重庆市云阳县2020年初三中考预测卷无答案
2020年重庆市中考数学模拟试卷(含解析)
2020年重庆市中考数学模拟试卷含答案、选择题(本大题共 12小题,每题4分,共48分)李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(2.在 Rt^ABC 中,/ C=90 , BC=5, CA=12,贝U cosB=( )A.直角三角形B.等边三角形C.含60。
的任意三角形D.是顶角为钝角的等腰三角形4 .如图,在矩形 ABCD43,点E 在AB 边上,沿CE 折叠矢I 形ABCD 使点B 落在AD 边上的点 F 处,若 AB=4, BC=5,贝U tan/AFE 的值为()5 .若点(—5, yi), (—3, y2), (3, v3都在反比例函数 A. y i>y 2>y 3B. y 2>y i>y 3C. y 3>y i >y2 D. y i >y 3>y 26 .在平面直角坐标系中,△ ABC 顶点A (2, 3).若以原点O 为位似中心,画三角形 ABC 的位似图形4A' B' C',使△ ABC 与、A B' C'的相似比为三,则A'的坐标为()A.⑶卷)B 惇[ 5) C.⑶ 等或《词*号)D.亭6)或-6)7 .已知函数 尸G 图象如图,以下结论,其中正确有( )个:①mK 0;②在每个分支上y 随x 的增大而增大;③若A ( - i, a),点B (2, b)在图象上,则 av bA. C. D.1.A .C. 13D. 12 13(倔 ,-3)驾快呼B MI =q 则△ ABC 为图象上,则(④若P (x, y)在图象上,则点 Pl ( - x, - y)也在图象上.A. 4个B. 3个C. 2个D. 1个8 .从一栋二层楼的楼顶点 A 处看对面的教学楼,探测器显示,看到教学楼底部点C 处的俯角为45。
,看到楼顶部点 D 处的仰角为60。
,已知两栋楼之间的水平距离为 6米,则教学 楼的高CDb^ ()CA. (6+6 后)米B. (6+3^)米C. (6+靖)米D. 12 米9 .如图,正方形 ABCD 的边长为2, BE=CE MN=1线段MN 的两端点在 CD AD 上滑动,当 DM 为( )时,△ ABE 与以D M N 为顶点的三角形相似.A.亏B-T c 号或飞一0 一r 或飞一 100_k10 .如图,已知矩形 OABCT 积为——,它的对角线 O*双曲线 尸二"相交于D 且OB OD=5B. 12C. 24D. 36□ □□□□ □□ □ 分小 旦 工J J 'I * ,■/AX月□口A. 6A (1, 1) ,B (1, 5) ,C (3, 1),且双曲线△ ABC 有公共点,则k 的取值范围是()49A. 1<k<3B. 3<k<5C. K k< 5D. 1<k<— cS12 .如图,在四边形 ABCM, AB=AD=6 AB±BC, AD± CD, / BAD=60,点 M N 分别在 AB AD 边上,若 AM MB=AN ND=1 2,则 tan / MCN=()二、填空题:(每小题4分,共24分)13 .若& aan (x+10° ) =1,则锐角x 的度数为.k14 .如图:M 为反比例函数 尸『图象上一点,MALy 轴于A, S AMA =2时,k=I 7AA一O x15.如图,在^ ABC中,Z A=30° , / B=45 , AC=^,则 AB 的长为.16 .在平行四边形 ABCD^, E 是CD 上一点,DE EC=1: 3,连AE, BE, BD 且AE, BD 交于F,J11 .如图,已知平面直角坐标系中有点 BDC .A . 9Vs D. - 217.如图,第一角限内的点A在反比例函数y=q■的图象上,第四象限内的点B在反比例函k数尸^图象上,且。
重庆市2020年中考语文仿真模拟试卷解析版
中考语文仿真模拟试卷题号一二三四五六七总分得分一、单选题(本大题共5小题,共14.0分)1.下列加点字的注音有误的一项是( )A. 他斜睨双眼,狡黠(jié)的目光看着爸爸,脸上一副得意的神色。
B. 听到自己在比赛上取得了优越的成绩,王强变得亢(kàng)奋起来。
C. 远山的轮廓(kuò)在雨雾地遮掩下显得有些模糊。
D. 积极与健康为伴,消极同羸(léi)弱相随。
2.下列词语书写全部正确的一项是( )A. 秀颀酒肆悲天悯人契而不舍B. 婆娑滞笨踉踉跄跄怏怏不乐C. 栅栏仲裁相映成趣震聋发聩D. 怅然选聘骄揉造作根深蒂固3.下列句子中加点词语使用有误的一项是( )A. 诵读经典对传承中华民族的优秀文化,提升学生修养,陶冶学生情操的作用是不容置疑的。
B. “南海军演”示中国捍卫疆土的强大实力,那些不自量力挑衅我国主权的国家只会自取其辱。
C. 据调查:在各种不文明行为中,市民对不遵守交通法规乱闯红灯的行为深恶痛疾。
D. 实现中华民族伟大复兴梦不是一下子一蹴而就的,需要亿万中华儿女长期艰苦奋斗。
4.下列句子组成语段顺序排列正确的一项是( )①“好书不厌百回读,熟读深思子自知”,这两句诗值得每个读书人悬为座右铭。
②与其读十部无关轻重的书,不如以读十部书的时间和精力去读一部真正值得读的书。
③少读如果彻底,必能养成深思熟虑的习惯,涵泳优游,以至于变化气质。
④读书并不在多,最重要的是选得精,读得彻底。
⑤读书原为自己受用,多读不能算是荣誉,少读也不能算是羞耻。
A. ①②⑤③④B. ①②③⑤④C. ④②①⑤③D. ④②①③⑤5.下列对名著内容表述有误的一项是( )A. 《钢铁是怎样炼成的》作者尼古拉•奥斯特洛夫斯基在写作该书时,已经双目失明,全身瘫痪,这部书是他强忍病痛,在病榻上历时三年才写成的。
B. 作为我国四大古典名著之一的《水浒传》是一部以北宋末年宋江起义为题材的长篇章回体白话小说。
重庆2020中考模拟考试语文卷(解析版)
重庆市2020初中毕业暨高中招生模拟考试语文试题(全卷共四个大题,满分150分,考试时间120分钟)一、语文知识及运用(30分)1.下列词语中加点字注音全对..的一项是()(3分)A.污秽.(huì)荒谬.(miù)溯.流而上(suò)B.瑰.丽(guì)窥.伺(kuī)长途跋.涉(bá)C.庇.护(bì)铁锹.(qiū)呕心沥.血(ǒu)D.恬.静(tián)畸.形(jī)惟妙惟肖.(xiào)【答案】(3分)D【解析】试题分析:此类型的题目考查学生的理解识记能力,考查等级为A。
需要学生在平时多读课文,养成熟练地语感,注意读音,多积累词语,多读课下注释,多查字典等工具书。
A.溯.流而上suò-sùB.瑰.丽guì-guīC.铁锹.qiū-qiāo【考点定位】识记并正确书写现代汉语普通话常用字的字音。
能力层级为识记A。
2.下列词语书写无误..的一项是()(3分)A.狂澜篡夺诚皇诚恐B.和蔼元宵险象叠生C.松弛憔悴获益匪浅D.絮叨震憾贻笑大方【答案】(3分)C【考点定位】识记并正确书写现代常用规范汉字。
能力层级为识记A。
3.下列句子中加点成语运用不当..的一项是()(3分)A.聪明的重庆人因地制宜....,依山建楼,跨水筑桥,让重庆呈现出一种独特的美。
B.晚上,我悠闲地在花园里散步,明亮的路灯戛然而止....,四周一片漆黑,原来是停电了。
C.课间十分钟,班上的“开心果”张晓松使尽浑身解数....,搞怪逗乐,整个教室充满了快活的气氛。
D.留学生易文婷对故乡的思念与日俱增....,收看央视国际频道成了她每天的必修课。
【答案】(3分)B【解析】试题分析:“戛然而止”形容声音突然中止,用在这里不恰当。
【考点定位】正确使用成语(包括熟语)。
能力层级为表达运用E。
4.依次填入下列句子横线处的词语最恰当...的一项是()(3分)骤雨一样,是急促的鼓点;旋风一样,是的流苏;乱蛙一样,是蹦跳的脚步;火花一样,是的瞳仁;斗虎一样,是的风姿。
2020年重庆市中考数学模拟试卷(含解析)
2020年重庆市中考数学模拟试卷含答案一、选择题(本大题共12小题,每题4分,共48分)1.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是()A.B.C. D.2.在Rt△ABC中,∠C=90°,BC=5,CA=12,则cosB=()A.B.C.D.3.在△ABC中,,则△ABC为()A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形4.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()A.B.C.D.5.若点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数图象上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y26.在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A. B. C.D.7.已知函数图象如图,以下结论,其中正确有()个:①m<0;②在每个分支上y随x的增大而增大;③若A(﹣1,a),点B(2,b)在图象上,则a<b④若P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.A.4个B.3个C.2个D.1个8.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米9.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或10.如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6 B.12 C.24 D.3611.如图,已知平面直角坐标系中有点A(1,1),B(1,5),C(3,1),且双曲线y=与△ABC有公共点,则k的取值范围是()A.1≤k≤3 B.3≤k≤5 C.1≤k≤5 D.1≤k≤12.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2二、填空题:(每小题4分,共24分)13.若tan(x+10°)=1,则锐角x的度数为.14.如图:M为反比例函数图象上一点,MA⊥y轴于A,S△MAO=2时,k= .15.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.16.在平行四边形ABCD中,E是CD上一点,DE:EC=1:3,连AE,BE,BD且AE,BD交于F,则S△DEF:S△EBF:S△ABF= .17.如图,第一角限内的点A在反比例函数的图象上,第四象限内的点B 在反比例函数图象上,且OA⊥OB,∠OAB=60度,则k值为.18.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④CD2=CE•CA.其中正确的结论是(把你认为正确结论的序号都填上)三、解答题:(每小题7分,共14分,解答应写出文字说明,证明过程和演算步骤)19.﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+|﹣2|20.如图,在△ABC中,AD是BC边上的高,tanC=,AC=3,AB=4,求△ABC的周长.四.解答题:(每题10分,共40分,解答应写出文字说明,证明过程和演算步骤)21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.24.如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?五.解答题:(每题12分,共24分,解答应写出文字说明,证明过程和演算步骤)25.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.26.如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P 作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.参考答案与试题解析一、选择题(本大题共12小题,每题4分,共48分)1.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是()A.B.C. D.【考点】平行投影.【分析】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故不会是一点,即答案为D.【解答】解:根据平行投影的特点,矩形木框在地面上行程的投影不可能是一个圆点.故选D.2.在Rt△ABC中,∠C=90°,BC=5,CA=12,则cosB=()A.B.C.D.【考点】锐角三角函数的定义.【分析】先根据勾股定理求出AB=13,再根据三角函数的定义即可求得cosB的值.【解答】解:∵Rt△ABC中,∠C=90°,BC=5,CA=12,∴根据勾股定理AB==13,∴cosB==,故选C.3.在△ABC中,,则△ABC为()A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先结合绝对值以及偶次方的性质得出tanA﹣3=0,2cosB﹣=0,进而利用特殊角的三角函数值得出答案.【解答】解:∵(tanA﹣3)2+|2cosB﹣|=0,∴tanA﹣3=0,2cosB﹣=0,∴tanA=,cosB=,∠A=60°,∠B=30°,∴△ABC为直角三角形.故选:A.4.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()A.B.C.D.【考点】翻折变换(折叠问题);矩形的性质;锐角三角函数的定义.【分析】由四边形ABCD是矩形,可得:∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由折叠的性质可得:∠EFC=∠B=90°,CF=BC=5,由同角的余角相等,即可得∠DCF=∠AFE,然后在Rt△DCF中,即可求得答案.【解答】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.故选C.5.若点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数图象上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y2【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征,分别计算出y2、y1、y3的值,然后比较大小即可.【解答】解:当x=﹣5时,y1=﹣;当x=﹣3时,y2=﹣;当x=3时,y3=,所以y2<y1<y3.故选C.6.在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A. B. C.D.【考点】位似变换;坐标与图形性质.【分析】由于△ABC与△A′B′C′的相似比为,则是把△ABC放大倍,根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,于是把A(2,3)都乘以或﹣即可得到A′的坐标.【解答】解:∵△ABC与△A′B′C′的相似比为,∴△A′B′C′与△ABC的相似比为,∵位似中心为原点0,∴A′(2×,3×)或A′(﹣2×,﹣3×),即A′(3,)或A′(﹣3,﹣).故选C.7.已知函数图象如图,以下结论,其中正确有()个:①m<0;②在每个分支上y随x的增大而增大;③若A(﹣1,a),点B(2,b)在图象上,则a<b④若P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.A.4个B.3个C.2个D.1个【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】利用反比例函数的性质及反比例函数的图象上的点的坐标特征对每个小题逐一判断后即可确定正确的选项.【解答】解:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;②在每个分支上y随x的增大而增大,正确;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b,错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确,故选:B.8.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.9.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或【考点】相似三角形的判定;正方形的性质.【分析】根据AE=EB,△ABE中,AB=2BE,所以在△MNC中,分CM与AB和BE是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.10.如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6 B.12 C.24 D.36【考点】反比例函数系数k的几何意义.【分析】先找到点的坐标,然后再利用矩形面积公式计算,确定k的值.【解答】解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D, y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故选B.11.如图,已知平面直角坐标系中有点A(1,1),B(1,5),C(3,1),且双曲线y=与△ABC有公共点,则k的取值范围是()A.1≤k≤3 B.3≤k≤5 C.1≤k≤5 D.1≤k≤【考点】反比例函数图象上点的坐标特征.【分析】结合图形可知当双曲线过A点时k有最小值,当直线AB与与双曲线只有一个交点时k有最大值,从而可求得k的取值范围.【解答】解:若双曲线与△ABC有公共点,则双曲线向下最多到点a,向上最多到与直线AB 只有一个交点,当过点A时,把A点坐标代入双曲线解析式可得1=,解得k=1;当双曲线与直线BC只有一个交点时,设直线AB解析式为y=ax+b,∵B(1,5),C(3,1),∴把A、B两点坐标代入可得,解得,∴直线AB的解析式为y=﹣2x+7,联立直线AB和双曲线解析式得到,消去y整理可得2x2﹣7x+k=0,则该方程有两个相等的实数根,∴△=0,即(﹣7)2﹣8k=0,解得k=,∴k的取值范围为:1≤k≤.故选D.12.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【考点】全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理.【分析】连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥CN于E,则△MNA是等边三角形求得MN=2,设NE=x,表示出CE,根据勾股定理即可求得ME,然后求得tan∠MCN.【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.二、填空题:(每小题4分,共24分)13.若tan(x+10°)=1,则锐角x的度数为20°.【考点】特殊角的三角函数值.【分析】利用特殊角的三角函数值得出x+10°的值进而求出即可.【解答】解:∵tan(x+10°)=1,∴tan(x+10°)==,∴x+10°=30°,∴x=20°.故答案为:20°.14.如图:M为反比例函数图象上一点,MA⊥y轴于A,S△MAO=2时,k=﹣4.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S△AOM=|k|=2,然后根据k <0去绝对值得到k的值.【解答】解:∵AB⊥x轴,∴S△AOM=|k|=2,∵k<0,∴k=﹣4.故答案为﹣4.15.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.【考点】解直角三角形.【分析】过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.16.在平行四边形ABCD中,E是CD上一点,DE:EC=1:3,连AE,BE,BD且AE,BD交于F,则S△DEF:S△EBF:S△ABF=1:4:16.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由DE:EC=1:3得DE:DC=1:4,再根据平行四边形的性质得DC=AB,DC∥AB,则DE:AB=1:4,接着可证明△DEF∽△BAF,根据相似的性质得∴==,根据三角形面积公式可得=,根据相似三角形的性质可得=()2,于是可得S△DEF:S△EBF:S△ABF的值.【解答】解:∵DE:EC=1:3,∴DE:DC=1:4,∵四边形ABCD为平行四边形,∴DC=AB,DC∥AB,∴DE:AB=1:4,∵DE∥AB,∴△DEF∽△BAF,∴==,∴==, =()2=,∴S△DEF:S△EBF:S△ABF=1:4:6.17.如图,第一角限内的点A在反比例函数的图象上,第四象限内的点B 在反比例函数图象上,且OA⊥OB,∠OAB=60度,则k值为﹣6.【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,根据反比例函数图象上点的坐标特征,设A (a,),B(b,),再证明Rt△OAC∽Rt△BOD,根据相似的性质得==,而在Rt△AOB中,根据正切的定义得到tan∠OAB==,即==,然后利用比例性质先求出ab的值再计算k的值.【解答】解:作AC⊥y轴于C,BD⊥y轴于D,如图,设A(a,),B(b,),∵∠AOB=90°,∴∠AOC+∠DOB=90°,而∠AOC+∠OAC=90°,∴∠OAC=∠DOB,∴Rt△OAC∽Rt△BOD,∴==,∵在Rt△AOB中,tan∠OAB=tan60°==,∴==,即==,∴ab=2,∴k=﹣ab=﹣×2=﹣6.故答案为﹣6.18.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④CD2=CE•CA.其中正确的结论是①②③(把你认为正确结论的序号都填上)【考点】相似三角形的判定与性质;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的性质,由AB=AC得∠B=∠C,而∠ADE=∠B=α,则∠ADE=∠C,所以△ADE∽△ACD,于是可对①进行判断;作AH⊥BC于H,如图1,先证明△ABD∽△DCE,再利用余弦定义计算出BH=8,则BC=2BH=16,当BD=6时,可得AB=CD,则可判断△ABD≌△DCE,于是可对②进行判断;由于△DCE为直角三角形,分类讨论:当∠DEC=90°时,利用△ABD ∽△DCE得到∠ADB=∠DEC=90°,即AD⊥BC,易得BD=8,当∠EDC=90°,如图2,利用△ABD ∽△DCE得到∠DAB=∠EDC=90°,然后在Rt△ABD中,根据余弦的定义可计算出BD=,于是可对③进行判断;由于∠BAD=∠CDE,而AD不是∠BAC的平分线,可判断∠CDE与∠DAC 不一定相等,因此△CDE与△CAD不一定相似,这样得不到CD2=CE•CA,则可对④进行判断.【解答】解:∵AB=AC,∴∠B=∠C,而∠ADE=∠B=α,∴∠ADE=∠C,而∠DAE=∠CAD,∴△ADE∽△ACD,所以①正确;作AH⊥BC于H,如图1,∵∠ADC=∠B+∠BAD,∴∠BAD=∠CDE,而∠B=∠C,∴△ABD∽△DCE,∵AB=AC,∴BH=CH,在Rt△ABH中,∵cosB=cosα==,∴BH=×10=8,∴BC=2BH=16,当BD=6时,CD=10,∴AB=CD,∴△ABD≌△DCE,所以②正确;当∠DEC=90°时,∵△ABD∽△DCE,∴∠ADB=∠DEC=90°,即AD⊥BC,∴点D与点H重合,此时BD=8,当∠EDC=90°,如图2,∵△ABD∽△DCE,∴∠DAB=∠EDC=90°,在Rt△ABD中,cosB=cosα==,∴BD==,∴△DCE为直角三角形时,BD为8或,所以③正确;∵∠BAD=∠CDE,而AD不是∠BAC的平分线,∴∠CDE与∠DAC不一定相等,∴△CDE与△CAD不一定相似,∴CD2=CE•CA不成立,所以④错误.故答案为①②③.三、解答题:(每小题7分,共14分,解答应写出文字说明,证明过程和演算步骤)19.﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+|﹣2|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用平方根定义,零指数幂、负整数指数幂法则,绝对值的代数意义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1+9++2﹣=13.20.如图,在△ABC中,AD是BC边上的高,tanC=,AC=3,AB=4,求△ABC的周长.【考点】解直角三角形;勾股定理.【分析】在Rt△ADC中,根据正切的定义得到tanC==,则可设AD=k,CD=2k,接着利用勾股定理得到AC=k,则k=3,解得k=3,所以AD=3,CD=6,然后在Rt△ABD中,利用勾股定理计算出BD=,再根据三角形的周长的定义求解.【解答】解:在Rt△ADC中,tanC==,设AD=k,CD=2k,AC==k,∵AC=3,∴k=3,解得k=3,∴AD=3,CD=6,在Rt△ABD中,BD===,∴△ABC的周长=AB+AC+BD+CD=4+3++6=10+3+.四.解答题:(每题10分,共40分,解答应写出文字说明,证明过程和演算步骤)21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.【考点】作图﹣位似变换;作图﹣轴对称变换.【分析】(1)利用关于y轴对称点的性质得出各对应点位置,进而得出答案;(2)利用位似变换的性质得出对应点位置,进而得出答案;(3)利用位似图形的性质得出D点坐标变化规律即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)【考点】解直角三角形的应用﹣方向角问题.【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与AM、AN的大小即可得出结论.【解答】解(1)过点A作AC⊥OB于点C.由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).∴BC=OC﹣OB=30﹣20=10(千米).∴在Rt△ABC中, ==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣4,3),再把A点坐标代入y=可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:(1)作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD==,∴AD=OA=4,∴OD==3,∴A(﹣4,3),把A(﹣4,3)代入y=得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣4,3)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+1;(2)当y=0时,﹣x+1=0,解得x=2,则C(2,0),所以S△AOC=×2×3=3;(3)当x<﹣4或0<x<6时,一次函数的值大于反比例函数的值.24.如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?【考点】反比例函数的应用.【分析】(1)确定两个函数后,找到函数图象经过的点的坐标,用待定系数法求得函数的解析式即可;(2)分别令两个函数的函数值为30,解得两个x的值相减即可得到答案.【解答】解:(1)设加热过程中一次函数表达式为y=kx+b(k≠0),∵该函数图象经过点(0,15),(5,60),∴,解得,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=(a≠0),∵该函数图象经过点(5,60),∴=60,解得:a=300,∴反比例函数表达式为y=(x≥5);(2)∵y=9x+15,∴当y=30时,9x+15=30,解得x=,∵y=,∴当y=30时, =30,解得x=10,10﹣=,所以对该材料进行特殊处理所用的时间为分钟.五.解答题:(每题12分,共24分,解答应写出文字说明,证明过程和演算步骤)25.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)要证AF=CG,只需证明△AFC≌△CBG即可.(2)延长CG交AB于H,则CH⊥AB,H平分AB,继而证得CH∥AD,得出DG=BG和△ADE与△CGE全等,从而证得CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.26.如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P 作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.【考点】相似形综合题;勾股定理;三角形中位线定理;矩形的性质;正方形的性质;相似三角形的判定与性质;锐角三角函数的定义.【分析】(1)可证△DPN∽△DQB,从而有,即可求出t的值.(2)只需考虑两个临界位置(①MN经过点O,②点P与点O重合)下t的值,就可得到点O在正方形PQMN内部时t的取值范围.(3)根据正方形PQMN与△ABD重叠部分图形形状不同分成三类,如图4、图5、图6,然后运用三角形相似、锐角三角函数等知识就可求出S与t之间的函数关系式.(4)由于点P在折线AD﹣DO﹣OC运动,可分点P在AD上,点P在DO上,点P在OC上三种情况进行讨论,然后运用三角形相似等知识就可求出直线DN平分△BCD面积时t的值.【解答】解:(1)当点N落在BD上时,如图1.∵四边形PQMN是正方形,∴PN∥QM,PN=PQ=t.∴△DPN∽△DQB.∴.∵PN=PQ=PA=t,DP=3﹣t,QB=AB=4,∴.∴t=.∴当t=时,点N落在BD上.(2)①如图2,则有QM=QP=t,MB=4﹣t.∵四边形PQMN是正方形,∴MN∥DQ.∵点O是DB的中点,∴QM=BM.∴t=4﹣t.∴t=2.②如图3,∵四边形ABCD是矩形,∴∠A=90°.∵AB=4,AD=3,∴DB=5.∵点O是DB的中点,∴DO=.∴1×t=AD+DO=3+.∴t=.∴当点O在正方形PQMN内部时,t的范围是2<t<.(3)①当0<t≤时,如图4.S=S正方形PQMN=PQ2=PA2=t2.②当<t≤3时,如图5,∵tan∠ADB==,∴=.∴PG=4﹣t.∴GN=PN﹣PG=t﹣(4﹣t)=﹣4.∵tan∠NFG=tan∠ADB=,∴.∴NF=GN=(﹣4)=t﹣3.∴S=S正方形PQMN﹣S△GNF=t2﹣×(﹣4)×(t﹣3)=﹣t2+7t﹣6.③当3<t≤时,如图6,∵四边形PQMN是正方形,四边形ABCD是矩形.∴∠PQM=∠DAB=90°.∴PQ∥AD.∴△BQP∽△BAD.∴==.∵BP=8﹣t,BD=5,BA=4,AD=3,∴.∴BQ=,PQ=.∴QM=PQ=.∴BM=BQ﹣QM=.∵tan∠ABD=,∴FM=BM=.∴S=S梯形PQMF=(PQ+FM)•QM= [+]•=(8﹣t)2=t2﹣t+.综上所述:当0<t≤时,S=t2.当<t≤3时,S=﹣t2+7t﹣6.当3<t≤时,S=t2﹣t+.(4)设直线DN与BC交于点E,∵直线DN平分△BCD面积,∴BE=CE=.①点P在AD上,过点E作EH∥PN交AD于点H,如图7,则有△DPN∽△DHE.∴.∵PN=PA=t,DP=3﹣t,DH=CE=,EH=AB=4,∴.解得;t=.②点P在DO上,连接OE,如图8,则有OE=2,OE∥DC∥AB∥PN.∴△DPN∽△DOE.∴.∵DP=t﹣3,DO=,OE=2,∴PN=(t﹣3).∵PQ=(8﹣t),PN=PQ,∴(t﹣3)=(8﹣t).解得:t=.③点P在OC上,设DE与OC交于点S,连接OE,交PQ于点R,如图9,则有OE=2,OE∥DC.∴△DSC∽△ESO.∴.∴SC=2SO.∵OC=,∴SO==.∵PN∥AB∥DC∥OE,∴△SPN∽△SOE.∴.∵SP=3++﹣t=,SO=,OE=2,∴PN=.∵PR∥MN∥BC,∴△ORP∽△OEC.∴.∵OP=t﹣,OC=,EC=,∴PR=.∵QR=BE=,∴PQ=PR+QR=.∵PN=PQ,∴=.解得:t=.综上所述:当直线DN平分△BCD面积时,t的值为、、.。
2020年重庆市中考语文模拟试题(含解析)
2020年重庆市中考语文模拟试题(全卷共四大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题和答题卡一并收回。
一、语文知识及运用(30分)1.下列加点字的注音有误..的一项是()(3分)A.殿内金砖铺地,坐北向南设雕镂.(lòu)金漆宝座。
B.众里寻他千百度,蓦.(mò)然回首,那人却在灯火阑珊处。
C.游园联欢会正开得热烈,忽然来了一场暴风雨,真是大煞.(shā)风景。
D.真正的寂寞是一种深入骨髓.(suí)的空虚,一种令你发狂的空虚。
2.下列词语书写全部正确的一项是()(3分)A.孤孀晌午熠熠生辉五彩斑斓B.绽放絮叨忍俊不禁殚精竭虑C.贮藏堕落鸦雀无声铤而走险D.掺和缀饰更胜一筹言简意骇3.下列句子中加点词语使用正确的一项是()(3分)A.教学中,老师应该突出学生的主体地对学生回答的问题要洗耳恭听....。
B.在这片劫后重生的土地上,人人各得其所....,各展其长,满怀信心创造幸福美满的生活。
C.这次校运会的开幕式,班上的节目需要有丰富的想象力和催枯拉朽....的创造力。
D.中华优秀传统文化作为中华民族的精神命脉,正在被越来越多的人顶礼膜拜....。
4.将下面的句子组成一段连贯的话,排序合理的项是()(3分)①比如之前的微信4.2就曾作出两个重要的更新——视频通话和微信网页版(让用户能够使用网页版的微信和朋友聊天)。
②微信正在快速向着创新的方向前进,我们期待腾讯继QQ之后的下一场互联网变革。
③微信每一次更新所带来的新功能总能让人眼前一亮。
④这一切,将由微信主导!⑤当时不少人已经开始畅想,这种新的视频通信或将成为未来主流的通信方式。
A.②①⑤④③B.②⑤④③①C.③①④②⑤D.③①⑤②④5.请你仿照下面的句子,写一句话,送给某门学科的老师。
(4分)教师节期间,有位同学给老师送上了这样的贺词,以表达自己对老师的赞美和敬意:你像滔滔不绝的历史长河,引导我们博古通今。
重庆市2020中考数学模拟试卷(解析版)
中考数学2020模拟试卷3一、选择题(48分)1.在下列四个实数中,最大的数是()A. −3B. 0C. 32D. 342.x2⋅x3=()A. x5B. x 6C. x 8D. x93.在下列命题中,正确的是()A. 正多边形一个内角与一个外角相等,则它是正六边形B. 正多边形都是中心对称图形C. 边数大于3的正多边形的对角线长都相等D. 正多边形的一个外角为36°,则它是正十边形4.估计√65的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5.2020年,在创建文明城市的进程中,某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A. 30x −30(1+20%)x=5 B. 30x−3020%x=5C. 3020%x +5=30xD. 30(1+20%)x−30x=56.如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°7.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A. 2√2B. 3√2C. 2√3D. 88.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A. 3:2B. 3:5C. 9:4D. 4:99.某同学利用数学知识测量建筑物DEFG的高度.他从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,用测角仪测得建筑物顶端D的仰角为37°,建筑物底端E的俯角为30°.若AF为水平的地面,侧角仪竖直放置,其高度BC=1.6米,则此建筑物的高度DE约为(精确到0.1米,参考数据:√3≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. 23.0米B. 23.6米C. 26.7米D. 28.9米10.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(−1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. −12aB. −12(a+1)C. −12(a−1)D. −12(a+3)11.若整数a使关于x的不等式组{x−a>2x−3a<−2无解,且使关于x的分式方程axx−5−55−x=−3有正整数解,则满足条件的a的值之积为()A. 28B. −4C. 4D. −212.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于43√3;④△BDE周长的最小值为6.上述结论中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(24分)13.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可表示为_____.14.计算:(π−1)0+√4=________.15.如图,是由大小完全相同的扇形组成的图形,小军准备用红色、黄色、蓝色随机给每个扇形分别涂上其中的一种颜色,则最上方的扇形涂红色的概率是________.16.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为______.17.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的12倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小刚家到学校的路程为______米.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C的最小值为______.三、解答题(78分)19.(1)计算:(π−2020)0−√9+4sin60°−|3−√12|;(2)解方程:(x+2)(x−3)=(x+2).20.如图,矩形ABCD中,点E为AD边上一点,过点E作CE的垂线交AB于点F.(1)求证:△CDE∽△EAF;(2)若AF=1.5,BF=0.5,AE=3,求DE的长.21.国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选最喜欢的锻炼项目人数打球120跑步a游泳b跳绳30其他c,人数a+c=______;(2)扇形统计图中,n=______,“其他”对应的扇形的圆心角的度数为______度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?22.阅读材料材料1:若一个自然数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.材料2:对于一个三位自然数A,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字x,y,z,我们对自然数A规定一个运算:K(A)=x2+y2+z2.例如:A=191是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.则K(191)=22+82+22=72.请解答:(1)一个三位的“对称数”B,若K(B)=4,请直接写出B的所有值,B=______;(2)已知两个三位“对称数”m=aba−,n=bab−,若(m+n)能被11整数,求K(m)的所有值.23. 小东同学根据函数的学习经验,对函数y =|x −1|+|x +3|进行了探究,下面是他的探究过程:(1)已知x =−3时|x +3|=0;x =1时|x −1|=0,化简: ①当x <−3时,y =______; ②当−3≤x ≤1时,y =______; ③当x >1时,y =______;(2)在平面直角坐标系中画出y =|x −1|+|x +3|的图象,根据图象,写出该函数的一条性质:______; (3)根据上面的探究,解决下面问题:已知A(a,0)是x 轴上一动点,B(1,0),C(−3,0),则AB +AC 的最小值是______.24. 甲、乙两个工厂需加工生产550台某种机器,已知甲工厂每天加工生产的机器台数是乙工厂每天加工生产的机器台数的1.5倍,并且加工生产240台这种机器甲工厂需要的时间比乙工厂需要的时间少4天. (1)求甲、乙两个工厂每天分别可以加工生产多少台这种机器? (2)若甲工厂每天加工的生产成本是3万元,乙工厂每天加工生产的成本是2.4万元,要使得加工生产这批机器的总成本不得高于60万元,至少应该安排甲工厂生产多少天?25. 如图,直线y =−34x +3与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+34x +c 经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是抛物线上的一动点(不与B ,C 两点重合),△BEC 面积记为S ,当S 取何值时,对应的点E 有且只有三个?26. 如图,四边形ABCD 为正方形,△AEF 为等腰直角三角形,∠AEF =90°,连接FC ,G 为FC 的中点,连接GD ,ED .(1)如图①,E 在AB 上,直接写出ED ,GD 的数量关系. (2)将图①中的△AEF 绕点A 逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由. (3)若AB =5,AE =1,将图①中的△AEF 绕点A 逆时针旋转一周,当E ,F ,C 三点共线时,直接写出ED 的长.答案解析1.【答案】C【解析】【分析】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:−3<0<34<32,则最大的数是:32.故选C.2.【答案】A【解析】【分析】本题主要考查了同底数幂的乘法运算,解答此题的关键是熟练掌握运算法则:同底数幂相乘,底数不变,指数相加.根据同底数幂的乘法运算法则计算即可.【解答】解:x2⋅x3=x2+3=x5.故选A.3.【答案】D【解析】A.正多边形一个内角与一个外角相等,则它是正方边形,故本选项错误,B.正多边形不一定是中心对称图形,故本选项错误,C.边数大于3的正多边形的对角线长不一定相等,故本选项错误,D.正多边形的一个外角为36°,则它是正十边形,正确,故选:D.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.【答案】D【解析】【分析】本题考查了估算无理数的大小,能估算出√65的范围是解此题的关键.先估算出√65的范围,再得出选项即可.【解答】解:∵64<65<81,∴√64<√65<√81,∴8<√65<9,故选D.5.【答案】A【解析】【分析】本题考查由实际问题抽象出分式方程,关键是根据题意找到相等关系,再根据相等关系列方程即可解答.【解答】解:原计划每天植树x万棵,则实际每天植树(1+20%)x万棵,根据“实际比原计划提前5天完成”可列方程为30x−30(1+20%)x=5,故选A.6.【答案】A【解析】【分析】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.先利用等腰三角形的性质和三角形内角和计算出∠BOC的度数,然后根据圆周角定理可得到∠A的度数.【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°−40°−40°=100°,∴∠A=12∠BOC=50°.故选:A.7.【答案】A【解析】解:由题中所给的程序可知:把64取算术平方根,结果为8,∵8是有理数,∴结果√8为无理数,∴y=√8=2√2.故选:A.把x=64代入数值转换器中计算确定出y即可.此题考查了实数,弄清数值转换器中的运算是解本题的关键.8.【答案】A【解析】【分析】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选A.9.【答案】C【解析】【分析】此题主要考查了解直角三角形的应用,正确得出DM的长是解题关键.直接利用坡度的定义得出BN的长,进而利用锐角三角函数关系得出CM的长,进而得出DM的长即可得出答案.【解答】解:如图所示:过点B作BN⊥AE,BH⊥DE,CM⊥DE,垂足分别为:N,H,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB=2.6x,则2.6x=26,解得:x=10,故B N=EH=10m,CN=10+1.6=11.6m,则tan30°=CNNE=11.6NE,解得:NE=11.6×3√3米,∴CM=11.6×3√3米,所以在直角三角形CDM中,tan37°=DMCM,所以DM=tan37×11.6×3√3=15.051米,所以DE=15.051+11.6=26.651≈26.7米.故选C.10.【答案】D【解析】【分析】此题主要考查了位似变换的性质,根据已知得出FO=a,CF=a+1,CE=12(a+1),是解决问题的关键.根据位似变换的性质得出△ABC的边长放大到原来的2倍,FO=a,CF=a+1,CE=12(a+1),进而得出点B的横坐标.【解答】解:如图,过点B作BE⊥x轴于E,过点B′作B′F⊥x轴于F,∵点C的坐标是(−1,0),以点C为位似中心,在x轴的下方作把△ABC的边长放大到原来的2倍的位似图形△A′B′C,点B的对应点B′的横坐标是a,∴FO=a,CF=a+1,∴CE=12(a+1),∴点B的横坐标是:−12(a+1)−1=−12(a+3).故选D.11.【答案】B【解析】解:不等式组整理得:{x>a+2x<3a−2,由不等式组无解,得到3a−2≤a+2,解得:a≤2,分式方程去分母得:ax+5=−3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=10a+3,即a+3=1,2,10,解得:a=−2,2,7,综上,满足条件a的为−2,2,之积为−4,故选:B.表示出不等式组的解集,由不等式组无解确定出a的范围,分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有正整数解确定出a的值,即可求出所求.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.12.【答案】C【解析】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中{∠BOD=∠COEBO=CO∠OBD=∠OCE,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD=S△COE,∴四边形ODBE的面积=S△OBC=13S△ABC=13×√34×42=43√3,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=12OE,HE=√3OH=√32OE,∴DE=√3OE,∴S△ODE=12⋅12OE⋅√3OE=√34OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+√3OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=2√33,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=13S△ABC=43√3,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=√34OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+√3OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.13.【答案】1.8×106【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1800000这个数用科学记数法可以表示为1.8×106,故答案为1.8×106.14.【答案】3【解析】【分析】本题考查了实数的运算,掌握好运算法则是解题的关键,根据零次幂的性质,算术平方根的定义,便可得出结果.【解答】解:原式=(π−1)0+√4=1+2=3,故但为3.15.【答案】13【解析】【分析】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.共有3种情况,最上方的扇形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:最上方的扇形涂红色的概率是13.故答案为13.16.【答案】3【解析】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=1x(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,12),∵AC//BD//y轴,∴C(1,k),D(2,k2),∵△OAC与△ABD的面积之和为32,∴S△OAC=S△COM−S△AOM=12×k−12×1×1=k2−12,S△ABD=S梯形AMND−S梯形AMNB=12(1+k2)×1−12×(1+12)×1=k−14,∴k2−12+k−14=32,∴k=3,故答案为3.过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,12),C(1,k),D(2,k2),将面积进行转换S△OAC=S△COM−S△AOM,S△ABD=S梯形AMND−S梯形AAMNB进而求解.本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.17.【答案】2960【解析】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17−15=2(分钟),∵爸爸追上小刚后以原速的12倍原路步行回家,∴小刚打完电话到与爸爸相遇用的时间为1分钟,∵由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,∴小刚和爸爸相遇之后跑步的1分和爸爸2分钟走的路程是720米,∴小刚后来的速度为:1040−720=320(米/分钟)则小刚家到学校的路程为:1040+(23−17)×320=1040+6×320=1040+1920=2960(米),故答案为:2960.根据题意和函数图象可以求得小刚后来的速度,然后根据函数图象中的数据可以求得小刚家到学校的路程.本题考查一次函数的应用,解答的关键是读懂题意并结合图象正确理解运动过程.18.【答案】√3【解析】解:如图,过点C 作直线l//BD ,以直线l 为对称轴作点B′的对称点E ,连接CE ,A′E ,AC ,设AC 与BD 交于点O ,B′E 与直线l 交于点F ,则B′C =CE ,∠EB′D =90∘,B′F =OC . 由∠ABC =60∘,AB =BC ,易得AC =AB =1,B′F =OC=12AC =12,∴B′E =2B′F =1.由平移的性质可知∠A′B′D′=∠ABD =30∘, ∴∠A′B′E =30∘+90∘=120∘.∵AB =B′E =1,A′B′=AD ,∠A′B′E =∠BAD =120∘, ∴△ABD ≌△B′EA′,∴A′E =BD . ∵在Rt △ABO 中,AO =12AC =12, ∴BO =√32, ∴BD =√3, ∴A′E =√3.在△A′EC 中,由三角形的三边关系可得A′C +CE >A′E ,∴当点A′,C ,E 共线时,A′C +CE =A′E ,即A′C +B′C 的最小值是√3. 故答案为:√3.过点C 作直线l//BD ,以直线l 为对称轴作点B′的对称点E ,连接CE ,A′E ,AC ,证明△ABD ≌△B′EA′,求得A′E =√3,根据三角形三边关系可知当点A′,C ,E 共线时,A′C +B′C 的最小值是√3.本题考查了轴对称−最短路线问题,菱形的性质,全等三角形的判定与性质,平移的性质,正确的理解题意是解题的关键.19.【答案】解:(1)(π−2020)0−√9+4sin60°−|3−√12|=1−2+4×√32−(2√3−3) =1−2+2√3−2√3+3 =2;(2)(x +2)(x −3)=(x +2)(x +2)(x −3)−(x +2)=0, (x +2)(x −3−1)=0, (x +2)(x −4)=0,则x +2=0或x −4=0, 解得:x 1=−2,x 2=4.【解析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案; (2)直接提取公因式(x +2),进而分解因式解方程得出答案.此题主要考查了一元二次方程的解法以及实数运算,正确化简各数是解题关键. 20.【答案】(1)证明:∵CE ⊥EF , ∴∠DEC +∠AEF =90°, 又∵∠AEF +∠AFE =90°, ∴∠AFE =∠DEC . ∵∠A =∠D =90°, ∴△CDE∽△EAF .(2)解:∵AF =1.5,BF =0.5, ∴CD =AB =AF +BF =2. ∵△CDE∽△EAF , ∴AF DE=AEDC,即1.5DE =32, ∴DE =1.【解析】(1)由同角的余角相等可得出∠AFE =∠DEC ,结合∠A =∠D =90°即可证出△CDE∽△EAF ;(2)由AF ,BF 的长可求出CD 的长,再利用相似三角形的性质可求出DE 的长.本题考查了相似三角形的判定与性质,解题的关键是:(1)利用“两角对应相等,两个三角形相似”证出△CDE∽△EAF ;(2)利用相似三角形的性质,求出DE 的长. 21.【答案】300 90 10 18【解析】解:(1)这次问卷调查的学生总人数为120÷40%=300(人), 游泳的人数有300×20%=60(人),则a +c =300−120−60−30=90(人), 故答案为:300,90; (2)30300=10%,则n =10;“其他”对应的扇形的圆心角的度数为360°×(1−20%−25%−40%−10%)=18°; 故答案为:10,18;(3)由于在调查的300名学生中,喜欢“跳绳”项目的学生有30名,所占的比例为10%, 所以,该年级1200名学生中估计喜欢“跳绳”项目的有1200×10%=120人. (1)用打球的人数除以所占的百分比求出总人数,用总人数乘以游泳的人数所占的百分比,求出游泳的人数,再用总人数减去打球、游泳和跳绳的人数,即可求出a +c ;(2)应跳绳的人数除以总人数即可求出n 的值,再用360°乘以“其他”所占的百分比即可得出“其他”对应的扇形的圆心角的度数;(3)用总人数乘以“跳绳”所占的百分比即可.本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比. 22.【答案】515或565【解析】解:(1)设三位的“对称数”B 的各个数位上的数字分别2倍后取个位数数字分别为a ,b ,a ,(0≤a ≤8,0≤b ≤8的偶数) ∵K(B)=4,∴a 2+b 2+a 2=4,∴2a 2+b 2=4, ∴a =0,b =2或∴三位的“对称数”B 的百位数字,十位数字,个位数字分别为5,1,5或5,6,5, 即:三位的“对称数”B 为515或565, 故答案为515或565;(2)∵两个三位“对称数”m =aba −,n =bab −,(1≤a ≤9,1≤b ≤9的整数) ∴m =aba −=100a +10b +a =101a +10b ,n =bab −=101b +10a ,∴m +n =101a +10b +101b +10a =111a +111b =110(a +b)+(a +b)∵(m +n)能被11整除, ∴a +b 是11的倍数.∵1≤a ≤9,1≤b ≤9的整数, ∴2≤a +b ≤18, ∴a +b =11.当a =2,b =9时,m =292,K(m)=42+82+42=96; 当a =3,b =8时,m =383,K(m)=62+62+62=108; 当a =4,b =7时,m =474,K(m)=82+42+82=144; 当a =5,b =6时,m =565,K(m)=02+22+02=4; 当a =6,b =5时,m =656,K(m)=22+02+22=8; 当a =7,b =4时,m =747,K(m)=42+82+42=96; 当a =8,b =3时,m =838,K(m)=62+62+62=108; 当a =9,b =2时,m =929,K(m)=82+42+82=144; K(m)的值为4,8,96,108,144.(1)先根据K(B)=4,求出a ,b 的值,进而求出三位的“对称数”,即可得出结论; (2)先求出m +n ,进而得出a +b =11,最后分别取值计算即可得出结论.此题主要考查了整除问题,数字问题,用分类讨论的思想解决问题是解本题的关键. 23.【答案】−2−2x 4 2x +2 函数图象不过原点 4【解析】解:(1)∵x =−3时|x +3|=0;x =1时|x −1|=0 ∴当x <−3时,y =1−x −x −3=−2−2x ; ②当−3≤x ≤1时,y =1−x +x +3=4; ③当x >1时,y =x −1+x +3=2x +2; 故答案为:−2−2x ;4;2x +2.(2)在平面直角坐标系中画出y =|x −1|+|x +3|的图象,如图所示:根据图象,该函数图象不过原点. 故答案为:函数图象不过原点;(3)根据上面的探究可知当A(a,0)位于点B(1,0)和点C(−3,0)之间时,AB +AC 有最小值4. 故答案为:4.(1)根据已知条件及绝对值的化简法则计算即可; (2)画出函数图象,则易得一条函数性质;(3)A(a,0)位于点B(1,0)和点C(−3,0)之间时,AB +AC 等于线段BC 的长,此时为其最小值. 本题考查了一次函数的图象上的点的坐标特点及绝对值的化简计算,数形结合是解题的关键. 24.【答案】解:(1)设乙工厂每天加工生产的机器台数为x , 则甲工厂每天加工生产的机器台数为1.5x , 根据题意可知:2401.5x =240x−4,解得:x =20,经检验,x =20是原方程的解,答:甲、乙两个工厂每天分别可以加工生产30和20台这种机器. (2)设应该安排甲工厂生产x 天, 根据题意可知:3x +2.4×550−30x20≤60,解得:x ≥10,答:至少应该安排甲工厂生产10天【解析】(1)设乙工厂每天加工生产的机器台数为x ,根据题意列出方程即可求出答案. (2)设应该安排甲工厂生产x 天,根据题意列出一元一次不等式即可求出答案. 本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.25.【答案】解:(1)当x =0时,y =−34x +3=3,则B(0,3),当y =0时,−34x +3=0,解得x =4,则C(4,0), 把B(0,3),C(4,0)代入y =ax 2+34x +c 得{a =−38c =3,所以抛物线解析式为y =−38x 2+34x +3;(2)当E 点在直线BC 的下方的抛物线上时,一定有两个对应的E 点满足△BEC 面积为S , 所以当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S , 即此时过E 点的直线与抛物线只有一个公共点,设此时直线解析式为y =−34x +b , 方程组{y =−34x +by =−38x 2+34x +3只有一组解, 方程−38x 2+34x +3=−34x +b 有两个相等的实数解,则△=122−4×3×(−24+8b)=0,解得b =92,解方程得x 1=x 2=2, E 点坐标为(2,2),此时S △BEC =12×4×(2−32)=1,所以当S =1时,对应的点E 有且只有三个.【解析】(1)先利用一次函数解析式确定B(0,3),C(4,0),然后利用待定系数法求抛物线解析式;(2)由于E 点在直线BC 的下方的抛物线上时,存在两个对应的E 点满足△BEC 面积为S ,则当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S ,所以过E 点的直线与抛物线只有一个公共点,设此时直线解析式为y =−34x+b ,利用方程组{y =−34x +b y =−38x 2+34x +3只有一组解求出b 得到E 点坐标,然后计算此时S △BEC .本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解. 26.【答案】解:(1)结论:DE =√2DG .理由:如图1中,连接EG ,延长EG 交BC 的延长线于M ,连接DM .∵四边形ABCD 是正方形,∴AD =CD ,∠B =∠ADC =∠DAE =∠DCB =∠DCM =90°, ∵∠AEF =∠B =90°, ∴EF//CM ,∴∠CMG =∠FEG ,∵∠CGM =∠EGF ,GC =GF , ∴△CMG≌△FEG(AAS), ∴EF =CM ,GM =GE , ∵AE =EF , ∴AE =CM ,∴△DCM≌△DAE(SAS),∴DE =DM ,∠ADE =∠CDM , ∴∠EDM =∠ADC =90°,∴DG ⊥EM ,DG =GE =GM , ∴△EGD 是等腰直角三角形, ∴DE =√2DG .(2)如图2中,结论成立.理由:连接EG ,延长EG 到M ,使得GM =GE ,连接CM ,DM ,延长EF 交CD 于R .∵EG =GM ,FG =GC ,∠EGF =∠CGM , ∴△CGM≌△FGE(SAS),∴CM =EF ,∠CMG =∠GEF , ∴CM//ER ,∴∠DCM =∠ERC ,∵∠AER +∠ADR =180°, ∴∠EAD +∠ERD =180°, ∵∠ERD +∠ERC =180°, ∴∠DCM =∠EAD , ∵AE =EF , ∴AE =CM ,∴△DAE≌△DCM(SAS),∴DE =DM ,∠ADE =∠CDM , ∴∠EDM =∠ADC =90°, ∵EG =GM ,∴DG =EG =GM ,∴△EDG 是等腰直角三角形, ∴DE =√2DG .(3)①如图3−1中,当E ,F ,C 共线时,在Rt △ADC 中,AC =√AD 2+CD 2=√52+52=5√2, 在Rt △AEC 中,EC =√AC 2−AE 2=√(5√2)2−12=7, ∴CF =CE −EF =6, ∴CG =12CF =3,∵∠DGC=90°,∴DG=√CD2−CG2=√52−32=4.∴DE=√2DG=4√2.②如图3−2中,当E,F,C共线时,同法可得DE=3√2.综上所述,DE的长为4√2或3√2.【解析】(1)结论:DE=√2DG.如图1中,连接EG,延长EG交BC的延长线于M,连接DM.证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE(SAS)即可解决问题.(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.证明方法类似.(3)分两种情形:①如图3−1中,当E,F,C共线时.②如图3−2中,当E,F,C共线时,分别求解即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
重庆2020年中考数学模拟试卷解析版
A. 28
B. 30
C. 31
4. 如图,平行于 BC 的直线 DE 把△ABC 分成面积相等的两
部分,则 的值为( )
D. 34
A. 1
B.
C.
D.
5. 下列命题是真命题的是( )
A. 四边都相等的四边形是矩形
B. 菱形的对角线相等
C. 对角线互相垂直的平行四边形是正方形
D. 对角线相等的平行四边形是矩形
10. 已知二次函数 y=ax2+bx+c(a≠0)的图象如图,则下列 4 个 结论:①abc<0;②2a+b=0;③4a+2b+c>0;④b2-4ac>0;
其中正确的结论的个数是( )
A. 1
B. 2
C. 3
D. 4
D. 35° D. 13.9
11. 如图,菱形 ABCD 的两个顶点 B、D 在反比例函数 y= 的 图象上,对角线 AC 与 BD 的交点恰好是坐标原点 O,已 知点 A(1,1),∠ABC=60°,则 k 的值是()
(2)解方程:x2-2x-2=0.
21. 如图,△ABC 是等腰三角形,AB=AC,点 D 是 AB 上一 点,过点 D 作 DE⊥BC 交 BC 于点 E,交 CA 延长线于 点 F. (1)证明:△ADF 是等腰三角形; (2)若∠B=60°,BD=4,AD=2,求 EC 的长,
22. 在 6.26 国际禁毒日到来之际,重庆市教委为了普及禁毒知识,提高禁毒意识,举 办了“关爱生命,拒绝毒品”的知识竞赛,某校初一、初二年级分别有 300 人,现 从中各随机抽取 20 名同学的测试成绩进行调查分析,成绩如下: 初一 68 88 100 100 79 94 89 85 100 88
重庆市2020年九年级中考模拟考试试题(1-23题)无答案
初中毕业考试暨普通高中招生考试数学试题(模拟)一、单项选择(每题4分,共48分)1.下列数中最小的是()A. -√10B.-πC. -3D.-3.141592.下列图形中是轴对称图形的有()3.下列事件最适合抽样调查的是()A.登机前对乘客的安全检查B.调查4楼同学对数学试题的看法C.调查长江水质情况D.调查小组内迟交作业的情况4.下列命题中真命题是()A.平行四边形的对角线平分对角B.矩形是有一个角为90°的平行四边形C.直角三角形斜边的高线的对角的角平分线重合D.n2−n+11的值都是质数5.抛物线y=ax2+bx+c一零点横坐标分别为-2,图像大致如下图所示,下列结论正确的是( )>0 B.a+b+c<0<b6.已知∆ABC~∆DEFS∆ABC:S∆DEF=2:9,则∆ABC和∆DEF的相似比为()A.2:3B.√2:3C.2:9D.√2:97.估计(√2+2√7)×√22在哪两个整数之间( ) A.1到2之间 B.2到3之间 C.3到4之间 D.4到5之间 8. 2x+y=33y+2x=1 的解为( )A. x=1B. x=-1C. x=2D. x=2 y=1 y=1 y=1 y=-19.如图,CB 与圆相切于D,BA 垂直于CB,AP 是圆的直径,BA=6,AP=8,求CP=) 2√3 1:0.75的斜坡,上坡路程共2米,站在斜坡顶端仰望教学楼,仰角为35˚.斜坡底端到教学楼(在同一水平线上)的距离是12.8米,则教学楼的高度为( )米。
(参考数据:sin35=0.57,tan35=0.7)A.10B.16.4C.21.6D.28.211.如图,菱形的顶点A,B 在y =k 上,横坐标分别是1,4对角线BD 平行于的实数根,且x 2+m4≤1只有2个正整数解,m 的整数值有( )个A.0B.1C.2D.3二、填空题(每题4分,共24分)13.某学校约有学生7200名,将7200用科学记数法表示为14.计算2sin45°+(3−π)0-|1-√2|=15.在模拟考试中,某组8人数学的份如下:123,134,126,138,150,98,123,102,则这组数据中位数和众数的差为16.如图,矩形的一部分沿EF折叠,若BE=4,BC=3,B’D=1,则AE=17.A,B两地相距600米,震震和嵩嵩均从A出发前往B嵩嵩先行1分钟,后来震震摔进了一条沟,花了5分钟爬出来,又以原速的五分之四继续向前行驶,两人同时到达。
重庆市2020中考数学模拟考试试题(无答案)
2020重庆中考模拟1数学150分,120分钟注意事项:1.选择题部分将答案填写在机读卡上2.主观题部分(用0.5mm 及以上的黑色签字笔)做答在答题卡上,没有打印条件的请按答题卡的格式作答3.请一定在规定时间内完成一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。
1.9的相反数是( )。
A .−9B .9C .±9D .19 2.多项式2xy 2-3y 4的次数是( )。
A .2B .3C .4D .7 3.若√−a+2a−1有意义,则a 的取值范围是( )。
A .a ≤-2B .a <1C .a ≠1D .−2≤x <1 4.下列调查中,适合用普查方式的是( )。
A .了解重庆火锅的麻辣程度 B .了解某节目在全国的收视率C .了解长江中鱼的种类分布D .了解初三·18班学生某次语文测验的成绩 5.下列根式中与√2是同类二次根式的是( )。
A .√12B .√5C .√12D .√206.如图,在⊙O 中,直线BC 切圆O 于C,A 是圆O 上一点.连接AB,AC,AO,OC 。
若∠BCA =26°则∠AOC =( )︒。
A .26B .37C .52D .74第七题7.如图,在△ABC 中,点E 、D 、F 分别是边AB 、BC 、CA 的中点,AB =6,AC =4,则四边形AEDF 的周长是( )。
A .10B .20C .30D .408.广州电视塔为中国第一高电视塔,其主体顶部450~454米处有世界最高摩天轮(即图中AC=4米),与一般竖立的摩天轮不一样,广州塔的摩天轮沿着倾斜的轨道运转,对地倾斜角为∠ABC =22︒。
小明操作无人机观察摩天轮,由于设备限制无法近距离拍摄,无人机在图中P 点观察到摩天轮最低点B 的仰角为∠BPD =60∘,最高点A 的仰角为∠APD =36∘,则此时无人机距离电视塔的水平距离PD 为( )AE BF DCA O BC(参考数据:sin22︒≈0.37,sin36︒≈0.58,cos22︒≈0.93,cos36︒≈0.81,tan22︒≈0.4,tan 36∘≈0.7,√3≈1.7)A .3B . 2.7C .3.3D .3.79.如图,AB=2,BC=4,连接AC,以AC 为边向外作正方形ADEC ,连接BD ,则BD 的最小值为( )。
重庆市云阳县九年级语文中考模拟试卷
重庆市云阳县九年级语文中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共2题;共4分)1. (2分) (2017九上·重庆月考) 下列句子中划线成语使用不恰当的一项是()A . 到了冬天,雪乡壮观的雪景则更是无与伦比。
B . 谈起互联网,这孩子竟然说得头头是道,左右逢源,就连在场的专家也惊叹不已。
C . 在十九大精神的指引下,这几位大学毕业生决心自主创业,牛刀小试。
D . 那个老顾客眉飞色舞地讲得津津有味,众人都笑了。
2. (2分)下列各句中,没有语病的一项是()A . 公司专业的技术人才、雄厚的技术力量、科学的管理方法,积极创新,开拓市场j竭诚为各级教育机构和学校提供最先进的设备和最完善的服务。
B . 形成高考移民现象的主要原因是不同地方参加高考的人数、录取分数线和录取人数不同造成的。
C . 这种将企业各方的权利和义务用合同、章程等方式加以明确的措施,对于职工行使民主管理权利无疑是一种基本保障。
D . 目前,少数政府网站变成花架子的现象在全国较为普遍,主要原因是不少地方政府只为赶时髦,仓促间“跟风上网”,而网络管理人才队伍建设却没有及时跟上。
二、句子默写 (共1题;共5分)3. (5分)古诗词名句默写。
①塞下秋来风景异,________。
(范仲淹《渔家傲》)②去年元夜时,________。
(欧阳修《生查子》)③________,却道故人心易变。
(纳兰性德《木兰花》)④________,五月人倍忙。
(自居易《观刈麦》)⑤《出师表》中最能体现诸葛亮淡泊名利、不慕富贵的句子是:________,________⑥中国古代关于清明、七夕、重阳节的诗词很多,请选择其中一个节日,写出相关的诗句(连续两句):________,________.三、字词书写 (共1题;共1分)4. (1分) (2018八上·廉江月考) 根据拼音写出相应的词语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市云阳县2020年初三中考预测卷(无答案)
2019级初三下中考预测生物试卷
生物试卷共分两个大题,满分50分,与地理学科共用90分钟。
注意事项:
1.试卷的答案书写在答题卡相应位置,不得在试卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试卷和答题卡一并收回。
一、单项选择题(本大题共15小题,每小题2分,共计30分)
1.下列属于生态系统的是()
A.汉丰湖 B.汉丰湖的所有植物
C.汉丰湖的所有动物 D.汉丰湖的所有生物
2.下列食物链中,书写正确的是()
A.狐狸→狼→兔→草
B.阳光→草→兔→狼
C.草→昆虫→青蛙→蛇→鹰
D.鹰→蛇→青蛙→昆虫→草
3.下列被称为地球之“肺”的是()
A.热带草原 B.汉丰湖
C.热带沙漠 D.热带雨林
4.下列选项中,显微镜的目镜和物镜组合放大倍数最大的是()
A.10×10 B.5×10
C.5×40 D.10×40
5.小莉同学在视野中看到图像在右下方,她想将图像移到正中央应将玻片向哪个方向移动()
A.右上方 B.左上方 C.右下方 D.左下方
6.制作人口腔上皮细胞的临时装片时,在载玻片上滴加的液体是()
A.碘液 B.生理盐水 C.清水 D.酒精
7.下列生物属于病毒的是()
A.酵母菌 B.草履虫 C.大肠杆菌噬菌体 D.衣藻
8. 呼吸作用的实质是细胞利用(),将有机物分解成二氧化碳和水,并且释放能量的过程。
A.一氧化碳 B.氧气 C.二氧化碳 D.氮气
5
/ 1
重庆市云阳县2020年初三中考预测卷(无答案)
9.在一定面积上,为提高农作物的产量,让阳光更多地照射到农作物上,而植株又互不遮光,应采用的栽植方法是()
A.密植 B.合理密植 C.高度密植 D.高度稀植
10.一次交通事故中,一位姑娘的神经系统受到严重损伤,导致他不能自主活动,没有意识,但有心跳、有呼吸。
请问他的神经系统肯定没有受到损伤的是()
A. 大脑
B.脑干
C.小脑
D.脊髓
11.一男子已经20岁了,智力发育正常,但身高只有1米。
请问患者是由于幼年时哪种激素分泌不足引起的()
A.甲状腺激素
B.生长激素
C.胰岛素
D.性激素
12.下列有关人的性别遗传的叙述正确的是()
A. 人的性别是由性染色体决定的,与基因无关
B. 男性的Y染色体既能传给女儿,也能传给儿子
C. 生男生女的机会是均等的,所以一个多子女家庭中男女比例一定是1:1
D. 人的神经细胞中也存在性染色体
13.下列有关染色体、DNA、基因的描述中,正确的是()
A.染色体是由DNA和基因组成
B.一条染色体上有无数个DNA
C.DNA的一个片段就是一个基因
D.染色体在人的体细胞中成对存在,生殖细胞中单个存在
14. 人体免疫系统发挥作用时有三道防线,其中属于第一道防线的是()
A.皮肤和黏膜
B.体液中的杀菌物质
C.吞噬细胞
D.免疫器官和免疫细胞
15.下列描述中,属于特异性免疫的是()
A.皮肤能阻挡空气中的病原体
B.体液中的吞噬细胞吞噬病菌
C.唾液中的杀菌物质能杀菌
D.注射乙肝疫苗预防乙肝病
5
/ 2
2020重庆市云阳县年初三中考预测卷(无答案)
20分)分,共计二、非选择题(本大题共4个小题,每小题5
16.请据图回答下列问题:
(1)上图代表植物细胞的是(填字母),因为它有_________ (填结构名称)能进行光合作用。
(2)图中C与其他细胞结构相比,主要区别在于C细胞没有。
(3)图中代表靑霉的是(填字母)。
(4)A和B细胞都有控制物质进出的(填结构名称)。
17. 如图表示某同学做“绿叶在光下制造有机物”实验的装置,据图回答问题:
(1)如图①,实验前将盆栽天兰葵放在黑暗处处理一昼夜的目的是:。
5
/ 3
年初三中考预测卷(无答案)2020重庆市云阳县这样做的目的是:( 2 )。
如图②,叶片的一部分遮光,一部分不遮光,。
(3)如图④,小烧杯中的液体是)如图⑥,向叶片上滴加碘液,即可根据颜色反应判断是否有生成。
(4光合作用所需c处呈现蓝色,由此得出结论:(5)如图⑦,观察到b处无蓝色,的必要条件是。
18.下图是缩手反射的模式图,请据图回答下列问题:。
(1)神经调节的基本方式是。
(2)完成反射的结构基础是)请补充图中序号所示的结构名称:(3。
④传出神经⑤②传入神经①感受器③神经中枢
)当手受到针的刺激,会发生缩手反射。
从反射的类型看,该反射属(4 于。
)下列()反射是人类特有的。
(5 D.膝跳反射眨眼反射A. B.排尿反射 C.谈虎色变
如图是某家族酒窝的遗传图解,请据图分析回答下列问题:19.这种现象妈妈是无酒窝,(1)外公外婆有酒窝,
在遗传学上称为。
可以判断2)根据酒窝在亲子代中表现的情况,(是隐性性状。
出表示控制该性状的显性和隐性基)若用A、a3(妈
妈产生因,则爸爸的基因组成为,5
/ 4
重庆市云阳县2020年初三中考预测卷(无答案)
的卵细胞中的染色体组成为。
(4)为响应二胎政策,爸爸妈妈决定再生一个孩子,孩子是有酒窝的概率是。
5
/ 5。