12.7分数指数幂教案教学文稿
沪教版(上海)七年级数学第二学期-12.7 分数指数幂-教案
分数指数幂【教学目标】一、知识与技能目标1.掌握分数指数幂的含义;2.掌握分数指数幂与根式之间的互化;3.掌握分数指数幂的运算性质。
二、过程与方法目标通过引导学生观察、比较、归纳得到分数指数幂的含义,并提高学生观察问题、解决问题的能力。
三、情感态度与价值观培养学生观察、分析、归纳的能力,渗透“转化”的数学思想;以及对“整数指数幂→根式→分数指数幂→有理数指数幂”这一知识体系的不断扩充和完善的过程的学习,增强学生对数学本质的认识。
【教学重难点】重点:分数指数幂的含义理解及其运算性质;难点:分数指数幂与根式之间的互化。
【教学过程】一、复习引入(1)n 次方根。
一般地,如果*(,1)n x a n N n =∈>,那么x 叫做a 的n 次方根。
练习:①9的平方根为________;②16的四次方根为________;③8的立方根为________;④—32的五次方根为________。
(2)n 次根式。
形如*,1)n N n ∈>的式子叫做a 的n 次根式,其中n 叫做根指数,a 叫做被开方数。
其中n a =;当n a =;当n ||a =。
练习:①4=________;3=________;5=________;;=________。
新课内容:22==,102522=1052=;②53==,155333=1533=;3a ==,1234a a =124a =(0a >)。
通过计算并观察能得到什么结论? mna =其中0a >且*,1n N n ∈>。
(1)引出正分数指数幂的含义: 规定:mn a =*,,1n m N n ∈>,①当n 为奇数时,a R ∈,② 当n 为偶数时,a ≥0。
练习:47a =________;35(3)-=________;832=________;344=________;问:正数a 的负分数指数幂该怎么处理呢?即m n a -=?。
《分数指数幂》教学设计
教学设计:《分数指数幂》教学目标〖知识与技能〗(1) 理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。
(2) 会对根式、分数指数幂进行互化。
(3) 了解无理指数幂的概念 〖过程与方法〗通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。
〖情感、态度与价值观〗通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。
教学重难点根式、分数指数幂的概念及其性质。
教学情景设计1、复习讨论(1)根式的相关概念(2)整数指数幂:a a a a n⨯⨯⨯= 运算性质:n n n mn n m nm nmb a ab a a a a a ===⋅+)(,)(,)1,,,0(*>∈>n N n m a 。
2、问题情境设疑问题1、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =,考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值。
例如:当生物死亡了5730,2×5730,3×5730,……年后,它体内碳14的含量P 分别为21,2)21(,3)21(,…… 21,2)21(,3)21(,……是正整数指数幂。
当生物死亡了6000年,10000年,100000年后,根据上式,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(。
设疑:以上三个数的含义到底是什么呢? 问题2:如何计算:322⨯? 分析:66236263332222222=⨯=⨯=⨯,然而普通学生要找到该解法并不容易,如何把这种运算简单化呢?能否类似于整数指数幂的运算来解决上题?3、分数指数幂 实例引入:5102552510)(a a a a===,4123443412)(a a a a===问题:1、从以上两个例子你能发现什么结论?当根式的被开方数的指数能被根指数整除时,根式可以写成根指数被开方数的指数a的形式2、4532,,c b a 如何表示? 结论:规定)1,,,0(*>∈>=n N n m a a an m nm问题3、正数的负分数指数幂是:)1,,,0?(*>∈>=-n N n m a a nm分析:)1,,,0(1*00>∈>===--n N n m a a aa a anmnm nm nm如:3434515=-,)0(13232>=-a aa。
12.7 分数指数幂(1)
12.7 分数指数幂(1)教学目标1、理解分数指数幂的意义;能将方根与指数幂互化,体会转化思想.2、能在简单运算中运用有理数指数幂的性质进行计算. 教学重点及难点重点:理解分数指数幂的意义,能将方根与指数幂互化. 难点:能在简单运算中运用有理数指数幂的性质进行计算. 教学用具准备教具、学具、多媒体设备 教学流程设计教学过程设计一、 情景引入1.回顾加法与减法互为逆运算,按照“减去一个数等于加上这个数的相反数”,减法可以转化为加法;同样,除法也可以转化为乘法.那么对互为逆运算的乘方与开方,能否将开方运算转化为某种乘方形式的运算呢? 2.思考:把32表示为2的m 次幂的形式解:假设m 223=成立,那么333)2()2(m = 左边=21,右边=m 32要使 左边=右边 成立,则13=m ,即31=m所以31322=[说明] 因为2的任何整数指数幂都是有理数,而32是一个无理数,可知m 不是整数.因此必须将指数的取值范围扩大,才有可能把32表示为m 2的形式. 3.讨论通过31322=的转化,学生讨论方根与幂的形式如何互化?二、学习新课1.概念辨析(1)分数指数幂)0(1)0(>=≥=-a a aa a a nm nmn m nm (其中m 、n 为整数,1>n ).上面规定中的nm a 和nm a -叫做分数指数幂,a 是底数. [说明] 指数的取值范围扩大到有理数后,方根就可以表示为幂的形式,开方运算可以转化为乘方形式的运算.方根与幂的形式互化过程,以如下表格说明注意事项:整数指数幂和分数指数幂统称有理数指数幂. (3)有理数指数幂的运算性质:设0>a ,0>b ,p 、q 为有理数,那么 (ⅰ)q p q p a a a +=⋅,q p q p a a a -=÷ (ⅱ)pq q p a a =)((ⅲ)pppb a ab =)(,p pp ba b a =)(2.例题分析例1 把下列方根化为幂的形式: (1)35; (2)3251;(3)435; (4)49 解:(1)31355=(2)3232551-=(3)434355=(4))3339(992142424414===或=例2 计算:(1)4181; (2)31)81(;解:(1)333)3(81141441441====⨯(2)21)21(])21[()81(31331331===⨯3.问题拓展例3 计算:(1)31)278(⨯; (2)212182⨯ 解:(1)6632)32()278(313313313331==)=(⨯⨯⨯⨯=⨯ (2)44416828221221221212121==)=(=)=(⨯⨯⨯[说明] 在教学中,要注意以下几点:(1)例1为开方运算向乘方运算转化.在方根转化为幂指数的形式中,根指数在幂指数中作分母,这是学生容易出错的地方,应引起注意. (2)例2利用有理数指数幂的运算法则进行计算,与整数指数幂的运算法则进行比较,这样学生比较容易理解.(3)例3是为了熟练有理数指数幂的运算性质,两小题分别是积的乘法公式互逆运用的举例,其中(1)题解法也可以化成(2)题进行这样计算:632)3()2(2783133133131=⨯=⨯=⨯.三、巩固练习1、课本P 练习12.7(1)2、把下列方根化为幂的形式: (1)46 (2)537 (3)4331(4)325-3、计算: (1)62131)23(-⨯ (2)384323)52(⨯(3)2146)53(⨯ (4)313193⨯四、课堂小结带领学生总结本课知识的过程中,提出两点要求:1、在理解分数指数幂意义的基础上能熟练将方根与指数幂互化;2、能在简单运算中熟练地综合运用有理数指数幂的性质(同底数幂的乘除法、幂的乘方、积的乘方)进行计算,法则不变.五、作业布置练习册P12-13,习题12.7(1)教学设计说明分数指数幂的产生是运用转化思想获得成功的范例.本节开头所述,减法可转化为加法运算,除法可以转化为乘法运算,因此试图将开方运算转化为乘方运算.在保持整数幂运算性质的前提下,探讨指数的范围,从而产生了分数指数幂.在教学中例题的选择上由浅入深,由概念的理解到运算性质的熟练运用,计算题的设计也是由易到难,并与整数指数幂的运算法则进行比较,这样学生比较容易理解,能够轻松掌握此部分知识点.。
上海重点初中七(下)电子教案12.7(1)分数指数幂
教学过程
教后记
Hale Waihona Puke (2) (a p )q a pq . (3) (ab) p a pb p , ( ) p 分数指数幂的运算.
a b ap . bp
布置作业 1. 填空: (1) 25 (2) 81 (3 ) 8 (4 ) (
27 ) 125
1 3
1 3
1 2
1.让学生在回家作业本上完成. ; ; ; ;
2
教学内容
教学过程
教后记
新课探索一(2) 1.教师边说边点击:整数指数幂 m 3 假 设 2 2 成 立 , 那 么 的运算性质仍然适用. (3 2 ) 3 (2 m ) 3 . 2.学生计算得到 m 的值. 我们在保持原来整数指数幂 的运算性质的原则上,扩大指数 的取值范围。 由 (3 2 ) 3 (2 m ) 3 ,可得 21 2 3m . 即 3m 1, m . 或
n
a m a (a 0) ;
m n
n
am
1
n
am
a
m n
(a 0)
明 m、n 的名称. 2.学生在书上记录重点.
其中 m、n 为正整数,n>1. 2. 有理数指数幂运算性质: 设 a>0,b>0,p、q 为有理数, 那么 (1) a p • a q a pq .
5
教学内容
a p a q a p q .
1 3 1 ) 1
1、负指数幂要 1. 让学生在课堂练习本上直接计 点拨。 算. ; 2.教师巡视,挑选学生板演. 3.师生互动,讲评答案. ; 4.教师边说边点击引入本课. ; .
(3) ( 2 ) 2 (4) [( 2 ) 2 ]3 2. 计算: ( 1 ) 3 5 (5 5 ) ;
沪教版(上海)数学七年级第二学期12.7分数指数幂(第一课时) 教案
12.7分数指数幂(第一课时)一、教学目标1.理解乘方和开方运算可以相互转化,理解分数指数幂的意义.2.经历乘方和开方运算相互转化的过程,感受从整数指数幂到分数指数幂,拓展到有理数指数幂.3.掌握方根和分数指数幂相互转化的方法,体会转化思想.二、教学重点、难点1. 重点:方根和分数指数幂相互转化的方法2. 难点:负分数指数幂的理解;三、教学方法观察发现、启发引导、探索相结合的教学方法。
启发、引导学生积极的思考并对学生的思维进行调控,帮助学生优化思维过程;在此基础上,提供给学生交流的机会.四、教学过程教学环节教学过程设计意图(一)复习旧知1. 幂运算:()03-;()2-3;()322-⎥⎦⎤⎢⎣⎡2. 根据实数运算的性质,完成计算(1)()55--53-(2)3555÷配合媒体由学生表述思考的过程.教师引导学生总结减法运算可转化为加法,除法运算可转化.为乘法,那么对32对2开立方这样的开方运算能否转化为乘方形式的运算?通过简单的计算低起点的引入,让每一位学生都能听明白。
总结减法与加法;除法与乘法之间的转化,自然而然引出开方与乘方之间的转化,引发学生的思考.(二)探究新知1. 把32表示为2的m次幂的形式小组讨论:m的值可能为整数吗?为什么?启发引导师生共同完成:假设32=2m成立,那么333(2)(2)m=思路一:322m=,31m=,13m=,所以31322=思路二:113331333(2)2, (2)222⨯====,所以31322=经历开方运算转化为乘方运算的过程,体会转化思想.让学生感受到根式可以表示成幂的形式,并且幂的指数是一个分数.用不同的思路解决322m=的形式,让学生感受到数学知识的严密性,认识到整数指数幂的运算法则在有理数指数幂中同五、板书设计12.7分数指数幂(1)规定: 例1()()1010>⎪⎪⎭⎪⎪⎬⎫>=≥=-n n m a a a a a a n m n m nm nm是正整数,,其中分数指数幂。
分数指数幂教案
分数指数幂一、 教学目标1、 知识与技能目标(1) 掌握分数指数幂的含义;(2) 掌握分数指数幂与根式之间的互化; (3) 掌握分数指数幂的运算性质. 2、 过程与方法目标通过引导学生观察、比较、归纳得到分数指数幂的含义,并提高学生观察问题、解决问题的能力.3、 情感态度与价值观培养学生观察、分析、归纳的能力,渗透“转化”的数学思想;以及对“整数指数幂→根式→分数指数幂→有理数指数幂”这一知识体系的不断扩充和完善的过程的学习,增强学生对数学本质的认识.二、 教学重难点1、 重点:分数指数幂的含义理解及其运算性质;2、 难点:分数指数幂与根式之间的互化.三、 教学方法:启发式教学法 四、 教学过程1、 复习引入(1) n 次方根一般地,如果*(,1)n x a n N n =∈>,那么x 叫做a 的n 次方根.练习:①9的平方根为 ; ②16的四次方根为 ;③8的立方根为 ; ④—32的五次方根为 .(2)n 次根式*,1)n N n ∈>的式子叫做a 的n 次根式,其中n 叫做根指数,a 叫做被开方数.其中na =;当n a =;当n ||a =.练习:①4= ;3= ;5= ;= = = .2、 新课内容22==,102522=1052=;53==,155333=1533=;3a ==,1234a a =124a =.(0a >)通过计算并观察能得到什么结论?m na =其中0a >且*,1n N n ∈>.(1) 引出正分数指数幂的含义:规定:m na=*,,1n m N n ∈>,①当n 为奇数时,a R ∈,② 当n 为偶数时,a ≥0.练习:47a = ;35(3)-= ;832= ;344= ;问:正数a 的负分数指数幂该怎么处理呢?即m na -=?.回忆:初中学过的负整数指数幂1(0)mm aa a-=≠. 类似的,正数a 的的负分数指数幂的含义就可以得到解释了. (2)引出负分数指数幂的含义 规定:0m naa -=≠). 练习:32a-= ;122-= ;23(3)--= ; 23(3)--= ;(3)知识巩固例1:将下列各根式写成分数指数幂的形式分析:要把握好形式互化过程中字母的位置关系,按照公式,先正确找出公式的m 和n ,再逆向进行形式的转化.解:①3,2n m ==23x =;②3,4n m ==43a =; ③5,3n m ==35a -=;④5,7n m ==753-=.练习1:66P 1题,2题3、小结(1)理解分数指数幂的含义(2)熟练掌握分数指数幂与根式之间的互化五、 作业布置:71P 1题,2题六、 教学反思我认为本节课直接将知识呈现于学生,他们可能会更易接受,但失去了探索知识的过程,且不能启发学生对问题的思考,而由特殊到一般要分几种情况,同学们易混乱。
分数指数幂教案
分数指数幂教案教案标题:分数指数幂教案教学目标:1. 理解分数指数幂的概念和性质。
2. 掌握计算分数指数幂的方法。
3. 能够应用分数指数幂解决实际问题。
教学重点:1. 理解分数指数幂的定义和运算规则。
2. 掌握分数指数幂的计算方法。
3. 能够运用分数指数幂解决实际问题。
教学难点:1. 理解分数指数幂的概念和性质。
2. 掌握计算分数指数幂的方法。
教学准备:1. 教材:包含有关分数指数幂的知识点和例题的教材。
2. 教具:黑板、白板、彩色粉笔/白板笔、教案、练习题、实例题。
3. 学具:计算器。
教学过程:Step 1:导入新知1. 引入分数指数幂的概念,通过实例引发学生对分数指数幂的思考。
2. 提问学生:你们对分数指数幂有什么了解?它们与整数指数幂有何异同?Step 2:概念解释与讲解1. 通过示意图和实例,解释分数指数幂的定义和性质。
2. 引导学生理解分数指数幂的运算规则,并进行实例演示。
Step 3:练习与巩固1. 分发练习题,让学生进行个人或小组练习。
2. 指导学生解答练习题,解答过程中注重引导学生运用分数指数幂的计算方法。
Step 4:拓展与应用1. 提供一些实际问题,引导学生运用分数指数幂解决实际问题。
2. 鼓励学生思考并讨论其他应用场景,并进行分享和讨论。
Step 5:归纳总结1. 综合学生的学习情况,对分数指数幂的概念、性质和运算规则进行归纳总结。
2. 强调分数指数幂的重要性和应用价值。
Step 6:作业布置1. 布置相关的作业题目,巩固学生对分数指数幂的掌握程度。
2. 鼓励学生自主学习,通过课外阅读或网络资源进一步了解分数指数幂的应用。
教学延伸:1. 针对学生的学习情况,可以提供更多的练习题和拓展问题,以加深对分数指数幂的理解和应用。
2. 可以组织学生进行小组讨论或展示,分享他们在实际生活中发现的分数指数幂的应用案例。
教学评价:1. 课堂练习:通过学生在课堂上的练习情况,评估他们对分数指数幂的掌握程度。
12.7(1)分数指数幂
有以上思考讨论:如何将 表示为2的m次幂的形式:
结合小组发言,教师补充证明:因为2的任何整数指数幂都是有理数,而 是一个无理数,可以m不应该是一个整数.
因此必须将指数的取值范围扩大.
假设 成立,那么两边同时做3次方得:
化简可得: 由此可得
3.归纳总结
4.新知应用
例1、把下列方根化为幂的形式:
解:
例2、计算:
解:
例3、用计算器,计算(保留三位小数):
解:
5、课堂小结
1、
2、
完成练习,回顾指数幂、尤其是负指数幂的运算法则.
思考:指数可不可以是分数?与开方运算存在什么关系?
小组讨论,讨论结果由小组代表交流发言.
体会数域扩充的理论推导过程,由猜想-验证.
理解分数指数幂的意义.
可以抽取1-2位同学板演,其余同学自行完成.
利用计算器求值.
进一步巩固本节课的知识点、使学得的新知系统化.
通过已学过的相关知识引出课题.
由这两个思考,体会从整数指数幂到分数指数幂,,是幂的概念又一次扩展.引导学生认识两个基本问题:一是为什么要扩展幂的概念;二是怎样合理规定分数指数幂的意义.
使学生体会数学猜想-验证的学习方式,培养严密的数学学习习惯.
体会乘方与开方运算的互相转化.
本例是分数指数幂概念的直接运用.使学生初步建立“方根的根指数”是分数指数中的分母;“方根的倒数”表示为负分数指数幂.
本例是利用分数指数幂的意义求幂的值,帮助学生进一步体会分数指数幂与方根的联系.
进一步熟悉求分数指数幂的值与相应的乘法、开方运算之间的关系,如
养成归纳总结新知的学习习惯.
12.7(1)分数指数幂
高中数学《分数指数幂》精品公开课教案
分数指数幂(教师叙述:同学们,这一节课我们来学习分数指数幂.这一节课的主要活动还是大家先自学,自己归纳出结论,老师再提示,希望同学们能集中精力,集中注意力,认真学习) (教师叙述:我们知道,有理数分为整数和分数,我们在初中的时候学习过整数指数幂,也学习了它的有关性质,这一节课我们来学习分数指数幂,来研究它的一些性质.我们这一节课的目的就是把指数幂从整数指数幂推广到有理数指数幂) 一、【学习目标】(约2分钟)(教师注意:这一节课还是主要是学生自我的讨论,最后自己总结归纳出结论,老师重要的是引导,而不是讲解)(自学引导:这一节课关键是理解、认知分数指数幂含义,做好预习是关键) 1、初步理解认知分数指数幂的含义;2、会利用分数指数幂的基本知识解决简单的计算推理问题;3、渗透从特殊到一般的数学归纳思想.【教学效果】:教学目标的出示,有利于学生明确任务,认真学习. 二、【自学内容和要求及自学过程】(约25分钟)(自学引导:通过整数指数幂逐步归纳出分数指数幂的运算性质)(教师注意:下面的学习过程是通过整数指数幂逐步的归纳出分数指数幂的过程,如果把握的好的话,那么整个课程将是行云流水一般的顺畅,要是把握不好就只能流于形式,这关键是老师的一个定力问题)阅读教材第50—51页内容,回答下列问题(约15分钟) <1>整数指数幂的运算性质是什么? <2>观察以下式子,并总结出规律:(a >0) ①510a =552)(a =a 2=a510;②8a =24)(a =a 4=a 28;③412a=443)(a =a 3=a412;④210a=225)(a =a 5=a210.<3>利用<2>的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n ∈N *,且n>1).<4>你能用方根的意义来解释(3)的式子吗?<5>你能推广到一般的情形吗? 结论:<1>整数指数幂的运算性质:a n=a ·a ·a ·…·a,a 0=1(a ≠0);00无意义;a -n=n a1(a ≠0);a m ·a n =a m+n ;(a m )n =a mn;(a n )m=a mn;(ab)n=a n b n;<2>①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根. 实质上①510a=a510,②8a =a 28,③412a=a412,④210a=a210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式);<3>利用<2>的规律,435=543,357=735,57a =a 57,n mx =x nm<4>53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m的n 次方根是x nm ,结果表明方根的结果和分数指数幂是相通的.<5>如果a>0,那么a m的n 次方根可表示为na m=a n m ,即a nm =n a m (a>0,m,n ∈N *,n>1).【综上所述,我们得到正数的正分数指数幂的意义】规定:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1).思考:<1>类比正数的正分数指数幂,正数的负分数指数幂的意义是什么?零的分数指数幂的意义是什么?<2>指数的概念从整数指数推广到了有理数指数后,有理数指数幂的运算性质是什么?结论:<1>正数的负分数指数幂的意义是 amn =mn a1=nma 1(a>0,m,n ∈N *,n>1);零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.<2>有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:①a r ·a s =a r+s (a>0,r,s ∈Q ),②(a r )s =a rs(a>0,r,s ∈Q ),③(a ·b)r=a r b r(a>0,b>0,r ∈Q ).(教师注意:这一部分学生可能会问到为什么要规定a>0。
分数指数幂教学设计文档(2)
课题 分数指数幂主备人教材分析本课的内容是人教版高一年级上册第2章第1节第2课时,就是课本50到52页的内容,是本章中的重点之一。
本节课安排在根式的概念之后。
通过这一节课的学习使学生掌握分数指数幂的概念和性质。
它既是整数指数幂的拓展,又是今后继续学习“指数函数及其图象”的基础,在本章中起着承上启下的作用。
本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。
作为一种数学模型,分数指数幂在日常生活中也有着极其广泛的应用。
教学目标(1)知识目标:通过对根式的概念和性质研究,使学生理解、掌握分数指数幂的概念和性质。
(2)能力目标:通过对分数指数幂的基本性质的探究和应用,帮助学生通过问题解决获得数学知识;在交流过程中,养成表述、抽象、类比、推理、总结的思维习惯。
(3)德育目标:培养学生对待知识的科学态度、勇于探索和敢于创新的精神。
(4)情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
教学重点分数指数幂概念和性质 教学难点 负分数指数幂的理解教学方法 1、自学体验法——利用学生合作探究经历体验并发现问题,分析问题进一步归纳总结。
问题进一步归纳总结。
2、观察发现、启发引导、探索相结合。
课 型 新授课新授课教学准备 导学案 教学环节教学内容师生活动 设计意图备课组研讨修正预习内容知识回顾负整数指数幂的意义:=-pa),(+ιN p o a整数指数幂的运算性质 ①=·sr a a ),,(Z s r Î②=sr a )( ),,(Z s r Î③=rab )( ),(Z r Î课前布置复习任务。
习任务。
为分数指数幂的学习做准备。
还需复习前面一节课学习的重要知识点 n 次方根的定义及其性质。
n课创设情境导入新活动: 前面,前面,前面,我们已经研究了我们已经研究了整数指数幂运算性质,整数指数幂运算性质,并且并且知道指数取0和负数都是有意义的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
帮助学生理解分数指数幂的概念,学生能够直接应用概念.
若学生写 也行.
利用分数指数幂的意义求幂的值,帮助学生进一步体会分数指数幂与方根的联系.
书上例3是用计算器运算,现在这样设计目的是让学生将分数指数幂和方根进行熟练转化.
培养学生自主解题及评价能力.通过练习掌握方根向幂的形式的转化,体会两者的联系,正确理解分数指数幂的概念.
例3将幂的形式转化为方根形式:
(1) ;(2) ;(3) ;(4)
解:(1) ;
(2) ;
(3) ;
(4) .
小结:分数指数幂中指数的分母是方根中的根指数.
三、巩固练习
1.把下列方根化为幂的形式:
(1) ;(2) ;(3) ;
(4) .
*2.把下列幂化为方根的形式:
(1) ;
(2) ;
(3) ;
(4) .
2.将方根与指数幂互化.
问题引入,引发学生思考,为新知教学做铺垫.
温故而知新,让学生在已有知识的基础上体会从整数指数幂到分数指数幂,是幂的概念的又一次扩展.
让学生在已有经验的基础上体会:在扩大指数的范围时,原有的幂的运算性质应该保持不变.从过程中体会转化的数学思想.
感受方根与幂的形式的转化过程.
通过观察得出方根与幂的形式的转化,从而得出分数指数幂的意义.
(3) ;(4) .
4.计算:
(1) ;(2) ;(3) ;
(4) .
(练习册P13)
1.解:
(1)5;(2)9;
(3)2;(4) .
2.解:
(1) ;
(2) ;
(3) ;
(4) .
3.解:
(1) ;
(2) ;
(3) ;
(4) .
4.解:
(1) ;
(2) ;
(3) ;
(4)
.
通过将分数指数幂转化成方根的形式进行简单的计算,复习巩固转化的方法.
也可以利用幂的运算性质进行计算,对于这样的学生教师应给予充分的鼓励和表扬.
通过练习掌握幂向方根形式的转化,体会方根与幂之间相互转化的关系,体现转化的数学思想.
利用分数指数幂的意义求幂的值,帮助学生进一步体会分数指数幂与方根的联系.同时提醒学生,当分数指数幂转化为方根形式时,如果根指数是偶数时,对应的是正的偶次方根;如果根指数是奇数时,则对应的是奇次方根.
熟练识记重用数的平方根和立方根.
3.例题分析
例1把下列方根化为幂的形式:
(1) ; (2) ;
(3) ; (4)
每一题问:如何转化?谁做分数指数幂中指数的分母?
师:刚才将方根转化为分数指数幂,反过来分数指数幂可以转化为方根进行开方运算.
例2计算:
(1) ;(2) ;(3) ;(4) .
解:(1) ;
(2) ;
(3) ;
(4) .
小结:可将分数指数幂转化为方根的形式再求值,最后写成分数指数幂的形式.
§12.7分数指数幂(1)
教学目标:
1.理解分数指数幂的意义.
2.能将方根与分数指数幂互化,体会化归的数学思想.
教学重点及难点:将方根与分数指数幂互化.
教学过程:
教师活动
学生活动
设计意图
一、复习引入
1.引言:加法与减法互为逆运算,按照“减去一个数等于加上这个数的相反数”,减法可以转化为加法;同样,除法也可以转化为乘法.那么对互为逆运算的乘方与开方,能否将开方运算转化为某种乘方形式的运算呢?
2.思考:
把 表示为2的 次幂的形式.
引导分析:
(1)解决这个问题之前,先口答:(用幂的形式表示)
(2)这是以前所学的整数指数幂,负整数指数幂可以转化为正整数指数幂.到目前为止2的任何整数指数幂都是有理数,而 是一个无理数,可知 不是整数.因此必须将指数的取值范围扩大,才有可能把 表示为 的形式.
(3)假设 成立,问:在等式成立的前提下,如何消除根号进行转化呢?
(其中 、 为整数, ).
【说明】在说明 同样适用后,导出后一个负分数指数幂.
上面规定中的 和 叫做分数指数来自, 是底数.揭示课题:12.7分数指数幂
[说明]指数的取值范围扩大到有理数后,方根就可以表示为幂的形式,开方运算可以转化为乘方形式的运算.
2.有理数指数幂
整数指数幂和分数指数幂统称有理数指数幂.
*3.把下列方根化为幂的形式:
(1) ;
(2) ;
(3) ;
(4) .
4.计算(口答):
(1) ;(2) ;(3) ;
(4) ;(5) ;(6) .
四、课堂小结
学生自主小结:你学到了什么?
你有什么体会或想法?
数学思想:化归思想.
预设回答:两边同时立方运算.
答:1
,
预设回答:被开方数中的底数转化为了幂的底数,被开方数中的指数转化为幂的指数中的分子,根指数转化为幂的指数中的分母.预设:
解:(1)
(2)
(3)
(4)
师生共同完成.
师生共同完成.
学生独立练习.
1.解:
(1) ;
(2) ;
(3) ;
(4) .
2.解:
(1) ;
(2) ;
(3) ;
(4) .
3.解:
(1) ;
(2) ;
(3) ;
(4) .
4.解:
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) .
预设:
1.分数指数幂意义;
通过练习复习巩固方根向幂的形式的转化,体会两者的联系,正确理解分数指数幂的概念.
通过练习复习巩固幂向方根形式的转化,体会方根与幂之间相互转化的关系.
特别注意:
的灵活应用.
在实际计算时,先乘方后开方,往往由于数值较大,增加了开方的难度,所以常采用先开方后乘方的方法,既保证了计算的合理性,又提高了计算的速度和正确性.
对本节课所学知识进行初步的梳理.
课后作业
试题
解答
设计意图
A组
1.填空:
(1) =_____;(2) =_____;
(3) =______;(4) =_____.
(练习册P12)
2.把下列方根形式写成幂的形式:
(1) ;(2) ;(3) ;
(4) .
(练习册P12)
*3.把下列幂化为方根的形式:
(1) ;(2) ;
那么
说明:原有的幂的运算性质应该保持不变.
左边=21,右边=
要使 左边=右边 成立,则 ,即
所以
追问1:被开方数中2的指数是几?
(师可用红色粉笔标注出指数)
问2:猜想 =?
3. 讨论
通过 , , 的转化,讨论方根与幂的形式如何互化?(学生讨论)
二、学习新课
1.分数指数幂概念
师:把指数的取值范围扩大到分数,我们规定