题意知,可设直线l:x=my+1,C(x 1,y 1),D(x 2,y 2),由{x =my +1,x 24+y 23=1(x ≠±2),可得(3m 2+4)y 2+6my-9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,因为直线AC 的斜率k 1=y 1x 1+2,直线BD 的斜率k 2=y 2x 2-2,且my 1y 2=32(y 1+y 2),所以k 1k 2=y 1(x 2-2)y 2(x 1+2)=y 1(my 2-1)y 2(my 1+3)=my 1y 2-y 1my 1y 2+3y 2=32(y 1+y 2)-y 132(y 1+y 2)+3y2=12y 1+32y 232y 1+92y 2=13,所以直线AC 和BD 的斜率之比为定值13. 4.(2021四省八校调研,20)已知圆锥曲线E:√(x -1)2+y 2+√(x +1)2+y 2=4,经过点Q(-4,4)的直线l 与E 有唯一公共点P,定点R(-1,0). (1)求曲线E 的标准方程;(2)设直线PR,QR 的斜率分别为k 1,k 2,求k 1k 2的值.解析 (1)由√(x -1)2+y 2+√(x +1)2+y 2=4可得,点(x,y)到定点(-1,0),(1,0)的距离的和为4.由椭圆的定义可知动点(x,y)的轨迹即圆锥曲线E 是以(-1,0),(1,0)为左、右焦点,2a=4为长轴长的椭圆(此处必须由定义说明圆锥曲线的类型),则其长半轴长a=2,则短半轴长b=√22-12=√3,故曲线E 的标准方程为x 24+y 23=1. (2)由题意得过点Q(-4,4)的直线l 的斜率存在,设为k,则直线l 的方程为y-4=k(x+4),即y=kx+4+4k, 代入x 24+y 23=1,整理,得(3+4k 2)x 2+32(k+1)kx+64k 2+128k+52=0(※).∵l 与E 仅有一个公共点,∴Δ=1024(k+1)2k 2-4(3+4k 2)(64k 2+128k+52)=0,即12k 2+32k+13=0.解得k=-12或k=-136.(k 的值有两个,需分两种情况求解)设P(x 0,y 0),当k=-12时,方程(※)为x 2-2x+1=0,得x 0=1,∴y 0=32,∴k 1=34,又k 2=-43,∴k 1k 2=-1.当k=-136时,方程(※)为49x 2+182x+169=0,得x 0=-137,∴y 0=-914,∴k 1=34,又k 2=-43,∴k 1k 2=-1.综上所述,k 1k 2的值为-1.5.(2022届甘肃名校月考,21)已知F 1,F 2分别是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,|F 1F 2|=6,当P 在E 上且PF 1垂直于x 轴时,|PF 2|=7|PF 1|. (1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C,BM 与x 轴交于点D.求证:四边形ABDC 的面积是定值.解析 (1)由题意知|PF 1|=b2a ,|PF 2|+|PF 1|=2a,|PF 2|=7|PF 1|,则8|PF 1|=2a,所以a=2b,又c=3,a 2=b 2+c 2,∴a=2√3,b=√3, ∴E 的标准方程是x 212+y 23=1.(2)证明:由题意知A(-2√3,0),B(0,√3),设M(m,n),C(0,t),D(s,0),因为A,C,M 三点共线,所以设AC ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ ,解得t=2√3n m+2√3,又B,D,M 三点共线,所以设BD⃗⃗⃗⃗⃗⃗ =μBM ⃗⃗⃗⃗⃗⃗ ,解得s=-√3m n -√3. 易知,|AD|=s+2√3,|BC|=√3-t,m 212+n 23=1,所以|AD|·|BC|=√3s-2√3t-st+6=-n -√3-m+2√3+(n -√3)(m+2√3)+6=-√3m √3n+36(m+2√3)(n -√3)+(n -√3)(m+2√3)+6=√3)(n √3)(n -√3)(m+2√3)+6=12.所以四边形ABDC 的面积为12|AD|·|BC|=6.故四边形ABDC 的面积是定值.6.(2022届长春外国语学校期中,21)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+√2=0与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (1)求椭圆C 的方程;(2)设M 是椭圆的上顶点,过点M 分别作直线MA,MB 交椭圆于A,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,证明:直线AB 过定点,并求出该定点.解析 (1)易知,等轴双曲线的离心率为√2,故椭圆C 的离心率e=√22.∵e 2=c 2a 2=a 2-b 2a2=12,∴a 2=2b 2.由x-y+√2=0与圆x 2+y 2=b 2相切,得√2√2=b,故b=1,∴a 2=2.∴椭圆C 的方程为x 22+y 2=1.(2)已知M(0,1).当直线AB 的斜率不存在时,设方程为x=x 0(x 0≠0),A(x 0,y 0),B(x 0,-y 0).由k 1+k 2=4,得y 0-1x 0+-y 0-1x 0=4,即x 0=-12.此时直线AB 的方程为x=-12.当直线AB 的斜率存在时,设AB 的方程为y=kx+m,依题意知m ≠±1.设A(x 1,y 1),B(x 2,y 2),由{y =kx +m,x 22+y 2=1得(1+2k 2)x 2+4kmx+2m 2-2=0.则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,得y 1-1x 1+y 2-1x 2=4,∴kx 1+m -1x 1+kx 2+m -1x 2=4,即2k+(m-1)x 1+x2x 1x 2=4, ∴k -km m+1=2,∴k=2(m+1),∴m=k 2-1.故直线AB 的方程为y=kx+k 2-1,即y=k (x +12)-1.∴直线AB 过定点(-12,-1).综上,直线AB 过定点(-12,-1).7.(2022届成都蓉城名校联盟联考一,20)已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的长轴长与短轴长之比为2,过点P(0,2√5)且斜率为1的直线与椭圆E 相切. (1)求椭圆E 的方程;(2)过点T(2,0)的直线l 与椭圆E 交于A,B 两点,与直线x=8交于H 点,若HA ⃗⃗⃗⃗⃗⃗ =λ1AT ⃗⃗⃗⃗⃗ ,HB ⃗⃗⃗⃗⃗⃗ =λ2BT ⃗⃗⃗⃗⃗ .证明:λ1+λ2为定值.解析 (1)由题意知,a b =2,a=2b,切线方程为y=x+2√5.设椭圆方程为x 24b 2+y 2b 2=1,联立得{y =x +2√5,x 24b 2+y 2b 2=1,整理得5x 2+16√5x+80-4b 2=0,则Δ=0,即(16√5)2-20(80-4b 2)=0,则b 2=4,∴椭圆方程为x 216+y 24=1.(2)由题意知,直线l 的斜率一定存在.当直线l 的斜率为零时,易得λ1+λ2=0;当直线l 的斜率不为零时,设直线l:x=ty+2(t ≠0),A(x 1,y 1),B(x 2,y 2),联立{x =ty +2,x 2+4y 2=16,得(t 2+4)y 2+4ty-12=0,则y 1+y 2=-4t t 2+4,y 1y 2=-12t 2+4,直线l:x=ty+2,令x=8,则y=6t ,即H 8,6t .∵HA ⃗⃗⃗⃗⃗⃗ =(x 1-8,y 1-6t ),AT ⃗⃗⃗⃗⃗ =(2-x 1,-y 1),HA ⃗⃗⃗⃗⃗⃗ =λ1AT ⃗⃗⃗⃗⃗ ,∴{x 1-8=λ1(2-x 1),y 1-6t =-λ1y 1,∴1-6ty 1=-λ1,同理可得,1-6ty 2=-λ2,∴-λ1-λ2=1-6ty 1+1-6ty 2=2-6(y 1+y 2)ty 1y 2=2--24t t 2+4·t 2+4-12t=0.综上,λ1+λ2=0.8.(2021皖南八校第三次联考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左焦点为F,过点F 的直线l 与椭圆交于A,B两点,当直线l ⊥x 轴时,|AB|=√2,tan ∠AOB=2√2. (1)求椭圆C 的方程;(2)设直线l'⊥l,直线l'与直线l 、x 轴、y 轴分别交于M 、P 、Q,当点M 为线段AB 中点时,求PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ⃗⃗⃗⃗⃗⃗⃗⃗ 的取值范围.解析 (1)由题意可知F(-c,0).当直线l ⊥x 轴时,|AB|=2b 2a =√2,tan ∠AOB=2tan ∠AOF1-tan 2∠AOF =2√2,解得tan ∠AOF=√22或-√2,∵∠AOF ∈(0,π2),∴tan∠AOF=√22=|AF||FO|=b 2a c,得b=c=1,a=√2,故椭圆C 的方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),依题意直线l 的斜率一定存在且不为零,设l:y=k(x+1),由{y =k(x +1),x 22+y 2=1,消去y 得(2k 2+1)x 2+4k 2x+2k 2-2=0,则x 1+x 2=-4k 22k 2+1,则y 1+y 2=k(x 1+x 2+2)=2k 2k 2+1.故M (-2k 22k 2+1,k2k 2+1),直线l':y-k 2k 2+1=-1k (x +2k 22k 2+1),令y=0,则P (-k22k 2+1,0),∵PM⊥MF,OQ ⊥PO,∴PM ⃗⃗⃗⃗⃗⃗ ·PF ⃗⃗⃗⃗⃗ =|PM ⃗⃗⃗⃗⃗⃗ |2,PO ⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗ =|PO ⃗⃗⃗⃗⃗ |2,∴PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF ⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗⃗⃗⃗ =|PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2|PO⃗⃗⃗⃗⃗⃗⃗⃗ |2=(-k 22k 2+1--2k 22k 2+1)2+(0-k 2k 2+1)2(-k 22k 2+1)2=k 2+1k 2=1+1k 2,∵k 2∈(0,+∞),∴1+1k2∈(1,+∞), ∴PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ⃗⃗⃗⃗⃗⃗⃗⃗ ∈(1,+∞). 9.(2022届四川内江六中月考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,过F 2且与x 轴垂直的直线与椭圆C 交于A,B 两点,△AOB 的面积为2√2,点P 为椭圆C 的下顶点,|PF 2|=√2|OP|. (1)求椭圆C 的标准方程;(2)经过抛物线y 2=4x 的焦点F 的直线l 交椭圆C 于M,N 两点,求|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |的取值范围.解析 (1)因为△OPF 2为直角三角形,所以b 2+c 2=|PF 2|2=(√2b)2,故b=c,又S △AOB =12·2b 2a ·c=b 2c a=2√2,所以b 2c=2√2a,又a 2=b 2+c 2,所以b 3=2√2·√b 2+c 2=4b,故b 2=4,所以a 2=b 2+c 2=4+4=8,故椭圆C 的标准方程为x 28+y 24=1. (2)由题意得F(1,0),M,N,F 三点共线,所以|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=||FM ⃗⃗⃗⃗⃗⃗ |·|FN ⃗⃗⃗⃗⃗ |·cosπ|=|FM|·|FN|.若直线l 斜率为零,则|FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|=(a-1)(a+1)=7;若直线l 斜率不为零,设直线l 的方程为x=my+1,M(x 1,y 1),N(x 2,y 2),则{x =my +1,x 28+y 24=1,消去x 得(m 2+2)y 2+2my-7=0,所以y 1+y 2=-2m m 2+2,y 1y 2=-7m 2+2,则|FM|=√(x 1-1)2+y 12=√(my 1+1-1)2+y 12=√m 2+1|y 1|,同理|FN|=√m 2+1·|y 2|,所以|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|=(m 2+1)|y 1y 2|=(m 2+1)·7m 2+2=7(m 2+2)-7m 2+2=7-7m 2+2,因为m 2+2≥2,所以0<7m 2+2≤72,所以72≤7-7m 2+2<7.综上,|FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|∈[72,7]. 10.(2022届黑龙江大庆月考,20)已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,其离心率为12.椭圆E 的左、右顶点分别为A,B,且|AB|=4. (1)求椭圆E 的方程;(2)过F 1的直线与椭圆相交于C,D(不与顶点重合),过右顶点B 分别作直线BC,BD 与直线x=-4相交于N,M 两点,以MN 为直径的圆是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.解析 (1)由题意得,c a =12,|AB|=2a=4,∴a=2,c=1,b=√a 2-c 2=√3,∴椭圆E 的标准方程为x 24+y 23=1.(2)恒过定点(-7,0)和(-1,0).由(1)知F 1(-1,0),B(2,0),由题意得,直线CD 的斜率不为0,设直线CD 的方程为x=my-1,代入椭圆E 的方程x 24+y 23=1,整理得(3m 2+4)y 2-6my-9=0.设C(x 1,y 1),D(x 2,y 2),则y 1+y 2=6m 3m 2+4①,y 1y 2=-93m 2+4②.直线BC:y=y 1my 1-3(x-2),令x=-4,可得N -4,-6y 1my 1-3,同理M (-4,-6y 2my 2-3),∴以MN 为直径的圆的方程为(x+4)(x+4)+y+6y 1my 1-3(y +6y 2my 2-3)=0,即x 2+8x+16+y 2+6y 1my 1-3+6y 2my 2-3y+36y 1y 2(my 1-3)(my 2-3)=0③,由①②得y 1+y 2=-23my 1y 2,代入③得圆的方程为x 2+8x+7+y 2-6my=0.若圆过定点,则{y =0,x 2+8x +7=0,解得{x =-1,y =0或{x =-7,y =0,∴以MN 为直径的圆恒过点(-7,0)和(-1,0).12.(2022届湘豫名校联盟11月联考,20)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)的离心率e=√63,其左,右焦点为F 1,F 2,P为椭圆E 上任意一点,P 点到原点O 的距离的最小值为1. (1)求椭圆E 的方程;(2)设直线l:y=kx+m 与椭圆E 交于A(x 1,y 1),B(x 2,y 2)两点,且x 12+x 22=3,是否存在这样的直线l 与圆x 2+y 2=1相切?如果存在,直线l 有几条?如果不存在,请说明理由. 解析 (1)由题意知,e=√63,所以b 2a2=1-e 2=13,即a 2=3b 2,易知|PO|2∈[b 2,a 2],所以b 2=1,故椭圆E 的标准方程为x 23+y 2=1. (2)联立{y =kx +m,x 2+3y 2=3,整理得(3k 2+1)x 2+6kmx+3m 2-3=0.所以x 1+x 2=-6km 3k 2+1,x 1·x 2=3m 2-33k 2+1. 因为x 12+x 22=(x 1+x 2)2-2x 1·x 2=3,所以化简得12k 2m 2-2(m 2-1)·(3k 2+1)=(3k 2+1)2,即2m 2·(3k 2-1)=(3k 2+1)·(3k 2-1),所以3k 2-1=0或3k 2+1=2m 2,又直线l:y=kx+m 与圆x 2+y 2=1相切,所以√1+k2=1,即k 2+1=m 2.当3k 2-1=0时,解得k 2=13,m 2=43,直线l 的方程为y=±√33x±2√33;当3k 2+1=2m 2时,解得k 2=1,m 2=2,直线l 的方程为y=±x±√2.综上所述,存在满足题设条件的直线,且直线l 有八条.13.(2022届江西月考,21)过抛物线y 2=2px(p>0)的焦点F 作倾斜角为θ(θ≠π2)的直线,交抛物线于A,B 两点,当θ=π3时,以FA 为直径的圆与y 轴相切于点T(0,√3).(1)求抛物线的方程;(2)试问在x 轴上是否存在异于F 点的定点P,使得|FA|·|PB|=|FB|·|PA|成立?若存在,求出点P 的坐标;若不存在,请说明理由.解析 (1)取FA 的中点C,过C 作CE ⊥x 轴于E,连接CT.因为以FA 为直径的圆与y 轴相切于点T(0,√3),所以CT ⊥y 轴于T,故|CE|=|OT|=√3,因为θ=π3,即∠CFE=π3,所以|CF|=2,|EF|=1,所以C 1+p 2,√3,所以A (2+p 2,2√3),故(2√3)2=2p ·(2+p 2),又p>0,所以p=2,故抛物线的方程为y 2=4x.(2)设P(x 0,0)(x 0≠1),且F(1,0),由题意可知直线FA 的斜率不为0,故设直线FA:x=my+1,联立{x =my +1,y 2=4x,整理得y 2-4my-4=0,设A(x 1,y 1),B(x 2,y 2),则y 1y 2=-4.易知|FA||FB|=|y 1||y 2|,|PA||PB|=√10212√20222,因为|FA|·|PB|=|FB|·|PA|,即|FA||FB|=|PA||PB|,所以|y 1||y 2|=√(x 1-x 0)2+(y 1-0)2(x 2-x 0)2+(y 2-0)2,两边同时平方可得y 12y 22=y 12+(x 1-x 0)2y 22+(x 2-x 0)2,又因为y 12=4x 1,y 22=4x 2,所以y 12y 22=y 12+(y 124-x 0)2y 22+(y 224-x 0)2,化简整理可得(y 12-y 22)x 02=y 12y 22(y 12-y 22)16,所以x 02=y 12y 2216=(y 1y 2)216=1,所以x 0=±1,因为点P 异于点F,所以x 0=-1,故点P(-1,0).14.(2021山西太原二模,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别是A,B,直线l:x=23与椭圆C 相交于D,E 两个不同点,直线DA 与直线DB 的斜率之积为-14,△ABD 的面积为4√23.(1)求椭圆C 的标准方程;(2)若点P 是直线l:x=23的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q,过P 作BQ 的垂线,垂足为M,在x 轴上是否存在定点N,使得|MN|为定值?若存在,请求出点N 的坐标;若不存在,请说明理由. 解析 (1)设D (23,y 0),由题意得{k DA ·k DB =y 023+a ·y 023-a =-14,12×2a ×|y 0|=4√23,49a 2+y 02b 2=1,∴{b 2=1,a 2=4, ∴椭圆C 的方程为x 24+y 2=1.(2)假设存在这样的点N,设直线PM 与x 轴相交于点T(x 0,0),由题意得TP ⊥BQ,由(1)得A(-2,0),B(2,0),设P (23,t),t ≠0,Q(x 1,y 1),由题意可设直线AP 的方程为x=my-2,由{x =my -2,x 24+y 2=1得(m 2+4)y 2-4my=0,∴y 1=4m m 2+4或y 1=0(舍去),x 1=2m 2-8m 2+4,∵23=mt-2,∴t=83m ,∵TP⊥BQ,∴TP ⃗⃗⃗⃗⃗ ·BQ ⃗⃗⃗⃗⃗ =(23-x 0)(x 1-2)+ty 1=0,∴x 0=23+ty 1x 1-2=23+83m ·4m m 2+4·m 2+4-16=0, ∴直线PM 过定点T(0,0), ∴存在定点N(1,0),使得|MN|=1.。
高三二轮复习:圆锥曲线(教师)
高三数学二轮复习——圆锥曲线的综合一、直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.二、有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.三、圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2.②A (m ,n )为一定点,则|PA |+|PF |有最小值. 小题一览例1、(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 答案 D 解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18. 例2、 (2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .-3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33).例3、 (2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线PA 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线PA 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38. 同理,当直线PA 2的斜率为-1时,直线PA 2方程为y =-(x -2), 代入椭圆方程, 消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.例4、 (2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△FAB的周长最大时,△FAB 的面积是________.答案 3解析 直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.例5、(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______.答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0.∴x =13或x =3. 又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.综合题演练:题型一 圆锥曲线中的范围、最值问题例6、已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎪⎨⎪⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A +x B=62k1-3k2<0,x A x B=-91-3k 2>0,解得33<k <1.所以当33<k <1时,直线l 与双曲线的左支有两个交点.(3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-22.∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练(2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5 =2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例7、(2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q , 证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 2-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立, 所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 2,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎪⎫0,-74.故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, 所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 变式训练 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2.由题意得⎩⎪⎨⎪⎧ca =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例8、如图,椭圆的中心为原点O ,离心率e =22,且a 2c=22.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上. 解 (1)由e =c a=22,a 2c=22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4, 故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2252+y 2102=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =252-102=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0), 所以DQ →=(x -x 0,y ),DP →=(0,y 0), 又DQ →=23DP →,故⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,因为P 在圆O 上,故有x 20+y 20=9, 所以x 2+⎝ ⎛⎭⎪⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎪⎨⎪⎧ x 1+x 22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎪⎨⎪⎧x 219+y 214=1,x 229+y224=1,两式相减,得x 1-x 2x 1+x 29+y 1-y 2y 1+y 24=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.例9、抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分] 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2, y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·-2--2-2|22+-12=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4·-4=410. 于是,△ABP 面积的最大值为12×410×455=82.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值. 课后练习:1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于( )A .1B .2C .3D .4 答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM . ∴M 为焦点,即p 2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ) A .-2B .-8116C .1D .0 答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y 2b 2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为 ( ) A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|PA |=m |PB |,则m 的最大值为( ) A .3B .2C.3D.2答案 C解析 据已知设P (x ,y ), 则有m =|PA ||PB |=x +12+y 2x -12+y 2=x +12+2x x -12+2x=x 2+4x +1x 2+1=1+4xx 2+1=1+4x +1x,据基本不等式有m = 1+4x +1x≤ 1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b 2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23. 7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2, 所以|AB |·|CD |=x 1x 2=y 214·y 224=y 1y 2216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,22B.⎝ ⎛⎦⎥⎥⎤0,33C.⎣⎢⎢⎡⎭⎪⎪⎫22,1D.⎣⎢⎢⎡⎭⎪⎪⎫33,1解析 设P ⎝ ⎛⎭⎪⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,当kQF 2存在时,则kF 1P =cya 2+c 2,kQF 2=cyb 2-2c 2,由kF 1P ·kQF 2=-1,得y 2=a 2+c 2·2c 2-b 2c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c-c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎢⎢⎡⎭⎪⎪⎫33,1.9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝ ⎛⎭⎪⎫-95,15解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x +27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝ ⎛⎭⎪⎫-95,15.10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎪⎫-1,14解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝ ⎛⎭⎪⎫-1,14即为所求点P 的坐标,此时|PF |+|PA |最小.11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥l ′, 抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交 A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32 解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值. 解 (1)设F (-c,0),由c a=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c , 代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b3, 于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =x -02+y -22=x 2+y -22=3b 2-3y 2+y -22=-2y +12+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2≤⎝ ⎛⎭⎪⎫1m 2+n2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝ ⎛⎭⎪⎪⎫62,22,⎝ ⎛⎭⎪⎪⎫62,-22,⎝ ⎛⎭⎪⎪⎫-62,22或⎝ ⎛⎭⎪⎪⎫-62,-22,此时△OAB 的面积为12.。
2023年高考数学微专题练习专练55高考大题专练五圆锥曲线的综合运用含解析理
专练55 高考大题专练(五) 圆锥曲线的综合运用1.[2021·全国乙卷]已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求△PAB的最大值.2.[2022·全国甲卷(理),20]设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.3.[2022·全国乙卷(理),20]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT →=TH →.证明:直线HN 过定点.4.[2022·江西省高三联考]已知曲线C 上任意一点到点F (2,0)的距离比它到y 轴的距离大2,过点F (2,0)的直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的方程;(2)若曲线C 在A ,B 处的切线交于点M ,求△MAB 面积的最小值.5.[2022·江西省宜春模拟]已知点T 是圆A :(x -1)2+y 2-8=0上的动点,点B (-1,0),线段BT 的垂直平分线交线段AT 于点S ,记点S 的轨迹为曲线C .(1)求曲线C 的方程;(2)过B (-1,0)作曲线C 的两条弦DE ,MN ,这两条弦的中点分别为P ,Q ,若DE →·MN →=0,求△BPQ 面积的最大值.专练55 高考大题专练(五) 圆锥曲线的综合运用1.解析:(1)由题意知M (0,-4),F ⎝ ⎛⎭⎪⎫0,p 2,圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(技巧点拨:F 与圆M 上点的距离的最小值为|MF |-r ,最大值为|MF |+r )(2)由(1)知,抛物线方程为x 2=4y ,由题意可知直线AB 的斜率存在,设A ⎝ ⎛⎭⎪⎫x 1,x 21 4,B ⎝ ⎛⎭⎪⎫x 2,x 22 4,直线AB 的方程为y =kx +b ,联立得⎩⎪⎨⎪⎧y =kx +b x 2=4y ,消去y 得x 2-4kx -4b =0,则Δ=16k 2+16b >0 (※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x 12,在点A 处的切线方程为y -x 21 4=x 12(x -x 1),即y =x 12x -x 214,(技巧点拔:因为抛物线方程为x 2=4y ,即y =x 24,所以想到利用导数的几何意义求切线方程)同理得抛物线在点B 处的切线方程为y =x 22x -x 224,联立得⎩⎪⎨⎪⎧y =x 12x -x 214y =x22x -x 224,则⎩⎪⎨⎪⎧x =x 1+x22=2k y =x 1x 24=-b ,即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※).(易错警示:由点P 在圆M 上,只得到了4k 2+(4-b )2=1,而忽视k ,b 的取值范围,导致得到错误答案)设点P 到直线AB 的距离为d ,则d =|2k 2+2b |1+k 2, 所以S △PAB =12|AB |·d =4(k 2+b )3.由①得,k 2=1-(4-b )24=-b 2+8b -154,令t =k 2+b ,则t =-b 2+12b -154,且3≤b ≤5.因为t =-b 2+12b -154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△PAB 面积的最大值为20 5.2.解析:(1)(方法一)由题意可知,当x =p 时,y 2=2p 2.设M 点位于第一象限,则点M 的纵坐标为2p ,|MD |=2p ,|FD |=p2.在Rt△MFD 中,|FD |2+|MD |2=|FM |2,即⎝ ⎛⎭⎪⎫p 22+(2p )2=9,解得p =2.所以C 的方程为y 2=4x .(方法二)抛物线的准线方程为x =-p2.当MD 与x 轴垂直时,点M 的横坐标为p . 此时|MF |=p +p2=3,所以p =2.所以抛物线C 的方程为y 2=4x .(2)设直线MN 的斜率为k 1,直线AB 的斜率为k 2,则k 1=tan α,k 2=tan β.由题意可得k 1≠0,k 2≠0.设M (x 1,y 1),N (x 2,y 2),y 1>0,y 2<0,A (x 3,y 3),B (x 4,y 4),y 3<0,y 4>0. 设直线AB 的方程为y =k 2(x -m ),m 为直线AB 与x 轴交点的横坐标,直线MN 的方程为y =k 1(x -1),直线MD 的方程为y =k 3(x -2),直线ND 的方程为y =k 4(x -2).联立得方程组⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x ,所以k 21 x 2-(2k 21+4)x +k 21 =0,则x 1x 2=1. 联立得方程组⎩⎪⎨⎪⎧y =k 2(x -m ),y 2=4x ,所以k 22 x 2-(2mk 22 +4)x +k 22 m 2=0,则x 3x 4=m 2.联立得方程组⎩⎪⎨⎪⎧y =k 3(x -2),y 2=4x ,所以k 23 x 2-(4k 23 +4)x +4k 23 =0,则x 1x 3=4.联立得方程组⎩⎪⎨⎪⎧y =k 4(x -2),y 2=4x ,所以k 24 x 2-(4k 24 +4)x +4k 24 =0,则x 2x 4=4.所以M (x 1,2x 1),N (1x 1,-2x 1),A (4x 1,-4x 1),B (4x 1,4x 1).所以k 1=2x 1x 1-1,k 2=x 1x 1-1,k 1=2k 2, 所以tan (α-β)=tan α-tan β1+tan αtan β=k 1-k 21+k 1k 2=k 21+2k 22 =11k 2+2k 2. 因为k 1=2k 2,所以k 1与k 2同号,所以α与β同为锐角或钝角.当α-β取最大值时,tan (α-β)取得最大值.所以k 2>0,且当1k 2=2k 2,即k 2=22时,α-β取得最大值.易得x 3x 4=16x 1x 2=m 2,又易知m >0,所以m =4.所以直线AB 的方程为x -2y -4=0.3.解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得⎩⎪⎨⎪⎧4n =1,94m +n =1,解得⎩⎪⎨⎪⎧m =13,n =14.所以椭圆E 的方程为x 23+y 24=1.(2)证明:(方法一)设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组⎩⎪⎨⎪⎧x -1=t (y +2),x 23+y 24=1.消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0, 所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t -84t 2+3. 设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0-32,得x 0=32y 1+3. 设H (x ′,y ′).由MT →=TH →,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2-y ′x 2-x ′=y 2-y 1x 2+x 1-(3y 1+6)=y 2-y 1t (y 1+y 2)-3y 1+4t -4,所以直线HN 的方程为y -y 2=y 2-y 1t (y 1+y 2)-3y 1+4t -4·(x -x 2).令x =0,得y =y 2-y 1t (y 1+y 2)-3y 1+4t -4·(-x 2)+y 2=(y 1-y 2)(ty 2+2t +1)t (y 1+y 2)-3y 1+4t -4+y 2=(2t -3)y 1y 2+(2t -5)(y 1+y 2)+6y 1t (y 1+y 2)-3y 1+4t -4=(2t -3)·16t 2+16t -84t 2+3+(5-2t )·16t 2+8t4t 2+3+6y 1-t (16t 2+8t )4t 2+3-3y 1+4t -4=-2.所以直线NH 过定点(0,-2).(方法二)由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2.a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1. 将直线方程x =1代入x 23+y 24=1,可得N (1,263),M (1,-263).将y =-263代入y =23x -2,可得T (3-6,-263).由MT →=TH →,得H (5-26,-263).此时直线HN 的方程为y =(2+263)(x -1)+263,则直线HN 过定点(0,-2).b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组⎩⎪⎨⎪⎧kx -y -(k +2)=0,x 23+y 24=1.消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以⎩⎪⎨⎪⎧x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则⎩⎪⎨⎪⎧y 1+y 2=-8(2+k )3k 2+4,y 1y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k3k 2+4.①联立得方程组⎩⎪⎨⎪⎧y =y 1,y =23x -2,可得T (3y 12+3,y 1).由MT →=TH →,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2).将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.② 将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立. 综上可得,直线HN 过定点(0,-2).4.解析:(1)设曲线C 上任意一点P 的坐标为(x ,y ),则有:(x -2)2+y 2=|x |+2, 当x ≥0时,有y 2=8x ;当x <0时,有y =0, 所以曲线的方程为y 2=8x (x ≥0)或y =0(x <0).(2)由题意设l 的方程为x =my +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +2,y 2=8x ⇒y 2-8my -16=0,∴Δ>0⇒m ∈R ,y 1+y 2=8m ,y 1y 2=-16, ∴|AB |=1+m2(y 1+y 2)2-4y 1y 2=8(1+m 2),设切线MA 的方程为y -y 1=k (x -x 1)(k ≠0),由⎩⎪⎨⎪⎧y -y 1=k (x -x 1),y 2=8x ⇒y 2-8k y +8y 1k -8x 1=0,∴Δ=0⇒ky 1=4,∴切线MA 的方程为y -y 1=4y 1(x -x 1),化简得yy 1=4(x +x 1)=4x +y 212, ①同理可得切线MB 的方程为yy 2=4(x +x 2)=4x +y 222, ②由①②得点M 的坐标为M (-2,4m ),∴点M 到直线l 的距离d =|-2-4m 2-2|1+m2=41+m 2, ∴S △MAB =12|AB |·d =16(1+m 2)32≥16,当且仅当m =0时等号成立,故△MAB 面积的最小值为16.5.解析:(1)圆A :(x -1)2+y 2=8的圆心A (1,0),半径r =22,依题意,|SB |=|ST |,|SB |+|SA |=|ST |+|SA |=|AT |=22>2=|AB |,即点S 的轨迹是以B ,A 为左右焦点,长轴长为22的椭圆,短半轴长b =(2)2-12=1, 所以曲线C 的方程为x 22+y 2=1.(2)由DE →·MN →=0知,DE ⊥MN ,直线DE ,MN 不垂直坐标轴,否则点P ,Q 之一与点B 重合,不能构成三角形,即直线DE 的斜率存在且不为0,设直线DE 方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 2+2y 2=2消去y 并整理得(2k 2+1)x 2+4k 2x +2k 2-2=0,设D (x 1,y 1),E (x 2,y 2),DE 中点P (x P ,y P ),则有x 1+x 2=-4k 22k 2+1,x P =-2k 22k 2+1,y P =k2k 2+1,因此,|BP |=(1-2k 22k 2+1)2+(k 2k 2+1)2=k 2+12k 2+1,直线MN 的斜率为-1k ,同理可得|BQ |=|k |k 2+1k 2+2,△BPQ 面积S △BPQ =12|BP ||BQ |=12·k 2+12k 2+1·|k |k 2+1k 2+2=|k |+1|k |4(|k |+1|k |)2+2,令t =|k |+1|k |≥2,当且仅当|k |=1时取“=”,则S △BPQ =t 4t 2+2=14t +2t,函数y =4t +2t 在[2,+∞)上单调递增,即当t =2时,(4t +2t)min =9,所以当t =2,即k =±1时,(S △BPQ )max =19,所以△BPQ 面积的最大值是19.。
圆锥曲线的综合问题课件
圆锥曲线在生活中的应用和价值
展望未来研究方向
探索圆锥曲线在各个领域的应用前景
关注圆锥曲线研究的最新进展和趋势
深入研究圆锥曲线的性质和几何特征
探讨圆锥曲线与其他数学分支的联系与融合
汇报人:
感谢观看
立体与圆锥曲线的交点求解方法
典型例题的解析与讨论
立体与圆锥曲线的最值问题
定义:最值问题是指求解某个函数在一定范围内的最大值或最小值
解题方法:常用的解题方法有代数法、几何法、三角法等
注意事项:在解题过程中需要注意函数的定义域、取值范围等限制条件
分类:根据不同的分类标准,可以分为不同的类型
06
圆锥曲线在实际问题中的应用
椭圆
双曲线
抛物线
圆锥曲线的一般方程
03
圆锥曲线与直线的综合问题
直线与圆锥曲线的关系
直线与圆锥曲线的基本性质
直线与圆锥曲线的位置关系
直线与圆锥曲线的交点求解
直线与圆锥曲线的综合应用
直线与圆锥曲线的交点问题
直线与圆锥曲线的基本性质
直线与圆锥曲线的交点求解方法
直线与圆锥曲线交点的应用
直线与圆锥曲线交点问题的注意事项
,a click to unlimited possibilities
圆锥曲线的综合问题课件
目录
01
添加目录标题
02
圆锥曲线的定义和性质
03
圆锥曲线与直线的综合问题
04
圆锥曲线与平面的综合问题
05
圆锥曲线与立体的综合问题06圆锥来自线在实际问题中的应用07
总结与展望
01
添加章节标题
02
圆锥曲线的定义和性质
直线与圆锥曲线的最值问题
2023年高考数学(文科)一轮复习讲义——圆锥曲线的综合问题 第一课时 定点问题
第一课时 定点问题题型一 直线过定点问题例1 (2020·全国Ⅰ卷)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB →=8,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.(1)解 由题设得A (-a ,0),B (a ,0),G (0,1). 则AG→=(a ,1),GB →=(a ,-1). 由AG →·GB →=8,得a 2-1=8, 解得a =3或a =-3(舍去). 所以椭圆E 的方程为x 29+y 2=1.(2)证明 设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 易知直线P A 的方程为y =t9(x +3), 所以y 1=t9(x 1+3).易知直线PB 的方程为y =t3(x -3), 所以y 2=t3(x 2-3).可得3y 1(x 2-3)=y 2(x 1+3).① 由于x 229+y 22=1, 故y 22=-(x 2+3)(x 2-3)9,②由①②可得27y 1y 2=-(x 1+3)(x 2+3), 结合x =my +n ,得(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.③ 将x =my +n 代入x 29+y 2=1, 得(m 2+9)y 2+2mny +n 2-9=0. 所以y 1+y 2=-2mnm 2+9,y 1y 2=n 2-9m 2+9.代入③式,得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2(m 2+9)=0. 解得n =-3(舍去)或n =32. 故直线CD 的方程为x =my +32, 即直线CD 过定点⎝ ⎛⎭⎪⎫32,0.若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0.综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0.感悟提升 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.训练1 已知点P ⎝ ⎛⎭⎪⎫-1,32是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左、右焦点,|PF 1|+|PF 2|=4. (1)求椭圆C 的标准方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线P A 与直线PB 的斜率之和为1,问:直线l 是否过定点?证明你的结论. 解 (1)由|PF 1|+|PF 2|=4,得a =2, 又P ⎝ ⎛⎭⎪⎫-1,32在椭圆上,代入椭圆方程有1a 2+94b 2=1,解得b =3,所以椭圆C 的标准方程为x 24+y 23=1. (2)当直线l 的斜率不存在时, 设A (x 1,y 1),B (x 1,-y 1),k 1+k 2=y 1-32-y 1-32x 1+1=1,解得x 1=-4,与椭圆无交点,不符合题意;当直线l 的斜率存在时,设直线l 的方程y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2-12=0,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2, Δ=48(4k 2-m 2+3)>0. 由k 1+k 2=1,整理得(2k -1)x 1x 2+⎝ ⎛⎭⎪⎫k +m -52(x 1+x 2)+2m -4=0,即(m -4k )(2m -2k -3)=0.当m =k +32时,此时,直线l 过P 点,不符合题意;当m =4k 时,Δ=4k 2-m 2+3>0有解,此时直线l :y =k (x +4)过定点(-4,0).题型二 圆过定点问题例2 (2021·湖南三湘名校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b ≥1)的离心率为22,它的上焦点到直线bx +2ay -2=0的距离为23. (1)求椭圆C 的方程;(2)过点P ⎝ ⎛⎭⎪⎫13,0的直线l 交椭圆C 于A ,B 两点,试探究以线段AB 为直径的圆是否过定点.若过,求出定点坐标;若不过,请说明理由. 解 (1)由题意得,e =c a =22. 又a 2=b 2+c 2, 所以a =2b ,c =b . 又|2ac -2|4a 2+b 2=23,a >b ≥1,所以b 2=1,a 2=2, 故椭圆C 的方程为y 22+x 2=1.(2)当AB ⊥x 轴时,以线段AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -132+y 2=169.当AB ⊥y 轴时,以线段AB 为直径的圆的方程为x 2+y 2=1. 可得两圆交点为Q (-1,0).由此可知,若以线段AB 为直径的圆过定点,则该定点为Q (-1,0). 下证Q (-1,0)符合题意. 设直线l 的斜率存在,且不为0, 其方程设为y =k ⎝ ⎛⎭⎪⎫x -13,代入y 22+x 2=1,并整理得(k 2+2)x 2-23k 2x +19k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 23(k 2+2),x 1x 2=k 2-189(k 2+2), 所以QA →·QB →=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+k 2⎝ ⎛⎭⎪⎫x 1-13⎝ ⎛⎭⎪⎫x 2-13 =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫1-13k 2(x 1+x 2)+1+19k 2=(1+k 2)·k 2-189(k 2+2)+⎝⎛⎭⎪⎫1-13k 2·2k 23(k 2+2)+1+19k 2 =0.故QA→⊥QB →,即Q (-1,0)在以线段AB 为直径的圆上.综上,以线段AB 为直径的圆恒过定点(-1,0).感悟提升 1.定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k =0或k 不存在时.2.圆过定点问题,一般从圆的直径所对的圆心角为直角入手,利用垂直关系找到突破口,从而解决问题.训练2 (2022·江西红色七校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为22,且椭圆上一点到两个焦点的距离之和为2 2. (1)求椭圆C 的标准方程;(2)过点S ⎝ ⎛⎭⎪⎫-13,0的动直线l 交椭圆C 于A ,B 两点,试问:在x 轴上是否存在一个定点T ,使得无论直线l 如何转动,以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 解 (1)由椭圆的定义可得2a =22, 则a =2,∵椭圆C 的离心率e =c a =22, ∴c =1,则b =a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),由⎩⎪⎨⎪⎧x =my -13,y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立, 则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T , 则TA ⊥TB ,TA →=⎝ ⎛⎭⎪⎫my 1-t -13,y 1,TB →=⎝ ⎛⎭⎪⎫my 2-t -13,y 2,则TA →·TB →=⎝ ⎛⎭⎪⎫my 1-t -13⎝ ⎛⎭⎪⎫my 2-t -13+y 1y 2 =(m 2+1)y 1y 2-m ⎝ ⎛⎭⎪⎫t +13(y 1+y 2)+⎝ ⎛⎭⎪⎫t +132=-16(m 2+1)-m ⎝ ⎛⎭⎪⎫t +13×12m18m 2+9+⎝ ⎛⎭⎪⎫t +132 =⎝ ⎛⎭⎪⎫t +132-(12t +20)m 2+1618m 2+9=0, ∵点T 为定点,∴t 为定值,与m 无关, ∴12t +2018=169,解得t =1,此时TA →·TB→=⎝ ⎛⎭⎪⎫432-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0). 综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .圆锥曲线中的“伴侣点”问题在圆锥曲线的很多性质中,常常出现一对活跃的点A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0,这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲线许多有趣的性质. 例 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),设A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0(0<m <a )是x 轴上的两点,过点A 作斜率不为0的直线l ,使得l 交双曲线于C ,D 两点,作直线BC 交双曲线于另一点E .证明:直线DE 垂直于x 轴. 证明 设点C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 则直线l 的方程为y =y 1x 1-m(x -m ). 把直线l 的方程代入双曲线方程,整理得(b 2x 21-a 2y 21-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2y 21m 2-a 2b 2(x 1-m )2=0, 由b 2x 21-a 2y 21=a 2b 2(点C 在双曲线上),上面方程可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2[(y 21+b 2)m 2+b 2x 21-2b 2mx 1]=0, 又因为b 2x 21-a 2y 21=a 2b 2, 所以a 2(y 21+b 2)=b 2x 21,代入上式,方程又可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -b 2x 21m 2-a 2b 2x 21+2a 2b 2mx 1=0,由已知,显然a 2b 2-2b 2mx 1+b 2m 2≠0,于是x 1x 2=-x 21m 2+a 2x 21-2a 2mx 1a 2-2mx 1+m 2,因为x 1≠0,得x 2=-x 1m 2+a 2x 1-2a 2ma 2-2mx 1+m 2(*) 同理,直线BC 的方程为y =y 1x 1-a 2m ⎝ ⎛⎭⎪⎫x -a 2m , 所以只要把(*)中m 换成a 2m,就可以得到x 3=-x 1⎝ ⎛⎭⎪⎫a 2m 2+a 2x 1-2a 2a 2m a 2-2a 2m x 1+⎝ ⎛⎭⎪⎫a 2m 2=-x 1m 2+a 2x 1-2a 2m a 2-2mx 1+m 2, 所以x 2=x 3,故直线DE 垂直于x 轴.1.已知抛物线C 的顶点在原点,焦点在坐标轴上,点A (1,2)为抛物线C 上一点. (1)求抛物线C 的方程;(2)若点B (1,-2)在抛物线C 上,过点B 作抛物线C 的两条弦BP 与BQ ,如k BP ·k BQ =-2,求证:直线PQ 过定点.(1)解 若抛物线的焦点在x 轴上,设抛物线方程为y 2=ax ,代入点A (1,2),可得a =4,所以抛物线方程为y 2=4x .若抛物线的焦点在y 轴上,设抛物线方程为x 2=my ,代入点A (1,2),可得m =12,所以抛物线方程为x 2=12y .综上所述,抛物线C 的方程是y 2=4x 或x 2=12y .(2)证明 因为点B (1,-2)在抛物线C 上,所以由(1)可得抛物线C 的方程是y 2=4x .易知直线BP ,BQ 的斜率均存在,设直线BP 的方程为y +2=k (x -1),将直线BP 的方程代入y 2=4x ,消去y ,得 k 2x 2-(2k 2+4k +4)x +(k +2)2=0.设P (x 1,y 1),则x 1=(k +2)2k 2,所以P ⎝⎛⎭⎪⎫(k +2)2k 2,2k +4k . 用-2k 替换点P 坐标中的k ,可得Q ((k -1)2,2-2k ),从而直线PQ 的斜率为2k +4k -2+2k(k +2)2k 2-(k -1)2=2k 3+4k-k 4+2k 3+4k +4=2k-k 2+2k +2,故直线PQ 的方程是 y -2+2k =2k -k 2+2k +2·[x -(k -1)2]. 在上述方程中,令x =3,解得y =2, 所以直线PQ 恒过定点(3,2).2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),且经过点A ⎝ ⎛⎭⎪⎫3,12.(1)求椭圆C 的标准方程;(2)过点B (4,0)作一条斜率不为0的直线l 与椭圆C 相交于P ,Q 两点,记点P 关于x 轴对称的点为P ′.证明:直线P ′Q 经过x 轴上一定点D ,并求出定点D 的坐标.(1)解 由椭圆的定义,可知 2a =|AF 1|+|AF 2|=(23)2+⎝ ⎛⎭⎪⎫122+12=4.解得a =2.又b 2=a 2-(3)2=1.∴椭圆C 的标准方程为x 24+y 2=1. (2)证明 由题意,设直线l 的方程为 x =my +4(m ≠0).设P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1).由⎩⎨⎧x =my +4,x 24+y 2=1,消去x ,可得(m 2+4)y 2+8my +12=0. ∵Δ=16(m 2-12)>0,∴m 2>12. ∴y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.∵k P ′Q =y 2+y 1x 2-x 1=y 2+y 1m (y 2-y 1).∴直线P ′Q 的方程为 y +y 1=y 2+y 1m (y 2-y 1)(x -x 1).令y =0,可得x =m (y 2-y 1)y 1y 1+y 2+my 1+4.∴x =2my 1y 2y 1+y 2+4=2m ·12m 2+4-8m m 2+4+4=24m-8m+4=1.∴D (1,0).∴直线P ′Q 经过x 轴上定点D ,其坐标为(1,0).3.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求kk 1的值;(2)当k 变化时,求证:直线MN 恒过定点,并求出该定点的坐标.(1)解 设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0), 直线l 与直线l 1的交点为(0,1),所以l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0, 由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,①由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得⎩⎪⎨⎪⎧y =x 0+1,y 0=x +1,所以kk 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1. (2)证明 由⎩⎨⎧y =kx +1,x 24+y 2=1,得 (4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),所以x M =-8k 4k 2+1,所以y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2. k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k4+k 2 =8-8k 48k (3k 2-3)=-k 2+13k , 直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k ⎝ ⎛⎭⎪⎪⎫x --8k 4k 2+1, 即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.所以当k 变化时,直线MN 过定点⎝ ⎛⎭⎪⎫0,-53. 4.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是双曲线C 2:x 2m 2-y 2=1的左、右焦点,且C 1与C 2相交于点⎝ ⎛⎭⎪⎫233,33. (1)求椭圆C 1的标准方程;(2)设直线l :y =kx -13与椭圆C 1交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.解 (1)将⎝ ⎛⎭⎪⎫233,33代入x 2m 2-y 2=1,解得m 2=1, ∴a 2=m 2+1=2,将⎝ ⎛⎭⎪⎫233,33代入x 22+y 2b 2=1,解得b 2=1,∴椭圆C 1的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1,整理得(9+18k 2)x 2-12kx -16=0, ∴x 1+x 2=12k 9+18k 2,x 1x 2=-169+18k 2, Δ=144k 2+64(9+18k 2)>0.由对称性可知,以AB 为直径的圆若恒过定点,则定点必在y 轴上. 设定点为M (0,y 0),则MA →=(x 1,y 1-y 0),MB →=(x 2,y 2-y 0) MA →·MB →=x 1x 2+(y 1-y 0)(y 2-y 0) =x 1x 2+y 1y 2-y 0(y 1+y 2)+y 20=x 1x 2+k 2x 1x 2-k 3(x 1+x 2)-y 0⎣⎢⎡⎦⎥⎤k (x 1+x 2)-23+19+y 20 =(1+k 2)x 1x 2-k ⎝ ⎛⎭⎪⎫13+y 0(x 1+x 2)+y 20+23y 0+19 =18(y 20-1)k 2+9y 20+6y 0-159+18k 2=0,∴⎩⎪⎨⎪⎧y 20-1=0,9y 20+6y 0-15=0,解得y 0=1, ∴M (0,1),∴以线段AB 为直径的圆恒过定点(0,1).。
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
2020版高考数学(浙江专用)一轮总复习检测:10.6 圆锥曲线的综合问题 含解析
10.6圆锥曲线的综合问题挖命题【考情探究】分析解读 1.圆锥曲线的综合问题是高考的热点之一,主要考查两大问题:一是根据条件求出平面曲线的方程;二是通过方程研究平面曲线的性质.2.考查点主要有:(1)圆锥曲线的基本概念和性质;(2)与圆锥曲线有关的最值、对称、位置关系等综合问题;(2)有关定点、定值问题,以及存在性等探索性问题.3.预计2020年高考试题中,圆锥曲线的综合问题仍是压轴题之一,复习时应高度重视.炼技法【方法集训】方法1圆锥曲线中的最值和范围问题的求解方法1.(2018浙江9+1高中联盟期中,21)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:+=作两条切线,分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(1)求证:k1k2为定值;(2)求四边形OPMQ面积的最大值.解析(1)证明:因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,=,可知k1,k2是方程(3-2)k2-6x0y0k+3-2=0的两个不相等的实数根,所以3-2≠0,k 1k2=,因为点M(x0,y0)在椭圆C上,所以=1-,所以k1k2==-.(2)易知直线OP,OQ都不能落在坐标轴上,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以+1=0,即=,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以==,整理得+=2,所以+=1,所以OP2+OQ2=3.因为S四边形OPMQ= (OP+OQ)·=(OP+OQ),OP+OQ≤=,所以S四边形OPMQ的最大值为1.2.(2018浙江台州高三期末质检,21,15分)已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,左顶点为A,点P(,)在椭圆C上,且△PF1F2的面积为2.(1)求椭圆C的方程;(2)过原点O且与x轴不重合的直线交椭圆C于E,F两点,直线AE,AF分别与y轴交于点M,N.求证:以MN为直径的圆恒过焦点F1,F2,并求出△F1MN面积的取值范围.解析(1)∵=×2c×=2,∴c=2,(2分)又点P(,)在椭圆C上,∴+=1,∴a4-9a2+8=0,解得a2=8或a2=1(舍去),又a2-b2=4,∴b2=4,∴椭圆C的方程为+=1.(5分)(2)由(1)可得A(-2,0),F1(-2,0),F2(2,0),当直线EF的斜率不存在时,E,F为短轴的两个端点,不妨设M(0,2),N(0,-2), ∴F1M⊥F1N,F2M⊥F2N,∴以MN为直径的圆恒过焦点F 1,F2.(7分)当直线EF的斜率存在且不为零时,设直线EF的方程为y=kx(k≠0),设点E(x0,y0)(不妨设x0>0),则点F(-x0,-y0),由消去y得x2=,∴x0=,y0=,∴直线AE的方程为y=(x+2),∵直线AE与y轴交于点M,∴令x=0,得y=,即点M,同理可得点N,∴=,=,∴·=0,∴F1M⊥F1N,同理,F2M⊥F2N,则以MN为直径的圆恒过焦点F1,F2,(12分)当直线EF的斜率存在且不为零时,|MN|===2·>4,∴△F1MN的面积S=|OF1|·|MN|>4,又当直线EF的斜率不存在时,|MN|=4,∴△F1MN的面积为|OF1|·|MN|=4,∴△F1MN面积的取值范围是[4,+∞).(15分)方法2 定点、定值问题的求法1.(2017浙江镇海中学模拟卷(四),21)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到其焦点的距离的最小值为1.(1)求a,b的值;(2)过点P(3,0)作直线l交C于A,B两点,①求△AOB面积S的最大值;②设Q为线段AB上的点,且满足=,证明:点Q的横坐标x Q为定值.解析(1)由题意知,所以a=2,c=1,因此b==,故a=2,b=.(4分)(2)显然直线l的斜率存在且不为0,故可设l:y=k(x-3)(k≠0),联立消去y,并整理,得(3+4k2)x2-24k2x+36k2-12=0,其中Δ=48(3-5k2)>0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1·x2=.(6分)①原点O到直线l的距离d=,|AB|=|x1-x2|=·,所以S△AOB=|AB|·d=6·|k|·=6·.(8分)设t=,则k2=,其中t∈,则S=6·=·≤·=.当且仅当9-27t=27t-5,即t=时,取等号.(10分)故△AOB面积S的最大值为.②证明:设==λ,则=-λ,=λ,(12分)所以3-x1=-λ(x2-3),x Q-x1=λ(x2-x Q),消去λ得,x Q===,故点Q的横坐标x Q为定值.(15分)2.(2017浙江五校联考(5月),21)如图,已知椭圆Γ:+=1(a>b>0)经过不同的三点A,B,C(C在第三象限),线段BC的中点在直线OA上.(1)求椭圆Γ的方程及点C的坐标;(2)设点P是椭圆Γ上的动点(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,问|OM|·|ON|是不是定值?若是,求该值;若不是,请说明理由.解析(1)由点A,B在椭圆Γ上,得解得所以椭圆Γ的方程为+=1.设点C(m,n),则BC中点为,由已知,求得直线OA的方程为x-2y=0,从而m=2n-1.①又点C在椭圆Γ上,故2m2+8n2=5.②由①②得n= (舍去)或n=-,从而m=-,所以点C的坐标为.(2)设P(x0,y0),M(2y1,y1),N(2y2,y2).当x0≠-且x0≠-时,因为P,B,M三点共线,所以=,整理得y1=.因为P,C,N三点共线,所以=,整理得y2=.因为点P在椭圆Γ上,所以2+8=5,即=-4.从而y1y2=====.所以|OM|·|ON|=|y1|·|y2|=5|y1y2|=,为定值.当x0=-或x0=-时,易求得|OM|·|ON|=,为定值.综上,|OM|·|ON|是定值,为.方法3存在性问题的解法1.(2018浙江“七彩阳光”联盟期中,21)已知抛物线C1:x2=4y的焦点为F,过抛物线C2:y=-x2+3上一点M作抛物线C2的切线l,与抛物线C1交于A,B两点.(1)记直线AF,BF的斜率分别为k1,k2,若k1·k2=-,求直线l的方程;(2)是否存在正实数m,使得对任意点M,都有|AB|=m(|AF|+|BF|)成立?若存在,求出m的值;若不存在,请说明理由.解析(1)设M(x0,y0),由y=-+3,得y'=-,则切线l的斜率为k=-.切线l的方程为y=-(x-x0)+y0=-x++y0=-x-2y0+6+y0,即y=-x-y0+6.(3分)与x2=4y联立,消去y得x2+x0x+4y0-24=0.(4分)设A(x1,y1),B(x2,y2),则有x1+x2=-x0,x1x2=4y0-24,(5分)则y1+y2=-(x1+x2)-2y0+12=-2y0+12=-4y0+18,y1y2==,则由k1·k2=×===-,得5-28y0+23=0,解得y0=1或y0=.(8分)∵=-8(y0-3)≥0,∴y0≤3,故y0=1,∴x0=±4.则直线l的方程为y=±x+5.(9分)(2)由(1)知直线l的方程为y=-x-y0+6,且x1+x2=-x0,x1x2=4y0-24,则|AB|=|x1-x2|=·=·,即|AB|=·=2(5-y0),(11分)而|AF|+|BF|=(y1+1)+(y2+1)=-4y0+20=4(5-y0),(13分)则|AB|=(|AF|+|BF|),(14分)故存在正实数m=,使得对任意点M,都有|AB|=(|AF|+|BF|)成立.(15分)2.(2017浙江镇海中学模拟卷(六),21)椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,M为椭圆C上任意一点,|MF1|-|MF2|的最大值为2,离心率为.(1)若N为椭圆C上任意一点,且F2M⊥F2N,求·的最小值;(2)若过椭圆C右焦点F2的直线l与椭圆C相交于A,B两点,且=3,试问:在椭圆C上是否存在点P,使得线段OP与线段AB 的交点恰为四边形OAPB的对称中心?若存在,求点P的坐标;若不存在,说明理由.解析(1)由题意知,∴故b=,∴椭圆C的方程是+=1,其右焦点F2的坐标为(1,0).∵·=·(+)=·+·=,∴===4-2.(2)由题意知,直线l的斜率不为0.假设符合条件的点P存在,则=+.设A(x1,y1),B(x2,y2),则点P的坐标为(x1+x2,y1+y2),根据=3,得(1-x1,-y1)=2(x2-1,y2),∴y1=-2y2.设直线l的方程为x=my+1,代入椭圆方程整理得(2m2+3)y2+4my-4=0,故y1+y2=-,y1y2=-.易得-y2=-,-2=-,消去y2,得=,解得m2=,即m=±.当m=时,y1+y2=-,x1+x2=m(y1+y2)+2=-+2=,此时P.当m=-时,y1+y2=,x1+x2=m(y1+y2)+2=-+2=,此时P.经检验,点,都在椭圆C上,故C上存在点P,使得线段OP与线段AB的交点恰为四边形OAPB的对称中心.过专题【五年高考】A组自主命题·浙江卷题组考点圆锥曲线的综合问题1.(2018浙江,21,15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.解析本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.(1)设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程=4·即y2-2y0y+8x0-=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知所以|PM|= (+)-x0=-3x0,|y1-y2|=2.因此,△PAB的面积S=|PM|·|y1-y2|=(-4x0.因为+=1(x0<0),所以-4x0=-4-4x0+4∈[4,5].因此,△PAB面积的取值范围是.疑难突破解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x、y轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.2.(2017浙江,21,15分)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.解析本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)解法一:联立直线AP与BQ的方程解得点Q的横坐标是x Q=.因为|PA|==(k+1),|PQ|=(x Q-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-.易知P(x,x2),则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+.∴|AP|·|PQ|=-x4+x2+x+.设f(x)=-x4+x2+x+,则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2,∴f(x)在上为增函数,在上为减函数,∴f(x)max=f(1)=.故|AP|·|PQ|的最大值为.方法总结在解析几何中,遇到求两线段长度之积的最值或取值范围时,一般用以下方法进行转化.1.直接法:求出各点坐标,用两点间的距离公式,转化为某个参变量(如直线斜率、截距,点的横、纵坐标等)的函数,再求函数的最值或值域.2.向量法:三点共线时,转化为两向量的数量积,再转化为动点的横(或纵坐标)的函数,最后求函数的最值或值域.3.参数法:把直线方程化为参数方程,与曲线方程联立,由根与系数的关系转化为直线的斜率(或直线的截距)的函数,最后求函数的最值或值域.3.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)证明:由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以点P到直线l1的距离的最大值为a-b.评析本题主要考查椭圆的几何性质、点到直线的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式的应用等综合解题能力.B组统一命题、省(区、市)卷题组考点圆锥曲线的综合问题1.(2018北京理,19,14分)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证: +为定值.解析(1)因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x,由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2),由(1)知x1+x2=-,x1x2=.直线PA的方程为y-2=(x-1).令x=0,得点M的纵坐标为y M=+2=+2.同理得点N的纵坐标为y N=+2.由=λ,=μ得λ=1-y M,μ=1-y N.所以+=+=+=·=·=2.所以+为定值.方法总结圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.2.(2017山东理,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l 的斜率.解析本题考查椭圆的方程,直线与椭圆、圆的位置关系,考查最值的求解方法和运算求解能力.(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=·.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|==.由题意可知sin==,而==,令t=1+2,则t>1,∈(0,1),因此=·=·=·≥1,当且仅当=,即t=2时等号成立,此时k1=±,所以sin≤,因此≤,所以∠SOT的最大值为.综上所述,∠SOT的最大值为,取得最大值时直线l的斜率k1=±.思路分析(1)由离心率和焦距,利用基本量运算求解;(2)联立直线l与椭圆方程,利用距离公式求|AB|,联立直线OC与椭圆方程求|OC|,进而建立sin与k1之间的函数关系,利用二次函数的性质求解.解题反思最值问题一般利用函数的思想方法求解,利用距离公式建立sin与k1之间的函数关系是解题关键.牢固掌握基础知识和方法是求解的前提.本题的完美解答体现了数学知识、能力、思想、方法的完美结合.3.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥.所以直线l的斜率的取值范围为∪.评析本题主要考查椭圆的标准方程和几何性质、直线方程、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.4.(2016北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.解析(1)由题意得解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=.直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=.所以|AN|·|BM|=·===4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.一题多解(2)点P在曲线+=1上,不妨设P(2cos θ,sin θ),当θ≠kπ且θ≠kπ+ (k∈Z)时,直线AP的方程为y-0=(x-2),令x=0,得y M=;直线BP的方程为y-1=(x-0),令y=0,得x N=.∴|AN|·|BM|=2·=2=2×2=4(定值).当θ=kπ或θ=kπ+ (k∈Z)时,M,N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4.评析本题考查椭圆的标准方程,直线与圆锥曲线的位置关系及定值问题,方法常规,运算量大,对学生的运算能力要求较高.5.(2016四川,20,13分)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解析(1)由题意得,a=b,则椭圆E的方程为+=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E的方程为+=1,点T的坐标为(2,1).(2)由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为,|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<.由②得x1+x2=-,x1x2=.所以|PA|==,同理|PB|=.所以|PA|·|PB|====m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.评析本题考查了直线与圆锥曲线相交的问题,这类题中常用的方法是方程法,并结合根与系数的关系,两点间的距离公式进行考查,难点是运算量比较大,注意运算技巧.6.(2015课标Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 解析(1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由得=,即x P=.将代入l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.评析本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.C组教师专用题组考点圆锥曲线的综合问题1.(2017山东文,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.解析本题考查椭圆的标准方程及圆锥曲线的相关最值.(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述,当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.方法总结求解圆锥曲线相关最值的常用方法:1.几何性质法;2.二次函数最值法;3.基本不等式法;4.三角函数最值法;5.导数法.2.(2017课标全国Ⅰ理,20,12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析本题考查了圆锥曲线的方程以及圆锥曲线与直线位置关系中的定点问题.(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,.则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).3.(2016山东,21,14分)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k',证明为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=2,所以a=2,b==.所以椭圆C的方程为+=1.(2)(i)证明:设P(x0,y0)(x0>0,y0>0). 由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k==,直线QM的斜率k'==-.此时=-3.所以为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=,可得x1=.所以y1=kx1+m=+m.同理x2=,y2=+m.所以x2-x1=-=,y2-y1=+m--m=,所以k AB===.由m>0,x0>0,可知k>0,所以6k+≥2,等号当且仅当k=时取得.此时=,即m=,符合题意.所以直线AB的斜率的最小值为.4.(2015山东,21,14分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知+=1,又=,解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m), 所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ的面积为3S,所以△ABQ面积的最大值为6.5.(2015陕西,20,12分)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.解析(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆E的方程为+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知可知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=.从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.评析本题考查椭圆标准方程与简单性质的同时,重点考查直线与椭圆的位置关系.6.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x,所以x M=,即M.(2)存在.因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|.因为x M=,x N=,+n2=1,所以=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ,点Q的坐标为(0,)或(0,-).7.(2015四川,20,13分)如图,椭圆E:+=1(a>b>0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点.当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.解析(1)由已知得,点(,1)在椭圆E上.因此,解得a=2,b=.所以椭圆E的方程为+=1.(2)当直线l与x轴平行时,设直线l与椭圆相交于C,D两点.如果存在定点Q满足条件,则有==1,即|QC|=|QD|.所以Q点在y轴上,可设Q点的坐标为(0,y0).当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,),(0,-).由=,有=,解得y0=1或y0=2.所以,若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2).下面证明:对任意直线l,均有=.当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立得得(2k2+1)x2+4kx-2=0.其Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.因此+==2k.易知,点B关于y轴对称的点B'的坐标为(-x2,y2).又k QA===k-,k QB'===-k+=k-,所以k QA=k QB',即Q,A,B'三点共线.所以===.故存在与P不同的定点Q(0,2),使得=恒成立.评析本题主要考查椭圆的标准方程与几何性质,直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.8.(2014重庆,21,12分)如图,设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(1)求该椭圆的标准方程;(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程.若不存在,请说明理由.解析(1)设F1(-c,0),F2(c,0),其中c2=a2-b2.由=2得|DF1|== c.从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2得|DF2|2=|DF1|2+|F1F2|2=,因此|DF2|=.所以2a=|DF1|+|DF2|=2,故a=,b2=a2-c2=1.因此,所求椭圆的标准方程为+y2=1.(2)如图,设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2.由圆和椭圆的对称性,易知,x2=-x1,y1=y2.由(1)知F1(-1,0),F2(1,0),所以=(x1+1,y1),=(-x1-1,y1).再由F1P1⊥F2P2得-(x1+1)2+=0.由椭圆方程得1-=(x1+1)2,即3+4x1=0,解得x1=-或x1=0.当x1=0时,P1,P2重合,不存在满足题设要求的圆.当x1=-时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1⊥F1P1,得·=-1.而y1=|x1+1|=,故y0=.圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.评析本题考查椭圆的标准方程、圆的方程的求法以及椭圆的几何性质,直线与圆的位置关系的应用.本题考查了学生分析问题,解决问题的能力、逻辑推理能力、运算求解能力以及利用分类讨论思想解决问题的能力.9.(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O 为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知, =,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.评析本题主要考查椭圆的标准方程、几何性质,直线的方程以及直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的综合问题,考查方程思想、函数思想、整体代换以及换元法的应用.考查学生的逻辑推理能力和运算求解能力.10.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0. 由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2.而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.11.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).评析本题主要考查椭圆的标准方程、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、转化与化归、分类与整合等数学思想.12.(2014江西,20,13分)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2-|MN1|2为定值,并求此定值.解析(1)证明:依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.设A(x1,y1),B(x2,y2),则有x1x2=-8,。
圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)
冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂互动讲 练
(5)参数法:当动点P(x,y)的坐 标之间的关系不易直接找到,也没 有相关点可用时,可考虑将x,y均 用一中间变量(参数)表示,得参数 方程,再消去参数得普通方程.
第13页/共58页
课堂互动讲 练
例1 已知 A(-1,0),B(1,4),在平面上 →→
动点 Q 满足QA·QB=4,点 P 是点 Q 关 于直线 y=2(x-4)的对称点,求动点 P 的轨迹方程.
(2)待定系数法:已知所求曲线
的类型,先根据条件设出所求曲线
的方程,再由条件确定其待定系
数.
第11页/共58页
课堂互动讲 练
(3)定义法:先根据条件得出动点的 轨迹是某种已知曲线,再由曲线的定义 直接写出动点的轨迹方程.
(4)相关点法:动点P(x,y)依赖于另 一动点Q(x0,y0)的变化而变化,并且 Q(x0,y0)又在某已知曲线上,则可先用 x,y的代数式表示x0,y0,再将x0,y0代 入已知曲线得要求的轨迹方程.
课堂互动讲 练
(3)列式——列出动点P所满足的 关系式.
→→
故 由QA·QB= 4 ⇒ (- 1- x)(1 - x)+ (-y)(4-y)=4,
即x2+(y-2)2=32(*)
设点P的坐标为P(u,v),
∵P、Q关于直线l:y=2(x-4)对
第18页/共58页
课堂互动讲
练
∴PQ 与直线 l 垂直,于是有
uv--xy=-12
①
因为 PQ 的中点在 l 上,所以有
基础知识梳 理
1.曲线与方程
一般地,在平面直角坐标系中,如果
某曲线C上的点与一个二元方程f(x,y)=0 的实数解建立了如下关系:这个方程的解
曲线
上的点(1)曲线上点的坐标都 曲线的方程
是
方程的曲.线
(2)以这个方程的解为坐标的点都是
.那么这个方程叫
第1页/共58页
基础知识梳 理
如果只满足第(2)个条件,会 出现什么情况?
第14页/共58页
课堂互动讲 练
【思路点拨】 由已知易得动 点Q的轨迹方程,然后找出P点与Q 点的坐标关系,代入即可.
【解】 法一:设 Q(x,y),
则Q→A=(-1-x,-y), Q→B=(1-x,4-y),
→→
故 由QA·QB= 4⇒ (- 1- x)(1- x) +(-y)(4-y)=4,
第15页/共58页
答案:2 6
第9页/共58页
三基能力强 化
5.设 P 为双曲线x42-y2=1 上一动点, O 为坐标原点,M 为线段 OP 的中点,则 点 M 的轨迹方程是______________.
答案:x2-4y2=1
第10页/共58页
课堂互动讲 练
考点一 求动点的轨迹方程
求轨迹方程的常用方法:
(1)直接法:直接利用条件建立 x,y之间的关系f(x,y)=0.
第3页/共58页
基础知识梳 理
(1)若a≠0,Δ=b2-4ac,则 两
①Δ>0,直线l与圆锥曲线有一 交点. ②Δ=0,直线l与圆锥曲线无有 公共
点.
平行
③Δ<0,直线平l与行圆锥曲线 公共点.
(2)若a=0,当圆锥曲线为双曲线时,l
与双曲线的渐近线 ;当圆锥曲线为抛物
线时,l与抛物线的对称轴
.
第4页/共58页
三基能力强 化
1.过点(2,4)作直线与抛物线y2= 8x只有一个公共点,这样的直线有
()
A.1条
B.2条
C.3条
D.4条
答案:B
第6页/共58页
三基能力强 化
2.已知两定点A(-2,0), B(1,0),如果动点P满足|PA|= 2|PB|,则点P的轨迹所围成的图形的 面积等于( )
A.π
B.4π
课堂互动讲
练
于是有xy00--20×2=-1
,
y0+2 2=2(x0+2 0-4)
即2y0y-0+2xx00- +41= 8=00 ⇒xy00==-8 2 .
故动点 P 的轨迹方程为(x-8)2+(y+
2)2=9.
第17页/共58页
课堂互动讲 练
法二:设 Q(x,y),
则Q→A=(-1-x,-y), Q→B=(1-x,4-y),
课堂互动讲 练
即x2+(y-2)2=32.
所以点Q的轨迹是以C(0,2)为圆 心,以3为半径的圆.
∵点P是点Q关于直线y=2(x- 4)的对称点.
∴动点P的轨迹是一个以 C0(x0,y0)为圆心,半径为3的圆, 其中C0(x0,y0)是点C(0,2)关于直线y = 2 ( x - 4 ) 的 对第称16页点/共5,8页即 直 线 y = 2 ( x
C.8π
D.9π
答案:B
第7页/共58页
三基能力强 化
3.直线
y=kx-k+1
与椭圆x2+y2 94
=1 的位置关系为( )
A.相交 C.相离 答案:A
B.相切 D.不确定
第8页/共58页
三基能力强 化
4.(2009 年高考上海卷)过点 A(1,0)
作倾斜角为π的直线,与抛物线 4
y2=2x
交于 M、N 两点,则|MN|=________.
【思考·提示】 若只满足“以 这个方程的解为坐标的点都是曲线 上的点”,则这个方程可能只是部 分曲线的方程,而非整个曲线的方 程,如分段函数的解析式.
第2页/共58页
基础知识梳 理
2.直线与圆锥曲线的位置关系 设直线 l:Ax+By+C=0,圆锥曲线: f(x,y)=0,由Af(xx,+yB)y=+0C,=0, 得 ax2 +bx+c=0.
y+2 v=2(x+2 u-4) ②
由①②可解得x=15(-3u+4v+32) , y=15(4u+3v-16)
第19页/共58页Fra bibliotek 课堂互动讲 练
代入方程(*)得 (-3u+4v+32)2+(4u+3v-26)2=(3×5)2, 化简得u2+v2-16u+4v+59=0 ⇒(u-8)2+(v+2)2=9. 故动点P的轨迹方程为(x-8)2+(y+2)2=32. 【规律小结】 求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹第2上0页/的共58任页 一点P(x,y).
基础知识梳 理
3.弦长公式
直线 l:y=kx+b,与圆锥曲线 C:F(x,y)=0
交于 A(x1,y1),B(x2,y2)两点,则|AB|= 1+k2 |x1- x2|= 1+k2· (x1+x2)2-4x1x2或 |AB|=
1+k12|y1-y2|=
1+k12 (y1+y2)2-4y1y2.
第5页/共58页