风力发电机文献综述

合集下载

风电文献综述报告

风电文献综述报告

文献综述报告( 2015届本科)学院:工程学院专业:电气工程及其自动化班级:电气2班*****学号:***********:**2015年 6 月小型风力发电系统研究与设计前言:随着近年来地球温室效应加重,传统化石燃料供应愈发紧张,人们开始进行新能源的寻找和开发。

而风能作为一种无污染的可再生能源,其利用简单、取之不尽用之不竭的特点使其在新能源领域脱颖而出.据研究,如果全球风能总量的1%被利用,那么世界3%的能源就可以被节省下来。

风能的利用在未来也许会取代传统化石燃料以及核能等能源方式。

世界各国均把风力发电作为应对能源短缺、大气污染、节能减排等问题的有效解决措施。

而小型发电系统在日常生活中如何应用也受到越来越多的关注。

1 风力发电研究的背景和意义风力发电是电力可持续发展的最佳战略选择。

清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐.从 20 世纪 90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。

世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。

技术创新使风电技术日益成熟。

目前,在发达国家风电的年装机容量以 35.7%高速度增长。

一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。

目前单机容量 50kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行.同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。

技术进步使风电成本具有市场竞争能力。

长期以来,人们以风电电价高于火电电价为由,一直忽视风电作为清洁能源对于能源短缺和环境保护的意义,忽视了风电作为一项高新技术产业而将带来的巨大前景。

风力发电及其技术发展综述

风力发电及其技术发展综述

风力发电及其技术发展综述风力发电是一种在全球范围内广泛使用的可再生能源技术。

本文将全面深入地探讨风力发电技术的发展历程、现状、前沿领域以及未来发展趋势。

我们将介绍风力发电的基本原理、关键技术、应用场景,以及研究方法和展望。

风力发电是利用风能转化为电能的过程。

风能是一种广泛存在的自然能源,具有清洁、可再生等特点。

随着全球对环境保护和可持续发展的日益重视,风力发电技术在世界范围内得到了大力推广和应用。

陆地风电技术:陆地风电是风力发电的主要形式,其技术发展相对成熟。

然而,由于陆地风电的资源有限,且受到地形、气候等因素的影响,其发展面临一定的瓶颈。

目前,研究方向主要是提高风电机组的效能和可靠性,降低其成本。

海洋风电技术:海洋风电是风力发电的新兴领域,具有丰富的资源和发展潜力。

海洋风电技术需要解决的关键问题包括风电机组固定技术、电力传输技术以及海洋环境对风电机组的影响等。

智能电网:智能电网是风力发电的重要应用领域。

通过智能电网技术,可以实现风能与其他能源的互补,提高电力系统的稳定性。

太阳能:风能和太阳能都是清洁能源,具有很大的发展潜力。

太阳能和风能联合发电系统可以大大提高可再生能源的利用效率。

潮汐能:潮汐能是一种具有很大开发潜力的海洋能源。

风力发电和潮汐能联合开发系统,可以充分利用两种能源的特点,提高能源利用效率。

风力发电技术的研究方法主要包括文献调研、统计分析、案例研究和仿真模拟等。

研究人员需要充分了解国内外的研究现状和发展趋势,结合实际应用需求,提出针对性的研究方案和发展策略。

风力发电技术在全球范围内得到了广泛应用和认可,是实现可持续发展和环境保护的重要手段。

然而,目前风力发电技术的发展仍面临一些挑战,如资源有限、成本较高、技术瓶颈等。

未来,随着科技的进步和创新,风力发电技术的发展将朝着更高效能、更低成本、更广泛应用的方向发展。

同时,随着可再生能源的日益重视和大力发展,风力发电技术在智能电网、太阳能、潮汐能等领域的拓展将更加深入。

文献综述

文献综述

1.近年来,我国风电产业呈现迅猛发展态势,2010年我国风电装机容量已跃居世界首位。

小型风电是风电产业的一项补充,大型风电产业不能完成或不能解决的问题要由小型风电产业来完成。

中国疆域广阔,风资源分布不均匀导致风电开发呈现出多样性的特点:年平均风速6m/s或以上的高风速区(如三北地区!沿海地区)多建立大型兆瓦级风力发电机组,但这些地区的风资源已趋饱和,海上风电短期内又难以大规模开发;年平均风速为3~5m/s的低风速区,如安徽!湖北!福建和云南等省份,虽不具备发展大型风电的条件,却是发展小型风电的沃土,因此推广应用小型风力发电机组具有较大的市场空间国内外对小型风力发。

2.我国中小型风电机组起步阶段应从20世纪的70年代开始,此时的小型风力发电机只是作为大型风力发电机的先期产品,作为研制大型风力发电机组试验品,真正用到生产和生活中的小型风力发电机相对很少。

进入20世纪八九十年代,随着我国经济建设的发展,小型风力发电机组略有发展,但受到国内市场经济调控影响,在制造和技术上并没有很大突破,此时期只是进入到了小机组研制过渡阶段。

进入21世纪,伴随着国际发展新型清洁能源和可再生能源的潮流,以及在国内对可再生能源的扶持政策的影响下,小型风力机技术在大型风电机组蓬勃发展的基础上也有了长足的进步,并且其技术水平和制造工艺正逐渐进入成熟阶段。

3.据不完全统计,到 2006 年底,我国从事小型风力发电机组及其配套件开发、研制、生产的单位达 78 家,年生产能力达8万台,总装机容量 51.3MW,年产量、总产量、生产能力、出口均列世界之首。

小型风力发电机主要出口到英国、法国、美国、澳大利亚、越南、日本等国。

并且,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象站和微波站等使用柴油发电机的用户逐步改用风力发电或风光互补发电。

随着市场经济发展,小型风力发电机组传统用户继续增加,主要服务对象仍为有风缺电地区的广大农、牧、渔民。

风力发电机文献综述

风力发电机文献综述

毕业设计文献综述题目:立轴风力发电机学生姓名:李春鹏学号:090501224专业:机械设计制造及其自动化指导教师:刘恩福2013年2月27日一、摘要风能利用技术的快速发展已使风能成为目前最重要的一种可再生资源。

现有的风能转化系统大部分将风能通过风力机装置转化为机械能,然后通过电机转化为电能,通常风力机按风轮旋转轴在空间的方向,分为水平轴风力机(HorizontalAxis Wind Turbine简称为HAWT)和立轴风力机(Vertical Axis Wind Turbine简称为VAWT)两大类,达里厄型(Darrieus)风力机为立轴风力机的典型机型。

立轴风力机由于其结构和气动性能的独特优势,越来越被人们重视。

变速风力机可以在很大的风速范围内工作,而且能最大限度的捕获风能,提高风力发电机的效率,而成为当前该领域的研究热点。

本文以大型变速立轴风力机为研究对象,风力机为典型的达里厄型风力机,直接驱动永磁同步电机发电。

通过建立风力机气动性能评估模型、传动系统模型、电机以及控制系统的模型,并在MATLAB/SIMULINK进行仿真模拟,得到风力机在各种工况下的运行情况,并实现了最大风能追踪的算法。

变速风力发电机提高了风能利用率,但增加了控制系统的难度,本文对最大风能追踪策略的理论进行分析研究。

分析了达里厄型风力机的气动性能评估模型,该模型是基于叶素动量理论的双多流管模型,考虑了达里厄型风力机旋转时叶片对风轮下盘面流动干涉的特性,以及翼型动态失速、气动阻力的影响,对1MW达里厄型风力机进行计算分析,得到了该风力机的气动性能,如风力机在各风速下的气动转矩与转速的关系,以及在各风速下的气动功率与转速的关系,为仿真模拟提供基础。

根据仿真的需要分别建立了风力机传动系统模型、永磁同步电机模型、最大功率跟踪算法等模型。

永磁同步发电机在同步旋转轴下建立,并对同步电机的解耦控制做了分析,最大功率跟踪算法采用尖速比控制方法。

直驱式风力发电与并网文献综述

直驱式风力发电与并网文献综述

直驱式风力发电与并网文献综述直驱式风力发电系统及并网关键技术文献综述学院:学号:姓名:专业:指导老师:目录1.1风力发电发展历史1.2中国能源现状1.3各国风力发电概况1.4风力发电特点及优点2.1风力发电原理2.2直驱式风力发电技术现状2.3直驱式永磁风力发电系统结构2.4直驱式永磁风力发电系统控制3.1并网运行关键技术3.2永磁同步电机控制3.3并网变流器控制3.4低电压穿越技术4.1未来风力技术发展趋势4.2中国风能资源分布及发展前景1.1风力发电发展历史Charles F. Brush(1849-1929)是美国电力工业的奠基人之一。

1887-1888年冬,Brush安装了一台被现代人认为是第一台自动运行的且用于发电的风力机。

它是个庞然大物——叶轮直径是17米,有144个由雪松木制成的叶片。

这台发电机仅为12千瓦。

这是因为低转速风机效率不可能太高。

丹麦人Poul la Cour(1846-1908)是一名气象学家同时也是现代风力发电机的先驱。

他建了一个属于他自己的风洞来实验风力发电机,随后发现了快速转动、叶片数少的风力机,在发电时比低转速的风力机效率高得多。

1918年,丹麦约有120个地方公用事业拥有风力发电机,通常的单机容量是20-35kW,总装机约3MW。

这些风电容量当时占丹麦电力消耗量的3%。

在二次世界大战期间,丹麦工程公司F.L.Smidth(现在是水泥机械制造商)安装了一批两叶片和三叶片的风机。

所有这些风机发的是直流电。

1951年,这些直流发电机被35kW的交流异步发电机取代。

在1973年第一次石油危机后,在丹麦,电力公司立即把目标放在的制造大型风力发电机上,德国、瑞典、英国和美国也紧跟其后。

1979年,他们安装了两台630KW风力发电机,一台是桨矩控制的,另一台是失速控制的。

1980~1981年,55KW风力发电机的诞生是现代风力发电工业和技术的突破,这种风力发电机使风力发电每千瓦时的成本下降了约50%。

风力发电技术综述

风力发电技术综述

风力发电技术综述引言随着人们对可再生能源的关注度不断增加,风力发电作为一种绿色、清洁的能源选择,逐渐受到了全球范围内的关注和应用。

本文将从风力发电技术的原理、发展现状以及未来发展方向等几个方面进行综述,并探讨其在可再生能源领域发挥的作用。

一、风力发电技术原理风力发电技术是一种利用风能将其转换成机械能或电能的技术。

其原理主要包括风力的收集、风能的转换以及电能的输出三个步骤。

具体来说,当风吹过风力发电机组时,风力将被转化成机械能,驱动发电机组内的叶轮旋转。

随着叶轮旋转速度的增加,发电机内的发电机转子也会旋转,最终通过磁场感应产生电能输出。

二、风力发电技术的发展现状1.技术成熟度和发展速度:风力发电技术已经具备较高的成熟度并取得了快速的发展。

目前,风力发电已成为全球最主要的可再生能源之一,年装机容量以及发电量呈现持续增长的趋势。

2.主要技术类型:目前,主要的风力发电技术包括第一代风力发电技术、第二代风力发电技术以及第三代风力发电技术。

第一代技术主要是传统的风力发电机组,具有体积大、发电效率低等特点。

第二代技术则通过提高发电机效率和控制机组角度等方式提高了发电效率。

第三代技术则主要侧重于创新材料的运用以及提高风能利用率。

3.主要应用地区:风力发电技术在全球范围内得到了广泛应用,但应用地区主要集中在北欧、美国、中国和西欧等地,具体包括德国、丹麦、印度、美国等。

三、风力发电技术的挑战和解决方案1.风能的不稳定性:风速的不稳定性是风力发电技术面临的一个重要挑战。

高风速和低风速对机组的运行状态都存在风险。

为解决这个问题,研究人员通过引入风速预测、提高机组可调度性等方式来降低不稳定性带来的影响。

2.风力发电对环境的影响:风力发电机组的建设和运行过程中可能对野生动物的栖息地和迁徙路径产生影响。

针对这一问题,研究人员致力于设计更友好的风力发电机组,减少对生态环境的损害。

3.成本和经济性:风力发电设备的建设和维护费用较高,这对其经济性提出了挑战。

文献综述

文献综述

风力发电综述能源短缺、环境污染是人们目前面临的两个紧迫问题。

风能是一种清洁的可再生能源,风力发电是风能利用的主要形式,它在减轻环境污染、解决偏远地区居民用电问题等方面起着突出作用。

下面我将结合我查找的,从以下几个方面说明一下我对风力发电的认识。

一、风力发电的发展史。

风能用于发电只有100多年的时间。

19世纪末,丹麦首先研制了风力发电机,采用蓄电池充放电方式供电。

20世纪30年代到60年代末,西方国家开始大力研发技术发杂的大、中型风力发电机组,当时的机组多采用木制叶片、固定的轮毂的侧尾舵调速,科技工作者也对风电并网问题进行了初步研究。

在此时期,丹麦的Gedser 200 kW风力发电机组意义重大,它采用了异步发电机、定桨距风轮和叶片端部有制动翼片等设计。

到了20世纪70年代,风力发电进入了迅猛发展阶段。

20世纪90年代,丹麦维斯塔公司生产了一台55\11kW的风力发电机组,其技术先进,可靠性高。

由于选用了两种不同的功率电机,在低风速和高风速时,风能资源都能得到充分利用,被称为现代风力发电机的雏形。

二、风力发电的特点及其存在的问题。

风电的突出优点是环境效益好,不排放任何有害气体和废弃物。

风力发电厂的建设工期短,单台风力发电机组的安装仅需几周,从土建、安装到投产,1万千瓦级的风力场建设期只需要半年到一年的时间。

此外风力发电还具有投资规模灵活,可靠性高,运行维护简单等优点。

目前,风力发电存在的问题有:(1)发电成本高。

成本高的主要原因是风力发电机生产成本较高及风力发电机在运行时的维护费用较高。

(2)风力发电机尚存在一些质量问题。

如风力发电机的寿命还难以达到20~30年,叶片断裂、控制系统失灵等事故还有发生。

(3)风力发电机组运行时抗干扰性有待解决。

(4)其它待解决的问题。

如提高风力发电质量以及机用蓄电池的攻关等问题。

三、风力发电机原理及结构简介。

风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两个部分。

风力发电综述报告

风力发电综述报告

风力发电综述报告摘要本文对风力发电进行了综述,包括风力发电的原理、发展历程、技术特点、发电效率以及前景展望等内容。

风力发电作为一种清洁可再生能源,具有巨大的发展潜力,在减少碳排放、保护环境、可持续发展等方面具有重要意义。

本文从多个角度对风力发电进行了分析和论述,以期为读者提供全面了解风力发电的参考。

1. 引言随着对环境保护和可再生能源需求的不断增加,风力发电作为一种重要的清洁能源逐渐受到人们的关注。

风力发电利用风能将其转化为电能,是一种非常可行的替代能源。

本章将对风力发电的原理进行介绍。

2. 风力发电原理风力发电是利用风的能量将其转化为机械能,然后通过发电机转化为电能。

风力发电原理基于风能与风车的相互作用产生的力矩。

当风刮过风车叶片时,叶片受到空气流动的力量,产生转动。

通过传递给发电机的动力可以产生电能。

3. 风力发电的发展历程风力发电技术的发展经历了几个重要的阶段。

本章将对风力发电的发展历程进行概述,包括早期的风车运用、现代风力发电机的发展以及海上风力发电的兴起。

3.1 早期的风车运用早期的风车主要用于磨粉和提水等农业生产活动。

风车的使用可以追溯到几千年前,其原理与现代风力发电相似,但技术水平较低。

3.2 现代风力发电机的发展20世纪初,随着电力需求的增加和水力资源的逐渐枯竭,风力发电成为一种重要的替代能源。

1960年代,出现了第一台商用风力发电机,从此风力发电进入了实际应用阶段。

随着技术的不断进步和成本的降低,风力发电逐渐成为可行的能源选择。

3.3 海上风力发电的兴起近年来,海上风力发电作为风力发电的一个重要分支开始受到关注。

海上风力发电克服了陆地上空间有限的问题,能够利用更稳定、更强劲的海上风能,具有巨大的发展潜力。

4. 风力发电的技术特点风力发电具有一些独特的技术特点,本章将对几个主要方面进行介绍。

4.1 建设方式风力发电的建设方式分为陆上风电和海上风电。

陆上风电通过建设风电场来进行发电;海上风电则通过在海上建设风力发电机组来进行发电。

风力发电系统技术的发展综述

风力发电系统技术的发展综述

风力发电系统技术的发展综述风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。

分别介绍了风电系统涉及的控制技术、风力机和发电机,特别是对当前的风力发电机系统进行了科学分类; 并详细分析和比较了各类风电系统的原理、优缺点和适用范围,最后指出了风电系统的发展趋势。

这对风力发电系统的选择和研究具有一定的参考指导价值。

在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。

风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整个风电转换系统的性能和装置结构的复杂性。

在过去的 20 年间,出现了多种风力机、风电系统控制技术、发电机及其风电系统。

本文较全面地介绍和分析了当前各种风电系统控制技术、风力机、风力发电机和风力发电系统,通过比较它们各自的原理、优缺点及适用范围,展望了未来风电系统的发展方向。

1 风电系统的控制技术风力发电系统的运行方式可分为独立型、并网型和联合型 3 种。

并网型风力发电系统由风力机控制器、风力机、传动装置、励磁调节器、发动机、变频器和变压器等组成,系统结构如图 1 所示。

图 1 并网型风力发电系统结构图风力发电机组包括风力机、发电机、变速传动装置及相应的控制器等,可用来实现风能与电能的能量转换。

风力机和发电机的功率和速度控制是风力发电的关键技术。

风电机组中的风力机是将风能转换成机械能的能量转换装置,它由风轮、迎风装置和塔架等组成。

按结构不同,风力机可分为水平轴式和立轴式两种; 按功率调节方式不同,风力机可分为定桨距失速、变桨距和主动失速 3 种。

风电机组中的发电机是将机械能转化为电能的装置,发电机在并网时必须输出恒定频率(一般为 50 Hz)的电能。

按照发电机转速的不同,发电机可分为恒速和变速两类,其中变速需要通过变频器来实现。

风力发电及其应用现状文献综述

风力发电及其应用现状文献综述

文献综述毕业论文题目浅谈风力发电的原理及其应用现状学院物理与电信工程学院专业物理学姓名曹晓莹班级2012级2班学号201205010046指导教师王韩奎浅谈风力发电的原理及其应用现状摘要:为了毕业论文更好地完成,熟悉掌握专业文献资料,因此对搜集的文献资料进行归纳、分析和综合。

近几年来,关于风力发电原理的研究不少,主要集中于把风的动能转变成机械动能,再把机械能转化转化为电力动能,即利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

而关于风力发电的研究现状的研究,主要集中于介绍了风力发电技术发展趋势及前景,一般都是集中介绍世界风力发电的现状并与我国的发展情况进行比较,对风力发电技术的发展趋势做出了预测,有部分作者着重对发展前景良好的海上风力发电做出了详细预测.但是都没有对Wind Tree即树状风力发电这一目前具有极大发展前景的风力发电装置进行介绍。

从众多的文献中选取了优秀文献做一下综述。

关键词:风力发电原理;风力发电应用现状;发展前景;[1]徐大平,柳亦兵,吕跃刚.风力发电原理[M].北京:机械工业出版社,2011:1-7.本书的作者在书中着重围绕目前主流的并网风力发电系统展开,并对风力发电领域其他相关技术和设备做了简要介绍。

对于风的特性以及风能转换基本原理、大型水平轴并网风力发电机组的相关知识、垂直轴风力发电机组设备、小型离网型机组的相关内容做了介绍.[2]袁铁江,晁勤,李建林。

光电并网技术[M].北京:机械工业出版社,2012: 1—9。

本书的作者针对风力发电机组建模、风电并网电力系统的安全稳定和电能质量分析、风电极限穿透功率、风电优化调度、风电功率预报等方面,结合实际案例阐述了风电并网涉及的关键技术问题。

其中在第一章集中介绍了风电并网问题产生的原因、风电并网涉及的关键技术及其现状、未来发展趋势等。

对风力风电原理做了系统的描述。

[3]赵海亮,郭鑫。

风力发电的技术综述[J].河南科技,2013,第一卷(第一期): 58—59。

风力发电及其技术发展综述

风力发电及其技术发展综述

风力发电及其技术发展综述摘要:近年来,风力发电及其技术得到了快速发展和广泛应用,研究其相关课题有着重要意义。

本文首先介绍了我国风力发电的现状,分析了风力发电的技术发展,并结合相关实践经验,分别从加快风电技术的研究与发展、推动风电的产业化风电发展,已经能源政策支持等多方面,提出了提升风力发电及其技术发展的有效对策。

关键词:风力发电;发展;浅析一风力发电的发展现状风力发电是一种利用风动能转换为机械动能,再向电能转换的过程,其工作原理是借助风的动力来推动风车叶片旋转,再通过增速机加快风车叶片旋转的速度,带动发电机发电。

风力发电具有环保、节能等优点,自从我国2005年《可再生能源法》立法之后,风能、太阳能、生物质能、水能以及海洋能等可再生能源的得到充分重视,在能源发展中占据着重要地位。

在世界环境问题日益严峻的背景下,减轻二氧化碳排放量是世界各国发展的必然要求,为顺应这种发展趋势,降低化石能源的利用率,大力发展发电在内的可再生能源、核能等,是世界能源发展的基本内容,也是我国战略新兴产业规划的重要组成部分,对我国国民经济增长起着重要作用[1]。

我国的风力发电始于上世纪80年代中期,初次商业化运行的风电机容量等级为55 kW,在经过近三十年的发展后,我国风力发电市场有了长足进步。

根据CWEA2015年的相关统计,截止2014年年底,我国风电累计装机容量约为114 609 MW左右,累计安装风机组76 241台,同比增长25.4%;在2014年中,全国新增安装风机组13 121台,新增装机容量23 196 MW,同比增长44.2%。

我国风能资源十分丰富,可开发利用的风能储量大约为10亿 kW,其中,陆地风能储量与海上可开发利用风能储量分别占2.5亿 kW和7.5亿 kW作用,因此,除了陆上风力发电之外,做好海上风力发电也十分重要。

就2014年海上风电装机情况来看,我国海上风电新增装机61台,新增装机容量为229.3 MW,同比增长487.9%,其中,有56.7%属于潮间带装机。

风力发电机文献综述分解

风力发电机文献综述分解

风力发电机文献综述分解前言风力发电机是当今最为广泛应用的清洁能源发电设备之一。

它利用风力旋转叶片产生机械能,通过发电机将机械能转化为电力,从而实现电能的生产。

本文旨在对风力发电机相关文献进行综述,梳理风力发电机设计、性能、控制等方面的发展现状,为风力发电行业的研究者提供参考和借鉴。

风力发电机的工作原理风力发电机的主要组成部分包括机架、转子、发电机等组件。

其工作原理是通过风力旋转转子,使得发电机产生电力。

其中机架是主要的支架组件,承担着整个风力发电机的重量,所以需要具备可靠的耐久性和稳定性。

转子是风力发电机的核心部分,其由叶片、轴和其他组件组成,当风力作用于叶片时,转子开始旋转,促使发电机在转动的过程中产生电力。

发电机是整个风力发电机的能量转换装置,它将机械能转换为电力,使其可以被送入电网。

风力发电机设计的发展现状叶片的设计风力发电机叶片是风能转化为机械能的部分,因此其设计对风力发电机的效率起着至关重要的作用。

针对传统叶片材料存在问题的研究表明,基于复合材料、竹材和内部结构优化等设计方法的叶片已经应用于实际生产中,其具有密度小、强度高、疲劳寿命长等优点。

同时,多种形状的切割边缘、叶首形状和尾缘形状的优化设计也可以提高叶片的风能转化效率。

风力发电机控制为了实现风力发电机的最大利用率和控制功率输出,风力发电机控制技术逐步发展。

现如今,闭环控制、协调控制和风速跟踪控制等都已经广泛应用于风力发电机领域。

对于消除风力发电机安全性、灵敏性和功率质量等方面面临的问题,还需要不断进行相关技术的研究和开发。

风力发电机的性能关于风力发电机的性能,主要涉及到其发电能力、风能转化效率和噪声水平等方面的表现。

针对传统的风力发电机发电效率较低的问题,涌现了一系列结构优化、流场数字仿真优化等方面的研究,通过这些研究可以有效地提高风力发电机的发电效率。

同时,尾流调控、控制策略优化等方面的研究也可以进一步提高风力发电机的风能转化效率和功率质量。

风电文献综述

风电文献综述

随着交流电动机高性能变频调速技术及永磁同步电动机( PMSM)设计制造技术的不断进步,以矢量控制技术为核心的PMSM工业伺服驱动器得到了飞速发展,市场前景良好,带来了很好的社会效益和经济效益。

任何一种新研发的伺服驱动器或PMSM均需要长时间的性能验证,为此需要设计高性能测试平台。

到目前为止,变频传动系统的模拟测试平台大致包括以下几种类型:(1) 能量消耗型; (2) 能量回馈型; (3) 互馈对拖型。

其中,能量消耗型需要直流发电机和功率电阻来模拟实际负载,系统庞大,控制复杂,能量消耗严重。

能量回馈型需要同步电动机和直流发电机及并网装置,系统复杂,效率较低。

互馈对拖型包括两种:共用交流母线型和共用直流母线型。

共用直流母线型的结构相对简单,控制容易,效率最高,整流设备功率最小。

该互馈对拖型测试平台非常适用于测试伺服驱动器2PMSM传动系统的性能。

本文建立了共用直流母线的互馈对拖型测试平台,描述了该测试平台的工作原理,对整个机电系统进行了建模和仿真分析,给出了该测试平台的实际运行情况分析,并对互馈对拖测试平台的损耗与效率进行了分析,提出了能效比的概念。

摘要风能作为一种清洁的可再生能源,越来越被人们所关注,风力发电更是受到人们的重视。

现代风力发电技术的发展趋势一是无刷化,二是采用取消增速机构的风力机直接驱动低速发电机,其中最典型的是直接驱动式永磁风力发电机。

尤其是中小型直接驱动式永磁风力发电机,结构简单,运行可靠,即可并网又可独立运行,特别适合于我国边远地区,具有广阔的推广应用前景。

目前,国内对直接驱动式永磁风力发电机的研究还处在起步阶段,没有适用于中小型直接驱动式永磁风力发电机成熟的设计方法,本文以50kw直接驱动式永磁风力发电机为例,进行该种电机设训方法的研究。

首先,分析直接驱动式永磁风力发电机的设计特点。

由于电机转速很低,为了充分利用其圆周线速度,一般需要采用直径大而轴向长度短的结构,与传统高速电机的细长结构有很大区别。

风电并网文献综述1

风电并网文献综述1

风电并网技术文献综述前言:风能是一种清洁、实用、经济和环境友好的可再生能源,与其它可再生能源一道,可以为人类发展提供可持续的能源基础,在未来能源系统中,风电具有重要的战略地位。

由于风力发电使用的一次能源(风能)具有能量密度低、波动性大、不能直接储存等特点,风力发电领域仍然有许多问题需要进一步深入研究。

本论介绍了世界风力发电应用现状与前景,风电系统的控制技术,风力发电设备,详细阐述了各种类型风力发电机及其风力发电系统的特点,通过对比各种风力发电机和各种控制方法的优缺点,对未来风力发电机和风力发电控制技术的发展趋势做了展望。

1.国内外风力发电发展现状1.1国外风力发电发展现状19世纪末,丹麦首先开始探索风力发电,研制出风力发电机组。

直到20世纪70年代以前,只有小小型充电用风力机达到实用阶段。

美国在20世纪30年代还有许多电网未通达的地区,独立运行的小型风电机组在实现农村电气化方面起了很大作用,当时的机组多采用木制叶片、固定轮毂和侧偏尾舵调速,单机容量的范围为0.5~3kW。

1973年发生石油危机以后,美国、西欧等发达国家为寻求替代化石燃料的能源,投入大量经费,动员高科技产业,利用计算机、空气动力学、结构力学和材料科学等领域的新技术研制现代风力发电机组,开创了风能利用的新时期。

20世纪70年代到80年代中期,美国、英国和德国等国政府投入巨资开发单机容量1000kW以上的风电机组,承担课题的都是著名大企业,如美国波音公司研制了2500kW和3200kW的机组,风轮直径约为100m,塔高为80m,安装在夏威夷的瓦胡岛;英国的宇航公司和德国MAN公司分别研制了3000kW的机组,所有这些巨型机组都未能正常运行,因其发生故障后维修非常困难,经费也难以维持,没有能够发展成商业机组,未能形成一个适应市场需求的风电机组制造产业。

20世纪70年的石油危机,使美国、西欧等发达国家为寻求替代化石燃料的能源,投入大量经费研制现代风力发电机组,开创了风能利用的新时代。

4MW风力发电机组传动系统的设计(文献综述)

4MW风力发电机组传动系统的设计(文献综述)

4MW风力发电机组传动系统的设计1文献综述1.1 风力发电机研究的背景及其意义1.1.1 风力发电机研究的背景风能是一种可再生的自然资源,是太阳能的转化形式,具体指的是太阳的辐射造成地球表面受热不均,引起大气层中压力分布不均匀,从而使空气沿水平方向运动,空气流动所形成的动能。

据统计,地球上的风能理论蕴藏量约为2.74×1015MW,可开发利用的风能为2.×109MW,是地球水能的10倍,只要能够使用地球上1%的风能就能满足全球能源的需要。

风能是人类利用历史悠久的能源和动力之一,风能利用主要包括风力发电、风帆助航、风车提水、风力磨坊、风力锯木等。

人类对于风能的利用已有千年的历史,风能最早的利用方式是“风帆行舟”、利用“方格形风车”(Panemon)来带动石磨磨谷等。

12世纪,风车从中东传入欧洲。

据认为,是班师的十字军将风车的概念和设计带到了欧洲,风力和水力很快就在中世纪的英格兰成了机械能的主要来源。

今天,荷兰人将风车视为国宝,北欧国家保留的大量荷兰式的大风车,已成为人类文明是的见证。

如1895年,丹尼尔﹒哈利戴开始发展了后来演变成鼎鼎有名的“美国农场风车”。

在今天,假如没有这种风车,那么在美国、阿根廷和澳大利亚的许多地区,牲畜的牧场饲养也不是不可能的。

19世纪末,丹麦人首先研制了风力发电机。

1891年丹麦建成了世界第一座风力发电站。

到1973年发生石油危机后,风力发电进入了一个蓬勃发展的阶段,在世界不同地区建立了许多大、中型的风电场。

同时,气候的变化也推动了风电技术的进一步升温。

预计到21世纪中叶,风能将会成为世界能源供应的支柱之一,成为人类社会可持续发展的主要动力源[1]。

1.1.2 风力发电研究的意义从我国来看,改革开放以来,由于我国的经济增长基本建立在高消耗,高污染的传统发展模式上,出现了比较严重的环境污染和生态破坏,环境与发展的矛盾日益突出。

再加之不断增加的人口因素 ,这一切最终的结果是资源相对短缺,生态环境脆弱,环境容量不足,这也逐渐成为中国发展中的重大问题。

文献综述

文献综述

大型风力发电机运行特点及气动特性1选题背景及意义随着中国社会经济的发展,对能源的需求量也日益增加,进入21世纪以来,全国范围内的能源短缺问题凸现,煤炭、石油等常规能源供应全面紧张,能源供应不足已成为目前制约我国经济持续发展的重要因素[1]。

以火电为主的电力结构,不但浪费了宝贵的煤炭资源,而且给环境保护带来了巨大的压力。

在国内倡导节能减排的大背景下,寻找一种清洁的、储量丰富的替代能源就成为缓解中国能源危机的有效途径,开放和利用可再生能源也是解决中国能源和环保问题的重要战略措施之一。

在清洁能源中,风能是一种经济的可再生能源,发展潜力巨大。

开发风能,尤其是发展风力发电产业已成为国家能源建设的重大战略选择。

研究大型风力发电机的特点及其气动特性,对提高风力发电的效率,更好的利用风能,缓解能源危机,促进经济社会可持续发展具有重大意义。

2国内外研究现状目前风力机朝机组单机容量大型化发展,同时成本却逐年减少。

风力机仍以发展水平轴为主,虽然垂直轴有全风向、变速装置及发电机可以置于地面等优点,但转动轴过长、转换效率不高等不利因素制约其发展;其次通过齿轮箱多级变速驱动风电机组依然是目前风电市场上的主流产品,变速变桨距双馈恒频是大型风电机组的主要模式[2]。

2.1 研究方向目前,国内外气动特性研究的主要问题是新翼型设计、静态失速和动态失速[3]。

(1)新翼型设计翼型形状直接影响叶片的气动特性,因此风力机转子的气动特性、风力机捕获风能力与叶片剖面形状设计直接相关。

在20世纪80年代以前,风力机叶片剖面仍直接使用航空用叶型数据,但是风力机的运行环境和飞机的飞行工况有比较大的区别。

上世纪80年代以来,人们逐渐开始认识到传统的航空翼型并不适合设计高性能的风力机,逐渐开始开发新翼型。

进入90年代以来,随着计算流体力学水平的提高,各种叶片几何优化的方法开始出现。

采用粘性-无粘的迭代数值计算,或是叶片表面边界层的分析(主要是层流、紊流的确定),各截面气动参数的准确确定,实现了在一定输出功率下的最佳的叶片几何形状设计[4]。

风力发电技术研究文献综述

风力发电技术研究文献综述

风力发电技术研究文献综述伴随着经济的快速发展和全球工业化进程的加快,常规能源如煤、石油、天然气等不可再生能源有限,经过过去的几百年来无节制的开采和滥用,这些不可再生能源已面临枯竭。

风力发电既不会产生任何污染物,也不会造成太多的内部能量损耗,是一种取之不尽用之不竭的绿色能源,世界各国都有较大的蕴藏量,是目前最具大规模开发利用前景的能源。

随着电力电子技术的飞速发展,风能开始展现自身的优势,现阶段风电成本不断下降,已接近煤炭发电成本,成为一个有发展前途的新兴产业,年增幅高于27%,对风力发电进行深入研究有着重要的现实意义。

1.风力发电的原理风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,驱动发电机发电。

最简单的风力发电机可由叶轮和发电机两部分构成。

空气流动的动能作用在叶轮上,推动叶轮旋转,将动能转换成功、机械能,叶轮的转轴与发电机的转轴相连,带动发电机发电。

20 世纪,现代风机增加了齿轮箱、偏转系统、液压系统、刹车系统和控制系统等。

齿轮箱可以将很低的风轮转速变为很高的发电机转速,同时也使得发电机易于控制,实现很稳定的频率和电压输出。

偏航系统可以使风轮扫掠面总是垂直于主风向,风轮沿水平轴旋转,以便产生动力。

在变桨距风机,组成风轮的叶片要围绕根部的中心旋转,以便适应不同的风况。

在停机时,叶片尖部甩出,以便形成阻尼,液压系统就是在调节叶片桨距、阻尼、停机、刹车等状态下使用。

控制系统是现代风力发电机的神经中枢,现代风机是无人值守的:风机的控制系统根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网,对出现的任何异常进行报警,必要时停机。

2.风力发电的现状目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。

风电事业的蓬勃发展,带动风力发电技术快速进步,其表现如下:(l)单机容量不断增加,1.5MW和2MW风电机组已成主流机型,5MW己经进人商业化运行阶段,8MW的风电机组正在研制或挂机试验运行。

风力发电机文献综述

风力发电机文献综述

林内小型风力发电机风叶的设计摘要:随着国民经济的持续发展,能源危机的阴影正日益困扰着人类的生产和生活,因此人们开始把目光风能这个取之不尽、用之不竭的清洁能源,若风力发电机跟森林中的监测传感器配合,则能有效利用自然资源,实现可持续发展。

本文就林内小型风力发电机叶片原有的基础上进行优缺点分析,总结国内外风力发电机的发展和现状。

前言本人毕业设计题目为《林内小型风力发电机叶片部件的设计》,主要针对垂直轴风力发电机叶片部件的设计进行研究,对现有风力发电机的叶片发展历史进行总结分析,探索其优越性和可行性。

本文主要查询了2000年以来的有关小型风力发电文献期刊。

主体风力发电机分为水平轴风机和垂直轴风机。

水平轴风机最为典型的代表是3个叶片的荷兰风车,也是目前阶段技术最成熟,应用最广泛,占据主流市场的产品。

水平轴风机主要包括叶片技术、发电机和传动技术、并网技术三大部分。

其中叶片技术是其核心部分,叶片除了靠叶素理论计算和设计外,还要靠经验对计算值进行修正,对操作人员的技术要求十分高。

而我国是从20世纪80年代后期才涉足风力发电这一新兴行业,技术远远落后与世界发展水平,其研究主要是引进、吸收、消化叶片设计技术,没有自己的独立成果。

到2006年底,中国进入或正在进入大型风机市场的厂商已超过20家1 ,从企业数量上看,中国的企业数量超过了全世界风机厂商数量的一倍以上,但均缺乏叶片这一核心技术的独创性。

垂直轴风机,即转轴垂直于地面的风机,其历史可以追溯到几千年前,人们利用垂直轴风车进行提水。

而垂直轴风力发电机的发明则要比水平轴的晚很多,知道20世纪20年代才开始出现。

由于人们普遍认为垂直轴风轮的尖速比不可能大于1,风能利用率低于水平轴风力发电机,因而导致垂直轴风机长期得不到重视。

然而,随着科技日新月异和人类认识水平的不断提高,人们逐渐意识到垂直轴风机的尖速比不能大于1只适用于阻力型风机,而升力型风机的尖速比甚至可以达到6,并且其风能利用率也不低于水平轴,于是越来越多的人认识到垂直轴风机的发展前景,并大大提高了其研发技术,取得了突破性进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计文献综述题目:立轴风力发电机学生姓名:李春鹏学号:090501224专业:机械设计制造及其自动化指导教师:刘恩福2013年2月27日一、摘要风能利用技术的快速发展已使风能成为目前最重要的一种可再生资源。

现有的风能转化系统大部分将风能通过风力机装置转化为机械能,然后通过电机转化为电能,通常风力机按风轮旋转轴在空间的方向,分为水平轴风力机(HorizontalAxis Wind Turbine简称为HAWT)和立轴风力机(Vertical Axis Wind Turbine简称为VAWT)两大类,达里厄型(Darrieus)风力机为立轴风力机的典型机型。

立轴风力机由于其结构和气动性能的独特优势,越来越被人们重视。

变速风力机可以在很大的风速范围内工作,而且能最大限度的捕获风能,提高风力发电机的效率,而成为当前该领域的研究热点。

本文以大型变速立轴风力机为研究对象,风力机为典型的达里厄型风力机,直接驱动永磁同步电机发电。

通过建立风力机气动性能评估模型、传动系统模型、电机以及控制系统的模型,并在MATLAB/SIMULINK进行仿真模拟,得到风力机在各种工况下的运行情况,并实现了最大风能追踪的算法。

变速风力发电机提高了风能利用率,但增加了控制系统的难度,本文对最大风能追踪策略的理论进行分析研究。

分析了达里厄型风力机的气动性能评估模型,该模型是基于叶素动量理论的双多流管模型,考虑了达里厄型风力机旋转时叶片对风轮下盘面流动干涉的特性,以及翼型动态失速、气动阻力的影响,对1MW达里厄型风力机进行计算分析,得到了该风力机的气动性能,如风力机在各风速下的气动转矩与转速的关系,以及在各风速下的气动功率与转速的关系,为仿真模拟提供基础。

根据仿真的需要分别建立了风力机传动系统模型、永磁同步电机模型、最大功率跟踪算法等模型。

永磁同步发电机在同步旋转轴下建立,并对同步电机的解耦控制做了分析,最大功率跟踪算法采用尖速比控制方法。

最后在MATLAB/SIMULINK中且搭建了整个系统的仿真模型,对1MW 达里厄型风力机低风速气动、高风速刹车、额定风速下变风速运行等工况进行了仿真模拟。

通过模拟得到风力机在各种工况下的运行情况,实现了最大风能追踪的算法,采用尖速比的控制方法追踪最大风能的效果显著,为进一步立轴风力发电机控制系统的设计提供依据。

ABSTRACTThe rapid progress on wind energy conversion technology has made wind energy tobe one of the most important renewable and sustainable energy.Current wind energy conversion system translates the wind energy to mechanical energy by wind turbine,and then converts it to electricity by generator.According to the direction of the revolving shaft in space,wind turbine includes two types,one is horizontal axis wind turbine(HAWT for short),and the other is vertical axis wind turbine(VAWT for short),thevertical axis wind turbine is famous for Darrieus type.There has been growing attention to vertical axis wind turbine for its unique structural and aerodynamic advantages.As variable speed wind turbine works at larger ranger of wind speed,utilizes much more wind energy,Improve the efficiency of wind turbines.So it has become the hot topic in the field.This paper is basic on large variable speed vertical axis wind turbine.The wind turbine is Darrieus type,and it dives permanent magnet synchronous generator directly.Through establishment of aerodynamic performance evaluation model,dive-train model,generator and control system model,and simulating of the wind turbine system model in MATLAB/SIMULINK,we can obtain the performance of wind turbine in a variety of conditions,and achieve the algorithm of Maximum Power Point Tracking.Although variable speed wind turbine Improve the efficiency it Increase the difficulty of the control system.The Maximum Power Point Tracking control Strategy theory is analyzed in this paper.The aerodynamic performance evaluation model is established,it's the double-disk multiple stream-tube model in the framework of blade element momentum theory,the airfoil dynamic stall effect and aerodynamic losses were included.we obtained the aerodynamic performance by calculating for the1MW Darrieus vertical axis wind turbine,such as the relationship between aerodynamic torque and rotating speed at different wind speed,the relationship between aerodynamic power and rotating speed at different windspeed.It has provided a basis for the next simulation.Thedrive train model,permanent magnet synchronousgenerator model and Maximum Power Point Trackingmodel have been established.The generator model isestablished at synchronous rotating coordinate system.And we have analyzed the decoupling control ofsynchronous generator.The Maximum Power PointTracking is based on tip speed ratio control method.Finally,the entire system model is establishedinMATLAB/SIMULINK.The starting at low wind speed,braking at high wind speed and operating at variable windspeed of1MW vertical axis wind turbine have beensimulated.The performance of the wind turbine isobtained during the simulating.The algorithm ofMaximum Power Point Tracking is achieved.The use oftip speed ratio control method is Significant for MaximumPower Point Tracking.It has laid the foundation for further design of the vertical axis wind turbines control system.二、风力发电的发展现状2.1风力发电的发展现状从能量转换的角度看,风力发电机由两大部分组成,其一是风力机,它的功能是将风能转换为机械能;其二是发电机,它的功能是将机械能转换为电能。

现有的风力机按风轮旋转轴在空间的方向,分为水平轴风力机(Horizontal Axis Wind Turbine简称为HAWT)和立轴风力机(Vertical Axis Wind Turbine简称为VAWT)两大类。

水平轴风力机的结构特征是风轮的旋转平面与风向垂直,旋转轴和地面平行,如图1.1所示。

水平轴风力机的主要有三部件组成,即风轮(包括叶片、轮毂等)、机舱(包括齿轮箱、电机、偏航装置等)和塔架及地基。

风轮是风力机最主要的部件,由叶片和轮毂组成。

叶片具有良好的空气动力外形,在气流作用下能在风轮上产生气动扭矩使风轮旋转,将风能转换成机械能,再通过齿轮箱增速,驱动发电机转变成电能,最后电机发出的电能通过变流并入电网。

水平轴风力机又可分为两种:一种是为上风向风力发电机。

风轮在塔架的前面迎风旋转.迎风面的调整依靠尾翼;另一种是下风向风力发电机,它的风轮在塔架的后面,叶片的阻力可以保证迎风面的正确取向,但是风先经过塔架,再到风轮,会影响风力机出力,由于尾翼结构并不复杂,因此,目前大量生产的是上风向风力机。

相关文档
最新文档