考研数学-专题5 导数的概念及应用

合集下载

导数及其应用

导数及其应用

导数及其应用导数是微积分学中的重要概念,它在数学和各个领域的应用中都起着关键作用。

本文将介绍导数的定义及其常见的应用领域。

一、导数的定义导数可以解释为函数在某一点处的瞬时变化率。

在数学上,我们用极限的概念来定义导数。

给定函数f(x),如果极限\[ \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \]存在,我们就称该极限为函数f(x)在点x处的导数。

导数常用记号f'(x)表示。

二、导数的计算为了计算导数,我们可以利用一些基本的求导法则。

对于常见的函数类型,有以下几个常用的求导法则:1. 常数函数:对于常数c,它的导数为0,即f'(x)=0。

2. 幂函数:对于幂函数f(x)=x^n,其中n是常数,它的导数为f'(x)=nx^(n-1)。

3. 指数函数:对于指数函数f(x)=a^x,其中a是常数且不等于1,它的导数为f'(x)=a^x ln(a)。

4. 对数函数:对于自然对数函数f(x)=ln(x),它的导数为f'(x)=1/x。

5. 三角函数:对于三角函数f(x)=sin(x),f'(x)=cos(x);对于f(x)=cos(x),f'(x)=-sin(x)。

三、导数的应用导数在各个领域都有广泛的应用,下面介绍其中几个重要的应用领域。

1. 最值问题导数可以用来确定函数的最大值和最小值。

当函数的导数为零或不存在时,这些点可能是函数的极值点。

通过求解导数为零的方程,我们可以求得函数的极值点,并通过二阶导数的符号判断这些极值点是极大值还是极小值。

2. 函数图像的特性通过导数可以研究函数的图像特性。

函数的导数可以告诉我们函数在哪些区间上是递增或递减的,以及函数的凹凸性质。

通过导数,我们可以画出函数的导数曲线,从而描绘出函数的整体走势。

3. 曲线的切线与法线在微积分中,导数还可以用来计算函数曲线上任意一点处的切线方程。

切线表示曲线在该点的瞬时变化情况。

(完整版)导数知识点总结及应用

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

导数的定义及其应用领域

导数的定义及其应用领域

导数的定义及其应用领域导数是微积分学中的重要概念,它描述了函数在某一点的变化率。

导数的定义和性质被广泛地应用在物理、工程、经济学等领域中。

本文将简要介绍导数的定义,以及它在不同领域的应用。

一、导数的定义导数可以理解为函数的瞬时变化率。

对于函数f(x),在点x处的导数表示为f'(x)或df(x)/dx。

导数的定义可以通过极限来描述,即f'(x) = lim┬(h→0)⁡〖((f(x+h)-f(x))/h)〗,其中h是趋于0的增量。

二、导数的性质导数具有多个重要性质,其中一些常见的性质包括:1. 导数可以用于判断函数的单调性。

如果在某个区间内,函数的导数始终为正(或负),则该函数在该区间内单调增加(或减少)。

2. 导数可以用于求解函数的最大值和最小值。

函数在极值点处的导数为零或不存在。

3. 导数满足乘法规则、和差规则和链式法则等运算规则,使得我们可以方便地计算复杂函数的导数。

三、导数的应用领域1. 物理学中的运动学导数在物理学中的运动学方程中起着关键作用。

例如,速度可以定义为物体位移关于时间的导数,加速度则是速度关于时间的导数。

通过求解导数,我们可以推导出各种运动的速度、加速度和位移关系,从而更好地理解物体的运动规律。

2. 工程学中的控制系统导数在工程学中的控制系统中经常被使用。

例如,在机械工程中的控制系统中,导数可以表示速度或者加速度的变化。

这对于设计和分析各种控制系统非常重要,从而提高系统的稳定性和响应度。

3. 经济学中的边际效应导数在经济学中的边际效应分析中起着关键作用。

例如,在经济学中,边际成本和边际收益可以通过求导来计算。

这对于制定合理的经济政策和决策具有重要意义。

4. 生物学中的生态模型导数在生物学中的生态模型中也有广泛应用。

生态学家利用导数来描述物种数量的变化速率,从而研究生态系统的稳定性和动态性。

导数的计算帮助我们理解和预测生物多样性和种群变化等重要生物学现象。

5. 金融学中的风险管理导数在金融学中的风险管理中也起着重要作用。

导数知识点总结考研

导数知识点总结考研

导数知识点总结考研一、导数的定义导数是微积分学中的一个重要概念,它描述了函数在某一点处的变化率。

在几何上,一个函数在某一点处的导数可以理解为这个函数在该点处的切线斜率。

在代数上,函数f(x)在点x=a处的导数可以用极限来表示,即f'(a) = lim(x→a) (f(x) - f(a)) / (x - a)如果这个极限存在,那么函数f(x)在点x=a处是可导的,其导数即为f'(a)。

如果导数存在,那么函数在该点处是光滑的,即函数在该点处的变化率是连续的。

二、导数的计算1. 基本导数法则- 常数导数法则:如果f(x) = c,其中c为常数,那么f'(x) = 0。

- 幂函数导数法则:如果f(x) = x^n,其中n为自然数,那么f'(x) = nx^(n-1)。

- 指数函数导数法则:如果f(x) = a^x,其中a为正数且不等于1,那么f'(x) = a^x * ln(a)。

- 对数函数导数法则:如果f(x) = log_a(x),其中a为正数且不等于1,那么f'(x) = 1/(x *ln(a))。

2. 导数的四则运算- 和差法则:如果f(x) = g(x) + h(x) (或f(x) = g(x) - h(x)),那么f'(x) = g'(x) + h'(x) (或f'(x)= g'(x) - h'(x))。

- 积法则:如果f(x) = g(x) * h(x),那么f'(x) = g'(x) * h(x) + g(x) * h'(x)。

- 商法则:如果f(x) = g(x) / h(x),那么f'(x) = (g'(x) * h(x) - g(x) * h'(x)) / h(x)^2。

3. 链式法则如果f(x) = g(h(x)),那么f'(x) = g'(h(x)) * h'(x)。

导数的概念与应用

导数的概念与应用

导数的概念与应用导数是微积分中的重要概念之一,它描述了函数在给定点处的变化率。

在数学和实际应用中,导数具有广泛的应用,涉及到诸多领域,如物理学、经济学、工程学等。

本文将介绍导数的概念,讨论其应用领域,并探讨导数在实际问题中的重要性。

一、导数的概念导数是函数微分学中的一个基本概念,它表示函数在某一点处的变化率。

在数学上,导数可以通过函数的微分来定义。

对于一个函数f(x),在点x处的导数可以用以下公式表示:f'(x) = lim(h->0) [f(x+h)-f(x)]/h其中,lim表示当变量h无限接近于0时的极限值。

导数表示了函数在给定点处的瞬时变化率,也就是函数曲线在该点的切线斜率。

二、导数的应用领域1. 物理学中的运动学导数在物理学中的应用非常广泛,尤其在运动学中发挥着重要作用。

例如,我们可以通过对位移函数求导来计算物体的速度,进一步求二次导数可以得到加速度。

导数的概念和计算方法为运动学提供了数学工具,使我们能够更好地理解和分析物体的运动轨迹。

2. 经济学中的边际分析经济学中的许多问题都可以通过导数来进行边际分析。

例如,在微观经济学中,边际效用是指每额外消费一单位商品带来的额外满足程度。

通过对边际效用函数求导,我们可以获得边际效用的变化率,帮助经济学家进行决策分析。

3. 工程学中的优化问题导数在工程学中有着广泛的应用,特别是在优化问题中。

例如,在机械设计中,导数可以用于确定某种结构的最佳参数配置,以实现最佳性能。

通过优化函数的导数,工程师可以找到最优解,提高设计效率和性能。

三、导数在实际问题中的重要性导数在实际问题中具有重要的意义和作用。

它不仅可以提供函数在某一点的变化率,还可以揭示函数曲线的重要特性和行为。

导数的概念及其应用使得我们能够更深入地理解各种现象,并为解决实际问题提供了有效的数学工具。

导数在科学和工程领域的应用非常广泛。

例如在物理学中,我们可以通过对位置函数取导数,求得速度的变化率;通过求速度函数的导数,可以得到加速度的变化率。

导数知识点归纳及应用

导数知识点归纳及应用

导数知识点归纳及应用导数是微积分的基础知识之一,它描述了一个函数在其中一点的变化率。

导数的概念非常重要,广泛应用于科学和工程领域中的各种问题的建模和解决。

一、导数的定义及基本性质1.导数的定义:对于一个函数f(x),它的导数可以通过以下极限定义求得:f'(x) = lim ( h -> 0 ) [ f(x+h) - f(x) ] / h导数表示了函数f(x)在x点处的变化率。

如果导数存在,则称f(x)在该点可导。

2.导数的图像表示:导数可以表示为函数f(x)的图像上的斜率线,也就是切线的斜率。

3.导数的几何意义:a.函数图像在特定点的切线的斜率等于该点的导数。

b.导数为正,表示函数在该点上升;导数为负,表示函数在该点下降;导数为零,表示函数在该点取得极值。

4.基本导数公式:a.常数函数的导数为0。

b.幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1)。

c. 指数函数 f(x) = a^x 的导数为 f'(x) = ln(a) * a^x。

d. 对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1 / (x * ln(a))。

二、导数的计算方法1.导数的基本定义法:根据导数的定义,通过计算极限来求得导数。

2.导数的运算法则:a.和差法则:(f(x)±g(x))'=f'(x)±g'(x)。

b.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

c.商法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2d.复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。

3.链式法则:对于复合函数f(g(x)),可以利用链式法则求导数:(f(g(x)))'=f'(g(x))*g'(x)。

导数的概念导数公式与应用

导数的概念导数公式与应用

导数的概念导数公式与应用导数是微积分中的一个重要概念,用于描述函数的变化率。

导数的概念在不同领域都有广泛应用,例如物理学、经济学和工程学等。

本文将介绍导数的概念、导数公式以及导数在实际应用中的一些例子。

导数的概念可以理解为函数在其中一点处的变化率。

具体来说,如果函数在其中一点处具有导数,那么导数等于函数在该点处的斜率。

直观地说,如果一个函数在其中一点的导数为正,意味着函数在该点附近的值在增加;如果导数为负,意味着函数在该点附近的值在减小。

如果导数等于零,在该点附近的值则没有变化。

导数的计算可以使用导数公式来简化。

对于一些常见的函数,我们可以使用已知的导数公式来得到它们的导数。

例如,对于多项式函数,如果f(x) = ax^n ,其中a和n为常数,那么它的导数为f'(x) = nax^(n-1)。

而对于指数函数f(x) = e^x ,它的导数等于它自身,即f'(x) = e^x。

通过使用这些已知的导数公式,我们可以计算更复杂函数的导数。

导数在实际应用中有着广泛的应用。

一个常见的应用是在物理学中,用于描述物体的运动。

例如,我们可以通过计算一个物体的位移函数的导数来得到它的速度函数。

同样地,计算速度函数的导数可以得到加速度函数。

通过这样的导数计算,我们可以更好地理解物体的运动规律。

另一个应用是在经济学中,用于描述供需关系。

导数可以提供给我们有关价格和数量之间关系的更多信息。

如果一个函数表示价格对其中一变量的依赖关系,那么它的导数可以告诉我们,当这个变量改变一个单位时,价格将会如何改变。

这种信息对于制定合理的价格策略和优化资源配置非常重要。

除了物理学和经济学,导数在工程学和计算机科学中也有许多应用。

在工程学中,导数可以用于解决建筑结构的优化问题,确保建筑物的稳定性。

在计算机科学中,导数可以用于图像处理和机器学习等领域,提供对图像和数据的更深入的理解。

总结起来,导数是微积分中的一个重要概念,用于描述函数的变化率。

考研导数知识点总结

考研导数知识点总结

一、导数的定义与概念1.1 导数的定义在数学中,函数的导数是描述函数变化速率的概念。

给定函数y=f(x),在点x处的导数可以用极限表示:\[ f'(x)=\lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{\Delta x} \]其中,f'(x)表示函数f(x)在点x处的导数,也可以记作y'或dy/dx。

1.2 几何意义导数的几何意义是函数的切线斜率。

在函数图像上,给定点P(x, f(x)),函数在该点的切线斜率即为函数在该点的导数值。

1.3 导数的符号表示导数可以表示为函数y=f(x)关于自变量x的一阶偏导数:\[ f'(x)=\frac{{dy}}{{dx}} \]二、导数的计算方法2.1 导数的基本计算方法导数的基本计算方法包括常数法则、幂函数法则、指数函数和对数函数的导数、三角函数的导数、常见函数的和、积、商的导数等。

通过这些法则,可以求解各种函数的导数值。

2.2 链式法则对于复合函数,可以使用链式法则求导。

链式法则描述了复合函数求导的方法,对于函数y=f(g(x)),其导数可以表示为:\[ \frac{{dy}}{{dx}} = \frac{{dy}}{{du}} \cdot \frac{{du}}{{dx}} \]其中,u=g(x)。

2.3 隐函数求导对于隐函数y=f(x)和g(x)=c,若y=f(g(x)),则可以使用隐函数求导的方法计算导数。

2.4 参数方程求导对于参数方程x=f(t),y=g(t),可以使用参数方程求导的方法计算导数。

3.1 常数函数的导数对于常数函数y=c,其导数为0,即f'(x)=0。

3.2 幂函数的导数对于幂函数y=x^n,其中n为常数,其导数为f'(x)=nx^{n-1}。

3.3 指数函数和对数函数的导数指数函数y=a^x(a>0,且a≠1)和对数函数y=log_a x(a>0,且a≠1)的导数分别为f'(x)=a^x \cdot ln a和f'(x)=\frac{1}{x \cdot ln a}。

《导数和应用》知识点总结

《导数和应用》知识点总结

《导数和应用》知识点总结导数是微积分中的重要概念,它是用来描述函数变化率的工具。

本文将总结导数的定义、性质以及它在数学、物理和经济等领域中的应用。

一、导数的定义在数学中,导数是描述函数变化率的概念。

对于一个函数f(x),在x 点处的导数表示函数在这一点的变化率。

导数的定义如下:f'(x) = lim(h -> 0) [f(x+h) - f(x)] / h其中f'(x)表示f(x)在x点处的导数,h表示一个无限小的增量。

二、导数的性质1.导数的存在性:如果函数f(x)在x点处可导,则它在这一点的导数存在。

2.导数的基本运算法则:- 常数法则:如果c是一个常数,且f(x)是可导函数,则(cf(x))' = cf'(x)。

-和差法则:如果f(x)和g(x)是可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

-积法则:如果f(x)和g(x)是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

-商法则:如果f(x)和g(x)是可导函数,并且g(x)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²。

3.链式法则:如果函数f(x)和g(x)分别是可导函数,则复合函数(f(g(x)))'=f'(g(x))g'(x)。

4.导数的求解法则:- 幂函数法则:对于f(x) = axⁿ,其中a是常数,n是自然数,有f'(x) = anxⁿ⁻¹。

-指数函数法则:对于f(x)=eˣ,有f'(x)=eˣ。

- 对数函数法则:对于f(x) = ln(x),有f'(x) = 1/x。

- 三角函数法则:对于f(x) = sin(x)和f(x) = cos(x),有f'(x) = cos(x)和f'(x) = -sin(x)。

导数知识点总结与应用

导数知识点总结与应用

导数知识点总结与应用一、导数的定义导数的定义是一个函数在某一点的变化率,通俗地说就是函数在某一点的斜率。

数学上我们用极限的概念来定义导数,设函数y=f(x),在点x0处的导数定义为:f'(x0) = lim (Δx→0) (f(x0+Δx)- f(x0))/Δx如果这个极限存在的话,我们就称这个导数为存在的。

导数在几何意义上就是函数在某一点的切线的斜率。

二、导数的意义导数不仅仅是一个数学概念,更是反映了函数在不同点的变化情况。

导数告诉我们了函数在某一点的变化率,也就是函数在该点上的速度。

导数在物理中也有广泛的应用,比如在求物体的速度、加速度等等。

在经济学中,导数也有广泛的应用,比如在边际收益、边际成本等等。

三、导数的常用性质1、导数的和差规则:设函数f(x)和g(x)都在点x0具有导数,那么它们的和、差的导数就可以用下面的关系式来表示:(f(x)±g(x))' = f'(x)±g'(x)2、导数的数乘规则:设函数f(x)在点x0具有导数,那么它的数乘k的导数可以用下面的关系式来表示:(k*f(x))' = k*f'(x)3、导数的积法则:设函数f(x)和g(x)都在点x0具有导数,那么它们的积的导数可以用下面的关系式来表示:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)4、导数的商法则:设函数f(x)和g(x)都在点x0具有导数,并且g(x0)≠0,那么它们的商的导数可以用下面的关系式来表示:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/[g(x)]^2四、高阶导数由导函数可以得到二阶导数,三阶导数···,n阶导数的定义分别为f''(x) = [f'(x)]'f'''(x) = [f''(x)]'···f^(n)(x) = [f^(n-1)(x)]'几何意义上就是函数在该点的曲率、弯曲程度。

导数的定义及其应用

导数的定义及其应用

导数的定义及其应用导数是微积分中一个非常重要的概念,它在自然科学、工程学、经济学等多个领域都有广泛的应用。

本文将从导数的定义、导数的计算方法和导数的应用三个方面进行论述。

一、导数的定义导数是函数在某个点上的变化率,它描述了函数在一点附近的斜率,可以表示为函数在该点的极限。

具体地说,如果函数$f(x)$在点$x_0$处可导,那么它的导数为:$$f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}{h}$$其中$h$为趋近于$0$的实数。

如果这个极限存在,则称$f(x)$在$x_0$处可导。

例如,求函数$f(x)=x^2$在$x=2$处的导数,我们可以将$x_0=2$代入上式,得到:$$f'(2)=\lim_{h\to0}\frac{(2+h)^2-2^2}{h}=\lim_{h\to0}(4+4h+h^2)/h=4$$因此,$f(x)=x^2$在$x=2$处的导数为$4$。

二、导数的计算方法导数的计算方法有很多种,这里介绍三种常用的方法。

1. 用定义式计算。

根据导数的定义,我们可以将函数在某个点的导数表示为极限,通过计算该极限来求出导数的值。

这种方法往往比较繁琐,适用于简单函数或需要进行特殊推导的函数。

2. 利用导数的性质计算。

导数具有很多有用的性质,如加减法、乘法、链式法则等,可以帮助我们快速计算导数。

例如,对于两个函数$f(x)$和$g(x)$,它们的和函数$(f+g)(x)$的导数为$f'(x)+g'(x)$,积函数$(f\cdot g)(x)$的导数为$f'(x)g(x)+f(x)g'(x)$,以及由复合函数$u(x)=f(g(x))$构成的函数$v(x)=u'(x)=f'(g(x))g'(x)$的导数等等。

3. 利用数值计算方法计算。

数值计算方法是一种近似计算导数的方法,常用的方法有差分法、牛顿-莱布尼茨公式、微分方程法等等。

导数的概念导数公式与应用

导数的概念导数公式与应用

导数的概念导数公式与应用一、导数的概念导数是微积分中的重要概念之一,表示函数在其中一点处的变化率。

具体来说,对于函数f(x),在点x处的导数可以用极限表示为:f'(x) = lim┬(Δx→0)⁡〖(f(x+Δx) - f(x))/Δx 〗其中,Δx表示自变量x的一个增量。

导数表示了在自变量x发生微小变化的过程中,函数f(x)相应地发生的变化。

二、导数的公式1.常数的导数公式:如果f(x)=c是一个常数函数,其中c是常数,则f'(x)=0。

这是因为无论x如何变化,函数的值始终保持不变。

2.幂函数的导数公式:如果f(x)=x^n,其中n是任意实数,则f'(x)=nx^(n-1)。

3.指数函数的导数公式:如果f(x)=a^x,其中a>0且a≠1,则f'(x)=a^xln⁡(a)。

这个公式表明指数函数的导数与指数函数的底数有关。

4.对数函数的导数公式:如果f(x)=logₐ(x),其中a>0且a≠1,则f'(x)=1/((xln⁡(a))。

5.三角函数的导数公式:- sin(x)的导数:(sin(x))'=cos(x)。

- cos(x)的导数:(cos(x))'=-sin(x)。

- tan(x)的导数:(tan(x))'=sec^2(x)。

6.反三角函数的导数公式:- arcsin(x)的导数:(arcsin(x))'=1/√(1-x^2)。

- arccos(x)的导数:(arccos(x))'=-1/√(1-x^2)。

- arctan(x)的导数:(arctan(x))'=1/(1+x^2)。

以及其他常用函数的导数公式,如指数函数、对数函数的复合函数求导法则等。

三、导数的应用导数作为一种变化率的度量,有许多实际应用。

1.切线与法线:通过计算函数的导数,可以求得函数曲线在特定点处的导数值,从而得到曲线上该点处的切线方程。

导数的原理与应用

导数的原理与应用

导数的原理与应用一、导数的定义•导数是微积分中的重要概念,用于描述函数在某点处的变化率。

•函数在某点处的导数,表示该点处函数曲线的切线斜率。

二、导数的计算方法1.利用极限–导数f′(x)可以通过极限 $f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x}$ 来计算。

–这种方法适用于所有类型的函数,但计算较为繁琐。

2.常用的导数公式–f(x)=C,其中C为常数,导数f′(x)=0。

–f(x)=x n,其中n为常数,导数f′(x)=nx n−1。

–$f(x)=\\sin(x)$ ,导数 $f'(x)=\\cos(x)$。

–$f(x)=\\cos(x)$ ,导数 $f'(x)=-\\sin(x)$。

三、导数的性质1.导数的可加性–若函数 f(x) 和 g(x) 都在某点处可导,则(f+g)′(x)=f′(x)+ g′(x)。

2.导数的乘法法则–若函数 f(x) 和 g(x) 都在某点处可导,则 $(f \\cdot g)'(x)=f'(x) \\cdot g(x)+f(x) \\cdot g'(x)$。

3.导数的链式法则–若函数 y=f(u) 和 u=g(x) 都在某点处可导,则 $(f \\circg)'(x)=f'(g(x)) \\cdot g'(x)$。

四、导数的应用1.切线和切线方程–导数可以描述函数曲线在某点处的切线斜率。

–切线方程为y=f′(x)(x−x0)+f(x0),其中x0为切线与函数曲线的交点横坐标。

2.极值和拐点–导数可以用来判断函数的极大值、极小值和拐点。

–在导数图像中,极大值对应导数从正数到负数的转折点,极小值对应导数从负数到正数的转折点,拐点对应导数的极值点。

3.函数图像的性态–导数可以用来研究函数的递增、递减和凹凸性。

导数的定义及其应用

导数的定义及其应用

导数的定义及其应用在数学中,导数是一个十分常见的概念,它的定义和应用范围都非常广泛。

本文将分别从导数的定义和应用这两个方面进行详细探讨。

一、导数的定义导数,又称微商,是数学中一个十分基础的概念。

它表示函数在某一点处的变化速率,具体定义如下:设函数 f(x) 在点 x0 处连续,则函数 f(x) 在点 x0 处的导数f’(x0) 定义为:f’(x0) = lim f(x) - f(x0)x→x0 ----------------x - x0其中,x0 是任意实数,x 与 x0 之间的差值可以趋近于0但不能等于0。

这个定义可以简单解释为:在函数的某一点处,如果微小的变化量 dx 对应的函数变化量为 dy,那么导数f’(x) 就是 dy/dx 的极限值。

二、导数的应用导数具有许多实际应用,下面我们将就导数在各个领域中的应用进行探讨。

1. 极值问题在微积分中,一个函数在某一点的导数可以告诉我们该函数在该点处是否有极值。

换句话说,如果一个函数在某一点处的导数为0,则该点就是函数的一个可能的极值点。

我们可以通过对该函数导数的符号进行分析来确定是极大值或极小值。

2. 斜率问题导数也可以用来描述曲线的斜率。

当我们求出一条曲线在某一点的导数时,这个导数就可以告诉我们该点处该曲线的切线的斜率。

切线的斜率在几何学的角度来讲,就代表了曲线在该点处的斜率。

3. 最速下降线导数还可以用于求解物理问题,如最速下降线。

假设一个物体在空气中落下时受到阻力,那么它将在空气中以一个最快的速度下落。

这个速度可以通过求解物体所受阻力的函数的导数来得到,这个导数的零点就表示物体以最快速度下落时的速度。

4. 泰勒级数最后,导数还可以用于计算函数的泰勒级数。

泰勒级数是一个多项式,它可以代表一个周期性函数,并且可以用无限个次数的导数来确定。

总的来说,导数是微积分中一个重要的概念,它不仅可以用来解决极值问题和斜率问题,还可以用于计算最速下降线和泰勒级数等。

导数概念及其应用

导数概念及其应用

导数概念及其应用导数,也叫导函数值。

又名微商,是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a 如果存在,a即为在x0处的导数,记作f’(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f’(x)也是一个函数,称作f(x)的导函数(简称导数)。

寻找已知的函数在某点的导数或其导函数的过程称为求导。

实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

反之,已知导函数也可以反过来求原来的函数,即不定积分。

微积分基本定理说明了求原函数与积分是等价的。

求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

导数的应用:导数与物理、几何、代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

导数亦名纪数、微商(微分中的概念),是由速度变化问题和曲线的切线问题(矢量速度的方向)而抽象出来的数学概念,又称变化率。

导数的概念及运算知识点讲解(含解析)

导数的概念及运算知识点讲解(含解析)

导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。

导数的定义与应用

导数的定义与应用

导数的定义与应用导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。

在现实生活和科学研究中,导数有着广泛的应用。

本文将介绍导数的定义以及它在不同领域的应用。

一、导数的定义导数表示了函数在某一点上的变化率。

对于函数f(x),它在点x处的导数可以用极限的概念来定义。

如果这个极限存在,那么函数在点x处可导,其导数记为f'(x)或dy/dx。

导数的定义公式为:f'(x) = lim(h->0) (f(x+h) - f(x))/h其中,h表示自变量x的增量。

该定义表示,当自变量的增量趋近于0时,函数在该点上的变化率。

导数可以理解为函数曲线在某一点上的切线斜率。

二、导数的应用1. 函数的极值导数在函数的极值问题中有着重要的应用。

函数的极值点是函数曲线上的局部最大值或最小值点。

通过求导可以找到函数的极值点。

对于函数f(x),如果f'(x)=0或者f'(x)不存在,那么点x就是函数的极值点。

通过求解方程f'(x)=0,可以找到函数的极值点。

进一步分析导数的正负性,可以判断函数在极值点的增减性。

2. 函数图像的性态导数可以帮助我们了解函数图像的性态。

通过分析导数的正负性和零点,可以确定函数的增减区间和凹凸区间。

如果导数f'(x)>0,表示函数在该点上递增;如果导数f'(x)<0,表示函数在该点上递减。

通过导数的正负性,可以画出函数的增减图。

另外,通过导数的二阶导数(即导数的导数),可以判断函数的凹凸性。

如果二阶导数f''(x)>0,表示函数在该点上凹;如果二阶导数f''(x)<0,表示函数在该点上凸。

3. 物理学中的速度与加速度导数在物理学中有着广泛的应用,特别是在描述物体运动的速度和加速度方面。

对于物体的位移函数s(t),它的导数s'(t)表示物体在时间t处的速度。

速度的正负性表示了物体的运动方向。

《导数及其应用》知识点总结

《导数及其应用》知识点总结

《导数及其应用》知识点总结一、导数的定义与运算1.导数的定义:导数表示函数在其中一点上的变化率,定义为函数在该点处的极限值。

设函数y=f(x),则函数f(x)在点x=a处的导数记为f'(a),可以表示为以下三种形式:(1)f'(a) = lim(x→a) [f(a)-f(x)] / (a-x)(2)f'(a) = lim(h→0) [f(a+h)-f(a)] / h(3)f'(a) = dy / dx,_(x=a)2.导数的运算法则:(1)和差法则:(u±v)'=u'±v'(2)数乘法则:(ku)' = ku'(3)乘法法则:(uv)' = u'v+uv'(4)商法则:(u/v)' = (u'v-uv') / v²(5)复合函数求导法则:(f[g(x)])'=f'(g(x))*g'(x)二、导数的几何意义1.切线与法线:函数在其中一点处的导数就是函数在该点处的切线的斜率,切线方程为y-f(a)=f'(a)(x-a)。

函数在其中一点处的导数的倒数就是函数在该点处的法线的斜率,法线方程为y-f(a)=-(1/f'(a))(x-a)。

2.函数的单调性与极值:若函数在一段区间上的导数大于0,则函数在该区间上单调递增;若函数在一段区间上的导数小于0,则函数在该区间上单调递减。

函数在一个点处的导数为0,则该点为函数的驻点;函数在驻点上的导数为正,则该点为函数的极小值点;函数在驻点上的导数为负,则该点为函数的极大值点。

三、导数的应用1.函数的极值与最值:(1)求函数的极值点:将函数的导数等于0的解作为候选点,再通过计算二阶导数或进行导数的符号表来判断是否为极值点。

(2)求函数的最值:将函数的极值点和函数在定义域的两端计算的值进行比较,得出最大值或最小值。

导数知识点归纳及应用

导数知识点归纳及应用

导数知识点归纳及应用●知识点归纳 一、相关概念 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

注意:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: ①求函数的增量y ∆=f (x 0+x ∆)-f (x 0); ②求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;③取极限,得导数f’(x 0)=xyx ∆∆→∆lim 。

例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵0||lim ||lim )(lim )0()0(lim 0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x ∴f ′( 0)=02.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0

lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n
f (x0
n ) f (x0 n n
n)
f (x0 )
【例
1】设
f
(1) 存在,则 lim x0
f
(cos x)
f
(1 3 tan2 x2
x) cos x


(A) 4 f (4)
(B) 2 f (1) ,
(C) 2 f (1) f (1) ,
(D) 5 f (1) 1 f (1)
2
2
(D)
f (a x) f (a) f (a)
【例 2】设 f (x) 在 x a 处二阶可导,则极限 lim
x0
x
x0
x
故 f (0) 1 ln 2 ,选(D).
【例 3】设函数(x) sin x f (tx2 )dt ,其中 f (x) 是连续函数,且 f (0) 2. 0 (1)求(x) ;
4
(2)讨论(x) 的连续性.
【解】 令 tx2 u ,则
(x)
x 2 sin x 0
1 x2
【解 2】 f(0) (cos x x2 ) x0 ( sin x 2x) x0 0
f(0)
lim sin x0 x
x
lim
x0
x cos x sin x2
x
lim
x0
x sin 2x
x
0
【注】本题中用了三种求分段函数在分界点处导数的方法:
方法 1:导数定义
解 1 用的此方法.
方法 2:求导代入
lxim0 1 (
cos x 1
f
(x) x
)
sin
x
lim[
x0
cos x 1 sin x
f (x) ] x sin x
1 x2 lim[ 4
x0 x
f
(x) x2
]
lim f (x) f (0) 1
x0 2x
2
1
lim
x0
cos x
f (x) sin x x
e1
【例 4】设 f (x) 在 x0 点可导, n , n 为趋于零的正项数列,求极限
0
x
在 x 0 点处,由导数定义有
(0) lim (x) (0)
x0
x
lim
x0
1 x3
x2 sin x
f (u)du
0
lim
x0
x2 sin x x3
f
( )
(积分中值定理)
f (0) 2.
所以 ( x)
2 x3
x2 sin x f (u)du f (x2 sin x)( 2 sin x cos x),
解 2 中左导数 f(0) 用的此方法,其理论依据是:
若在 (x0 , x0 ]上, f (x) g(x), 则 f(x0 ) g (x0 ) .右导数有类似结论.
方法 3:导函数极限
解 2 中右导数 f(0) 用的此方法,其理论依据是:

f
(x) 在[x0 , x0
) 上连续,在 (x0 , x0
x0
x
即 F(0) 1, 故选(D).
【解 2】排除法
取 f (x) x, 则 F (x) x f (t)dt x tdt 1 x2, F(0) 0,
0
0
2
显然,选项(A)(C) 均不正确.
取 f (x) 1, 则 F (x) x f (t)dt x dt x , F(0) 不存在.
存在时,则称该极限值为 f (x) 在点 x0 处的左导数,记为 f(x0 ) .
定义 3(右导数) 若右极限
lim y lim f (x0 x) f (x0 )
x x 0
x 0
x
存在时,则称该极限值为 f (x) 在点 x0 处的右导数,记为 f(x0 ) .
定理 可导 左右导数都存在且相等.
x0
x
1
(二)连续、可导、可微之间的关系
【例 2】设 f (x) 在 x0 处可导,则 (A) f (x) 在 x0 的某邻域内可导; (B) f (x) 在 x0 的某邻域内连续; (C) f (x) 在 x0 处连续; (D) f (x) 在 x0 处连续.
与导数概念相关题型主要有三种 (一)利用导数定义求极限
从而 f (x) 在 x0 处连续;
【例 5】若函数 f (x) 在[a,b] 上可导,且 f(a) f(b) 0, 则 (a,b), 使 f ( ) 0.
8
练习题
1.讨论函数
f
(x)
(x 1)2 arctan
2
1
, ,
x 1
x 1, 在 x 1 处的可导性.
x 1,
4)若
f
(x)

x0
处导函数的极限
lim
x x0
f
( x)
存在,则
f
(x) 在
x0 处连续.
则上述命题中正确的个数为
(A)0; (B)1; (C)2;
(D)3.
【解】 应选(C)
2)正确.
(1)若 f (x0 ) 0, 则在 x0 某邻域内, f (x) f (x), 从而 f (x) 在 x0 处可导;
) 内可导,且 lim x x0
f
(x) 存在,

f(x0 )
lim
x x0
f
(x). 左导数有类似结论.
【例
2】设函数
f
(x)
x2
2x
b,
x 0, 处处可导,确定常数 a,b 并求 f (x).
ln(1 ax), x 0,
【解 1】
【解 2】
6
【例 3】设 f (x) 在 x 0 的某邻域内连续, F (x)
【例 1】 下面几个极限能作为 f (x) 在 x0 处导数定义的是
(A) lim f (x0 x) f (x0 x) ;
x0
2x
(B) lim n[ n
f
( x0
1) n
f
(x0 )] ;
(C) lim x0
f (x0
x2) x2
f (x0 )
;
(D) lim f (x0 ) f (x0 x) .
y
x x0
,或
d d
y x
x x0
.如果上述极限不存在,则称
f
(x)
在点
x0
处不可导.
【注】常用的导数定义的等价形式
f
(x0 )
lim
x x0
f (x) f (x0 ) , x x0
定义 2(左导数) 若左极限
lim y lim f (x0 x) f (x0 )
x x 0
x 0
x
0
0
显然,选项(B)不正确.
故应选(D).
7
【例 4】设有命题
1)若 f (x) 在 x0 处可导,则 f (x) 在 x0 处可导;
2)若 f (x) 在 x0 处连续,且 f (x) 在 x0 处可导,则 f (x) 在 x0 处可导;
3)若 f (x) 在 x0 处的左、右导数都存在,则 f (x) 在 x0 处连续;
x
f (t)dt ,则
0
(A) F (x) 在 x 0 处不可导;
(B)若 f (x) 在 x 0 处可导,则 F (x) 在 x 0 处可导;
(C)若 f (0) 0 ,则 F(0) 1;
(D)若 f (0) 0, f (0) 1, 则 F(0) 1.
【解 1】直接法 (D)正确.
(三)利用导数定义判定可导性
【例 1】讨论函数
f
(
x)
cossixnx x
x2 ,
,
x 0, x 0, 在 x 0 处的可导性.
5
【解 1】
f(0)
lim
x0
cos
相关文档
最新文档