数学选修2-1知识点整理
高中数学选修2-1主要内容
对(2) 分析:
题设中没有具体给出动点所满足的几何条件, 但可以通过分析图形的几何性质而得出, 即圆
心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:
设弦的中点为 M(x , y) ,连结 OM ,
则 OM ⊥AM .
∵k OM · kAM =-1 ,
其轨迹是以 OA 为直径的圆在圆 O 内的一段弧 ( 不含端点 ). 2.定义法 利用所学过的圆的定义、 椭圆的定义、 双曲线的定义、 抛物线的定义直接写出所求的动点的 轨迹方程, 这种方法叫做定义法. 这种方法要求题设中有定点与定直线及两定点距离之和或
q 也是 p 的充要条件 . 概括地说 , 如果 p q, 那么 p 与 q 互为充要条件 .
一般地, 若p 若p 若p
q, 但 q q,但 q q,且 q
p,则称 p 是 q 的充分但不必要条件; p,则称 p 是 q 的必要但不充分条件; p,则称 p 是 q 的既不充分也不必要条件.
1.3 简单的逻辑连接词
(以下由学生完成 )
根据它们的对称性, 这两个点的横坐标应相等, 因此方
由弦长公式得:
即 a2b2=4b 2-a2.
2.2 椭圆
把平面内与两个定点 F1, F2 的距离之和等于常数(大于 F1 F2 )的点的轨迹叫做椭圆
(ellipse ).其中这两个定点叫做椭圆的焦点, 两定点间的距离叫做椭圆的焦距. 即当动点
且有 BP∶ PA=1 ∶2,当 B 点在抛物线上变动时,求点 P 的轨迹方程.
分析:
P 点运动的原因是 B 点在抛物线上运动,因此 B 可作为相关点,应先找出点 系.
P 与点 B 的联
解:设点 P(x , y) ,且设点 B(x 0, y 0)
高中数学选修2-1抛物线知识点与典例精析
高中数学选修2-1抛物线知识点与典例精析知识点一抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线.点F叫做抛物线的________,直线l叫做抛物线的________.知识点二抛物线的标准方程与几何性质O(0,0)规律与方法:解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.例1已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P 到该抛物线的准线的距离之和的最小值为()A.172B.3C.5D.92例2(2015年10月学考)设抛物线y2=2px(p>0)的焦点为F,若F到直线y=3 x的距离为3,则p等于()A.2B.4C.23D.43例3(2016年10月学考)已知抛物线y2=2px过点A(1,2),则p=________,准线方程是________________.例4已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(4,-22),则它的标准方程为________.例5已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,则动圆圆心M的轨迹方程为________.例6已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A、B两点,且|AB|=52p,求AB所在直线的方程.例7 过抛物线y 2=2x 的顶点作互相垂直的两条弦OA ,OB . (1)求AB 的中点的轨迹方程; (2)求证:直线AB 过定点.一、选择题1.抛物线y =2x 2的焦点坐标是( ) A .(12,0) B .(14,0) C .(0,18)D .(0,14)2.已知抛物线y =4x 2上一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716B .1516C .78D .03.已知抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A .-18B .18C .8D .-84.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为( ) A .5B .10C .20D.155.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A .18B .24C .36D .486.若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0)B .(12,1)C .(1,2)D .(2,2)7.已知抛物线C 的顶点在坐标原点,准线方程为x =-1,直线l 与抛物线C 相交于A ,B 两点.若线段AB 的中点为(2,1),则直线l 的方程为( ) A .y =2x -3 B .y =-2x +5 C .y =-x +3D .y =x -18.设抛物线C :y 2=16x ,斜率为m 的直线l 与C 交于A ,B 两点,且OA ⊥OB ,O 为坐标原点,则直线l 恒过定点( ) A .(8,0) B .(4,0) C .(16,0) D .(6,0)二、填空题9.若点P 到点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是__________.10.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 11.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________. 12.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________. 三、解答题13.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.答案精析知识条目排查知识点一相等焦点准线题型分类示例例1A如图,由抛物线定义知|P A|+|PQ|=|P A|+|PF|,则所求距离之和的最小值转化为求|P A|+|PF|的最小值,则当A、P、F三点共线时,|P A|+|PF|取得最小值.又A(0,2),F(12,0),∴(|P A|+|PF|)min=|AF|=(0-12)2+(2-0)2=172.]例2B由抛物线y2=2px(p>0)的焦点为F(p2,0).F到直线y=3x的距离为3,可得|3p2|(3)2+(-1)2=3,解得p=4,故选B.]例32x=-1例4y2=2x解析由题意可知抛物线的焦点在x轴上,设方程为y2=2px(p>0)或y2=-2px(p>0).若方程为y 2=2px (p >0),则8=2p ×4,得p =1,故方程为y 2=2x ;若方程为y 2=-2px (p >0),则8=-2p ×4,得p =-1,不符合条件,故不成立. 所以抛物线的标准方程为y 2=2x . 例5 x 2=-12y解析 设动圆圆心M (x ,y ),半径为r ,根据题意可得⎩⎨⎧y <2,r =|y -2|,x 2+(y +3)2=1+r ,解得x 2=-12y .例6 解 方法一 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox , 则|AB |=2p <52p ,∴直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得,y 1+y 2=2pk ,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+1k 2)·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p ,解得k =±2.∴AB 所在直线方程为y =2(x -p 2)或y =-2(x -p2). 方法二如图所示,抛物线y 2=2px (p >0)的准线为x =-p2,A (x 1,y 1),B (x 2,y 2), 设A ,B 到准线的距离分别为d A ,d B ,由抛物线的定义知, |AF |=d A =x 1+p 2,|BF |=d B =x 2+p2, 于是|AB |=x 1+x 2+p =52p ,x 1+x 2=32p .当x 1=x 2时,|AB |=2p <52p , ∴直线AB 与Ox 不垂直. 设直线AB 的方程为y =k (x -p2). 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2=32p ,解得k =±2,∴直线AB 的方程为y =2(x -p 2)或y =-2(x -p2).例7 (1)解 设直线OA 的方程为y =kx ,则直线OB 的方程为y =-1k x . 联立直线OA 与抛物线的方程知,点A 的坐标为(2k 2,2k ), 联立直线OB 与抛物线的方程知,点B 的坐标为(2k 2,-2k ),则AB 的中点M 的坐标为(1k 2+k 2,1k -k ),故点M 的轨迹方程为x =y 2+2.(2)证明 由(1)可知k AB =-k -1kk 2-1k 2=-1k -1k=-k k 2-1,则直线AB 的方程为y -(1k -k ) =-k k 2-1x -(1k 2+k 2)],整理,得y =-kk 2-1(x -2).所以直线经过定点(2,0). 考点专项训练1.C 抛物线y =2x 2的标准形式为x 2=12y , ∴p =14,则p 2=18, ∴焦点坐标是(0,18).]2.B 抛物线y =4x 2的标准形式为x 2=14y , ∴其准线方程为y =-116, 设点M 的纵坐标是y 0,由抛物线的定义,得y 0+116=1, ∴y 0=1516.] 3.A4.B 设P (x 0,y 0),依题意可知抛物线准线方程为x =-1, ∴x 0=5-1=4,∴|y 0|=4×4=4, ∴△MPF 的面积为12×5×4=10.]5.C 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F (p2,0), ∵当x =p2时,|y |=p ,∴|AB |=2p =12,∴p =6, 又点P 到直线AB 的距离为p 2+p2=p =6, 故S △ABP =12|AB |·p =12×12×6=36.]6.D 由题意得F (12,0),准线方程为x =-12. 设点M 在准线x =-12上的射影为P , 则M 到准线的距离为d =|PM |,则由抛物线的定义得|MA |+|MF |=|MA |+|PM |,故当P 、A 、M 三点共线时,|MF |+|MA |取得最小值为|AP |=3-(-12)=72. 把y =2代入抛物线y 2=2x ,得x =2,故点M 的坐标是(2,2).] 7.A ∵抛物线C 的顶点在坐标原点,准线方程为x =-1, ∴-p2=-1,∴p =2, ∴抛物线的方程为y 2=4x . 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,两式相减得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线AB 的斜率k =y 1-y 2x 1-x 2=4y 1+y 2=42=2,从而直线AB 的方程为y -1=2(x -2),即y =2x -3.]8.C 设直线l :x =my +b (b ≠0),代入抛物线y 2=16x ,可得y 2-16my -16b =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=16m ,y 1y 2=-16b , ∴x 1x 2=(my 1+b )(my 2+b )=b 2, ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0, 可得b 2-16b =0,∵b ≠0,∴b =16,∴直线l :x =my +16, ∴直线l 过定点(16,0).] 9.y 2=16x解析 点P 到点F 的距离与到x =-4的距离相等,由抛物线定义,知点P 轨迹为抛物线,设y 2=2px ,由p2=4,知p =8.10.1或0解析 由⎩⎨⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.因此若直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1. 11.(18,±24)解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18, ∴此点坐标为(18,±24). 12.8 解析如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8.13.证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*)因为y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.。
人教版高中数学选修2-1《求取离心率问题》
e 的取值范围
例4:已知椭圆 (a>b>0)的左顶点
为A,上顶点为B,右焦点为F.设线段AB的中 点 2 2MF MA BF 0 为M,若 ,求该椭圆离心率的 取值范围.
y
B
M
A
o
F
x
《3》根据曲线方程列出含参数的关系式,求
e 的取值范围
例4:已知椭圆 (a>b>0)的左顶点
为A,上顶点为B,右焦点为F.设线段AB的中 点 2 2MF MA BF 0 为M,若 ,求该椭圆离心率的 1 , 1) 取值范围.[ 2-
(a>0,b>0)的左焦点,点E是该双曲线的右顶点, 过点F且垂直于x轴的直线与双曲线交于A,B两 点,△ABE是锐角三角形,则该双曲线离心率 e 的取值范围是( B ) A.(1,+∞) C.(1,1+ ) B.(1 , 2 )
D.(2,1+
)
三.归纳小结
1.注意椭圆与双曲线的离心率取值范围. 2.求离心率解题步骤。 3.求离心率的关键。 4.求离心率的题型有两类(1)求值 (2)求取值范围
3 或 D 2
5
例2: 设双曲线的—个焦点为F;虚轴的— 个端点为B,如果直线FB与该双曲线的一条 渐近线垂直,那么此双曲线的离心率为( ) (A)
《2》构建关于a,c的方程求解
2 (B)
3 (C)
3 1 (D) 2
5 1 2
B
F
例2: 设双曲线的—个焦点为F;虚轴的— 个端点为B,如果直线FB与该双曲线的一条 渐近线垂直,那么此双曲线的离心率为( D ) (A)
《2》构建关于a,c的方程求解
2 (B)
3 (C)
3 1 (D) 2
高二数学选修2-1知识点总结
A.q1,q3 B.q2,q3
A.②③ B.②④
C.q1,q4 D.q2,q4
C.③④ D.①②③
[审题视点] 依据复合函数的单调性推断 p1,p2 的'真假.
解析 命题 p 是假命题,命题 q 是真命题,故③④正确.
解析 可推断 p1 为真,p2 为假;则 q1 为真,q2 为假,q3 为假,
答案 C
第4页共7页
本文格式为 Word 版,下载可任意编辑
出 m 的取值范围. 解 由 p 得:-m<0,Δ1=m2-4>0,则 m>2. 由 q 得:Δ2=16(m-2)2-16=16(m2-4m+3)<0, 则 1<m<3. 又∵“p 或 q”为真,“p 且 q”为假,∴p 与 q 一真一假. ①当 p 真 q 假时,m≤1 或 m≥3,m>2,解得 m≥3; ②当 p 假 q 真时,1<m<3,m≤2,解得 1<m≤2. ∴m 的取值范围为 m≥3 或 1<m≤2. 含有规律联结词的命题要先确定构成命题的(一个或两个)命题的
(2)特称命题的否认是全称命题
(1)含有全称量词的命题叫全称命题.
魏
第1页共7页
本文格式为 Word 版,下载可任意编辑
特称命题 p:x0∈M,p(x0),它的否认 p:x∈M,p(x).
2.(2021·北京)若 p 是真命题,q 是假命题,则( ).
2.复合命题的否认
A.p∧q 是真命题 B.p∨q 是假命题
“p∧q”、“q”形式命题的真假.
答案 存在 x0∈R,使|x0-2|+|x0-4|≤3
【训练 1】 已知命题 p:x0∈R,使 sin x0=25;命题 q:x∈R,
考向一 含有规律联结词命题真假的推断
都有 x2+x+1>0.给出以下结论
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_命题及其关系_基础
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
高中数学选修2-1 公式
实轴长2a
虚轴长2
焦距
关系
离心率
渐近点的轨迹
.
下表是其标准方程及图形
方程
焦点
准线
图形
(1) 的焦点弦(过焦点的弦)为 , ,
则有如下结论:①焦半径公式: ;焦点弦长
② ;
③若直线AB的倾斜角为 ,则
9、①直线与圆锥曲线(椭圆、双曲线、抛物线)相交的弦长公式
5、线线角 : 线面角 :
面面角 : 点P到平面ABC的距离:
6、椭圆定义: ;
下表是椭圆的标准方程及几何性质。
标准方程
图形
对称性
关于x轴、y轴成轴对称;关于原点成中心对称
顶点坐标
焦点坐标
长轴2a
短轴2
焦距
关系
离心率
焦点看分母
7、①双曲线定义:
下表是其标准方程及几何意义。
焦点看正项
标准方程
图形
顶点坐标
数学常用公式
选修2—1
1.真值表(表1)常见结论的否定形式(见表2)
p
q
非p
p或q
p且q
真
真
假
真
真
真
假
假
真
假
假
真
真
真
假
假
假
真
假
假
原结论
反设词
原结论
反设词
是
不是
至少有一个
一个也没有
都是
不都是
至多有一个
至少有两个
大于
不大于
至少有 个
至多有( )个
对所有x,成立
存在 ,不成立
p或q
且
2、五种命题的相互转化3、条件
高中数学新湘教版选修2-1 空间向量与立体几何 章末小结复习
1.空间向量基本定理设e1,e2,e3是空间中的三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.空间向量的坐标运算公式(1)加减法:(x1,y1,z1)±(x2,y2,z2)=(x1±x2,y1±y2,z1±z2).(2)与实数的乘法:a(x,y,z)=(ax,ay,az).(3)数量积:设v=(x,y,z),则|v|=x2+y2+z2.(4)向量的夹角:cos θ=v1·v2 |v1|·|v2|=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22.3.空间向量在立体几何中的应用设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,ν,则[例1]M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ; (2)平面PMC ⊥平面PDC .[证明] 如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系A -xyz .设PA =AD =a ,AB =b .则有,(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). ∵M ,N 分别为AB ,PC 的中点, ∴M ⎝⎛⎭⎫b 2,0,0,N ⎝⎛⎭⎫b 2,a 2,a 2. ∴MN ―→=⎝⎛⎭⎫0,a 2,a 2,AP ―→=(0,0,a ),AD ―→=(0,a,0), ∴MN ―→=12AD ―→+12AP ―→.又∵MN ⊄平面PAD ,∴MN ∥平面PAD . (2)由(1)可知:PC ―→=(b ,a ,-a ),PM ―→=⎝⎛⎭⎫b2,0,-a , PD ―→=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1·PC ―→=0⇒bx 1+ay 1-az 1=0,n 1·PM ―→=0⇒b 2x 1-az 1=0,∴⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1,令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·PC ―→=0⇒bx 2+ay 2-az 2=0,n 2·PD ―→=0⇒ay 2-az 2=0,∴⎩⎪⎨⎪⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1), ∵n 1·n 2=0-b +b =0,∴n 1⊥n 2. ∴平面PMC ⊥平面PDC .(1)用向量法证明立体几何中的平行或垂直问题,主要应用直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行或垂直的定理.(2)用向量法证明平行或垂直的步骤:①建立空间图形与空间向量的关系(通过取基或建立空间直角坐标系的方法),用空间向量或以坐标形式表示问题中涉及的点、直线和平面;②通过向量或坐标,研究向量之间的关系;③根据②的结论得出立体几何问题的结论.(3)在用向量法研究线面平行或垂直时,上述判断方法不唯一,如果要证直线l ∥平面α,只需证l =λa ,l ⊄α,其中l 是直线l 的方向向量,a ⊂α;如果要证l ⊥α,只需在平面α内选取两个不共线向量m ,n ,证明⎩⎪⎨⎪⎧l ·m =0,l ·n =0,即可.1.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:法一:设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c , 则a ·b =0,b ·c =0,a ·c =0, A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12(a +b ),BD ―→=AD ―→-AB ―→=b -a ,OG ―→ =OC ―→ +CG ―→ =12(AB ―→+AD ―→ )+12CC 1―→=12(a +b )-12c ,∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0,∴A 1O ―→⊥BD ―→.∴A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→.∴A 1O ⊥OG . 又OG ∩BD =O , ∴A 1O ⊥平面GBD .法二:如图所示,以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0), DG ―→=(0,2,1),则A 1O ―→·DB ―→=(-1,1,-2)·(2,2,0)=0, A 1O ―→·DG ―→=(-1,1,-2)·(0,2,1)=0,所以A 1O ―→⊥DB ―→,A 1O ―→⊥DG ―→.即A 1O ⊥DB ,A 1O ⊥DG . 又DB ∩DG =D ,故A 1O ⊥平面GBD .法三:以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0),DG ―→=(0,2,1). 设向量n =(x ,y ,z )为平面GBD 的一个法向量, 则n ⊥DB ―→,n ⊥DG ―→. 即n ·DB ―→=0,n ·DG ―→=0.所以⎩⎪⎨⎪⎧2x +2y =0,2y +z =0.令x =1,则y =-1,z =2, 所以n =(1,-1,2). 所以A 1O ―→=-n .即A 1O ―→∥n . 所以A 1O ⊥平面GBD .2.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点. (1)用向量法证明平面A 1BD ∥平面B 1CD 1;(2)用向量法证明MN ⊥平面A 1BD . 证明:(1)在正方体ABCD -A 1B 1C 1D 1中, BD ―→=AD ―→-AB ―→,B 1D 1―→=A 1D 1―→-A 1B 1―→, 又∵AD ―→=A 1D 1―→,AB ―→=A 1B 1―→,∴BD ―→=B 1D 1―→, ∴BD ∥B 1D 1. 同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1, 所以平面A 1BD ∥平面B 1CD 1.(2)MN ―→=MB ―→+BC ―→+CN ―→=12AB ―→+AD ―→+12(CB ―→+BB 1―→)=12AB ―→+AD ―→+12(-AD ―→+AA 1―→) =12AB ―→+12AD ―→+12AA 1―→.设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=12(a +b +c ).又BD ―→=AD ―→-AB ―→=b -a , ∴MN ―→·BD ―→=12(a +b +c )·(b -a )=12(b 2-a 2+c ·b -c ·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c ·b =0,c ·a =0. 又|b |=|a |,∴b 2=a 2.∴b 2-a 2=0. ∴MN ―→·BD ―→=0.∴MN ⊥BD . 同理可证MN ⊥A 1B . 又A 1B ∩BD =B , ∴MN ⊥平面A 1BD .[例2] 四棱锥=AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求AM 与PD 所成的角; (2)求二面角P -AM -N 的余弦值;(3)求直线CD 与平面AMN 所成角的余弦值.[解] 建立如图所示的空间直角坐标系. ∵A (0,0,0),C (2,2,0),P (0,0,2),D (0,2,0), ∴PC ―→=(2,2,-2),PD ―→=(0,2,-2). 设M (x 1,y 1,z 1),PM ―→=λPD ―→, 则(x 1,y 1,z 1-2)=λ(0,2,-2). ∴x 1=0,y 1=2λ,z 1=-2λ+2. ∴M (0,2λ,2-2λ).∵PC ⊥平面AMN ,∴PC ―→⊥AM ―→, ∴PC ―→·AM ―→=0.∴(2,2,-2)·(0,2λ,2-2λ)=0⇒4λ-2(2-2λ)=0. ∴λ=12.∴M (0,1,1).设N (x 2,y 2,z 2),PN ―→=t PC ―→, 则(x 2,y 2,z 2-2)=t (2,2,-2).∴x 2=2t ,y 2=2t ,z 2=-2t +2. ∴N (2t,2t,2-2t ).∵PC ―→⊥AN ―→,∴AN ―→·PC ―→=0. ∴(2t,2t,2-2t )·(2,2,-2)=0. ∴4t +4t -2(2-2t )=0, ∴t =13.∴N ⎝⎛⎭⎫23,23,43. (1)∵cos 〈AM ―→,PD ―→〉=(0,1,1)·(0,2,-2)0+1+1×0+4+4=0,∴AM 与PD 所成角为90°.(2)∵AB ⊥平面PAD ,PC ⊥平面AMN ,∴AB ―→,PC ―→分别是平面PAD ,平面AMN 的法向量. ∵AB ―→·PC ―→=(2,0,0)·(2,2,-2)=4, |AB ―→|=2,|PC ―→|=23, ∴cos 〈AB ―→,PC ―→〉=443=33.∴二面角P -AM -N 的余弦值为33. (3)∵PC ―→是平面AMN 的法向量,∴CD 与平面AMN 所成角即为CD 与PC 所成角的余角. ∵CD ―→·PC ―→=(-2,0,0)·(2,2,-2)=-4, ∴cos 〈CD ―→,PC ―→〉=-42×23=-33.∴直线CD 与PC 所成角的正弦值为63, 即直线CD 与平面AMN 所成角的余弦值为63.(1)求异面直线所成的角:设两异面直线的方向向量分别为n 1,n 2,那么这两条异面直线所成的角为θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,∴cos θ=|cos 〈n 1,n 2〉|. (2)求二面角的大小:如图,设平面α,β的法向量分别为n 1,n 2.因为两平面的法向量所成的角就等于平面α,β所成的锐二面角θ,所以cos θ=|cos 〈n 1,n 2〉|.(3)求斜线与平面所成的角:如图,设平面α的法向量为n 1,斜线OA 的方向向量为n 2,斜线OA 与平面所成的角为θ,则sin θ=|cos 〈n 1,n 2〉|.3.如图所示,在矩形ABCD 中,AB =4,AD =3,沿对角线AC折起,使D 在平面ABC 上的射影E 恰好落在AB 上,求这时二面角B -AC -D 的余弦值.解:如图所示,作DG ⊥AC 于G ,BH ⊥AC 于H .在Rt △ADC 中, AC =AD 2+DC 2=5, cos ∠DAC =AD AC =35.在Rt △AGD 中,AG =AD ·cos ∠DAC =3×35=95,DG =AD 2-AG 2=9-8125=125. 同理,cos ∠BCA =35,CH =95,BH =125.AD ―→·BC ―→=(AE ―→+ED ―→)·BC ―→=AE ―→·BC ―→+ED ―→·BC ―→=0, GD ―→·HB ―→=(GA ―→+AD ―→)·(HC ―→+CB ―→) =GA ―→·HC ―→+GA ―→·CB ―→+AD ―→·HC ―→+AD ―→·CB ―→ =-95×95+95×3×35+3×95×35+0=8125.又|GD ―→|·|HB ―→|=14425,∴cos 〈GD ―→,HB ―→〉=916.因此所求二面角的余弦值为916.4.如图,ABCD -A 1B 1C 1D 1是正四棱柱. (1)求证:BD ⊥平面ACC 1A 1;(2)二面角C 1-BD -C 的大小为60°,求异面直线BC 1与AC 所成角的余弦值.解:(1)证明:建立空间直角坐标系D -xyz ,如图.设AD =a ,DD 1=b ,则有D (0,0,0),A (a ,0,0),B (a ,a,0),C (0,a,0),C 1(0,a ,b ),∴BD ―→=(-a ,-a,0),AC ―→=(-a ,a,0),CC 1―→=(0,0,b ), ∴BD ―→·AC ―→=0,BD ―→·CC 1―→=0. ∴BD ⊥AC ,BD ⊥CC 1.又∵AC ,CC 1⊂平面ACC 1A 1,且AC ∩CC 1=C , ∴BD ⊥平面ACC 1A 1.(2)设BD 与AC 相交于点O ,连接C 1O , 则点O 的坐标为⎝⎛⎭⎫a 2,a 2,0,OC 1―→=⎝⎛⎭⎫-a 2,a 2,b . ∵BD ―→·OC 1―→=0,∴BD ⊥C 1O . 又BD ⊥CO ,∴∠C 1OC 是二面角C 1-BD -C 的平面角, ∴∠C 1OC =60°, ∵tan ∠C 1OC =CC 1OC =b22a =3, ∴b =62a . ∵AC ―→=(-a ,a,0),BC 1―→=(-a,0,b ), ∴cos 〈AC ―→,BC 1―→〉=AC ―→·BC 1―→|AC ―→|·|BC 1―→|=55. ∴异面直线BC 1与AC 所成角的余弦值为55.(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .8解析:∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.答案:A2.在空间四边形ABCD 中,连接AC ,BD ,若△BCD 是正三角形,且E 为其中心,则AB ―→+12BC ―→-32DE ―→-AD ―→的化简结果为( )A .AB ―→B .2BD ―→C .0D .2DE ―→解析:如图,F 是BC 的中点,E 是DF 的三等分点,∴32DE ―→=DF ―→. ∵12BC ―→=BF ―→,则AB ―→+12BC ―→-32DE ―→-AD ―→=AB ―→+BF ―→-DF ―→-AD ―→=AF ―→+FD ―→-AD ―→=AD ―→-AD ―→=0.答案:C3.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=2OA ―→-2OB ―→-OC ―→,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基,则{a +b ,b +c ,c +a }构成空间的另一组基; ⑤ |(a ·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4D .5解析:①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基的定义知正确;⑤由向量的数量积的性质知,不正确.答案:C4.直三棱柱ABC -A 1B 1C 1中,若CA ―→=a ,CB ―→=b ,CC 1―→=c ,则A 1B ―→=( ) A .a +b -c B .a -b +c C .-a +b +cD .-a +b -c解析:A 1B ―→=CB ―→-CA 1―→=CB ―→-(CA ―→+CC 1―→)=b -a -c . 答案:D5.已知四面体ABCD 的各边长都是a ,点E ,F 分别为BC ,AD 的中点,则AE ―→·AF ―→的值是( )A .a 2 B.12a 2 C.14a 2 D.34a 2 解析:由已知得ABCD 为正四面体,因为AE ―→=12(AB ―→+AC ―→),AF ―→=12AD ―→,所以AE ―→·AF―→=12(AB ―→+AC ―→)·12AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→) =14(a 2cos 60°+a 2cos 60°)=14a 2. 答案:C6.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为( )A.13B.23C.33D.23解析:建立如图所示的空间直角坐标系,设A (1,0,0),则B (0,1,0),D (0,-1,0),AB =2,SD =2,∴SO =1,∴S (0,0,1),∴E ⎝⎛⎭⎫0,12,12,AE ―→=-1,12,12,SD ―→=(0,-1,-1).∴cos 〈AE ―→, SD ―→〉=AE ―→·SD ―→|AE ―→||SD ―→|=-12-1262×2=-33, ∴AE 与SD 所成角的余弦值为33. 答案:C7.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′―→=x AB ―→+2y BC ―→+3zC ′C ―→,则x +y +z 等于( )A .1 B.76 C.56D.23解析:如图,AC ′―→=AB ―→+BC ―→+CC ′―→=AB ―→+BC ―→-C ′C ―→,所以x =1,2y =1,3z =-1,所以x =1,y =12,z =-13,因此x +y +z =1+12-13=76.答案:B8.如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线P Q 与AM 所成的角为( )A.π6 B.π4 C.π3D.π2解析:以A 为坐标原点,AB ,AC ,AA 1所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,设AA 1=AB =AC =2,则AM ―→=(0,2,1),Q (1,1,0),P (1,0,2),Q P ―→=(0,-1,2),所以Q P ―→·AM ―→=0,所以Q P 与AM 所成角为π2.答案:D9.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.255C.155D.105解析:以D 点为坐标原点,以DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1―→=(-2,0,1),AC ―→=(-2,2,0),且AC ―→为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1―→,AC ―→〉=BC 1―→·AC ―→|BC 1―→|·|AC ―→|=45·8=105.∴BC 1与平面BB 1D 1D 所成角的正弦值为105. 答案:D10.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当Q A ―→·Q B ―→取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13B.⎝⎛⎭⎫12,32,34 C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),则Q A ―→=(1-x ,2-x,3-2x ), Q B ―→=(2-x,1-x,2-2x ).∴Q A ―→·Q B ―→=6x 2-16x +10,∴x =43时,Q A ―→·Q B ―→取得最小值,这时Q ⎝⎛⎭⎫43,43,83. 答案:C11.如图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A.22 B.33C.77D.57解析:如图,作BD ⊥AP 于点D ,作CE ⊥AP 于点E .设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24. ∵BC ―→=BD ―→+DE ―→+EC ―→,∴BC ―→2=BD ―→2+DE ―→2+EC ―→2+2BD ―→·DE ―→+2DE ―→·EC ―→+2EC ―→·BD ―→, ∴EC ―→·BD ―→=-14,∴cos 〈BD ―→,EC ―→〉=-77.故二面角B -AP -C 的余弦值为77. 答案:C12.如图,在三棱柱ABC -A1B 1C 1中,底面ABC 为正三角形,且侧棱AA 1⊥底面ABC ,且底面边长与侧棱长都等于2,O ,O 1分别为AC ,A 1C 1的中点,则平面AB 1O 1与平面BC 1O 间的距离为( )A.355B.255C.55D.510解析:如图,连接OO 1,根据题意,OO 1⊥底面ABC ,则以O 为原点,分别以OB ,OC ,OO 1所在的直线为x ,y ,z 轴建立空间直角坐标系.∵AO 1∥OC 1,OB ∥O 1B 1,AO 1∩O 1B 1=O 1,OC 1∩OB =O ,∴平面AB 1O 1∥平面BC 1O .∴平面AB 1O 1与平面BC 1O 间的距离即为O 1到平面BC 1O 的距离.∵O (0,0,0),B (3,0,0),C 1(0,1,2),O 1(0,0,2),∴OB ―→=(3,0,0),OC 1―→=(0,1,2),OO 1―→=(0,0,2),设n =(x ,y ,z )为平面BC 1O 的法向量,则n ·OB ―→=0,∴x =0.又n ·OC 1―→=0,∴y +2z =0,∴可取n =(0,2,-1).点O 1到平面BC 1O 的距离记为d ,则d =|n ·OO 1―→||n |=25=255.∴平面AB 1O 1与平面BC 1O间的距离为255.答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q )共线,则p +q =________. 解析:由已知得AB ―→=(1,-1,3),AC ―→=(p -1,-2,q +2),因为AB ―→∥AC ―→,所以p -11=-2-1=q +23,所以p =3,q =4,故p +q =7.答案:714.已知空间四边形OABC ,如图所示,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG ―→=3GN ―→,现用基向量OA ―→,OB ―→,OC ―→表示向量OG ―→,并设OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的和为________.解析:OG ―→=OM ―→+MG ―→=12OA ―→+34MN ―→=12OA ―→+34⎝⎛⎭⎫-12 OA ―→+OC ―→+12 CB ―→=12OA ―→-38OA ―→+34OC ―→+38OB ―→-38OC ―→=18OA ―→+38OB ―→+38OC ―→, ∴x =18,y =38,z =38.∴x +y +z =78.答案:7815.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为______________.解析:由OA ―→=(-1,1,0),且点H 在直线OA 上, 可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 答案:⎝⎛⎭⎫-12,12,0 16.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为________.解析:以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 答案:23三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ―→⊥b ?(O 为原点)解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2. (2)OE ―→=OA ―→+AE ―→=OA ―→+t AB ―→ =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ). 若OE ―→⊥b ,则OE ―→·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0, 解得t =95,因此存在点E ,使得OE ―→⊥b , 此时E 点坐标为⎝⎛⎭⎫-65,-145,25.18.(本小题满分12分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠BAD =60°,∠BAA 1=∠DAA 1=45°.(1)求|BD 1―→|;(2)求证:BD ⊥平面ACC 1A 1. 解:(1)∵BD 1―→=BA ―→+BC ―→+BB 1―→∴|BD 1―→|2=(BA ―→+BC ―→+BB 1―→)2=BA ―→2+BC ―→2+BB 1―→2+2(BA ―→·BC ―→+BA ―→·BB 1―→+BC ―→·BB 1―→)=1+1+1+2⎝⎛⎭⎫-12-22+22=2,∴|BD 1―→|= 2.(2)证明:∵BD ―→=AD ―→-AB ―→, ∴AA 1―→·BD ―→=AA 1―→·(AD ―→-AB ―→)=0, ∴BD ⊥AA 1,又BD ⊥AC ,AA 1∩AC =A , 所以BD ⊥平面ACC 1A 1.19.(本小题满分12分)如图,已知点P 在正方体ABCD -A1B 1C 1D 1的对角线BD 1上,∠PDA =60°.(1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系Dxyz .则DA ―→=(1,0,0),CC 1―→=(0,0,1).连接BD ,B 1D 1.在平面BB 1D 1D 中,延长DP 交B 1D 1于H . 设DH ―→=(m ,m,1)(m >0), 由已知〈DH ―→,DA ―→〉=60°,由DH ―→·DA ―→=|DA ―→||DH ―→|cos 〈DA ―→,DH ―→〉, 可得2m =2m 2+1. 解得m =22,所以DH ―→=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH ―→,CC 1―→〉=22×0+22×0+1×11×2=22,所以〈DH ―→,CC 1―→〉=45°. 即DP 与CC 1所成的角为45°.(2)平面AA 1D 1D 的一个法向量是DC ―→=(0,1,0). 因为cos 〈DH ―→,DC ―→〉=22×0+22×1+1×01×2=12,所以〈DH ―→,DC ―→〉=60°,可得DP 与平面AA 1D 1D 所成的角为30°.20.(本小题满分12分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 解:设正方体ABCD -A 1B 1C 1D 1的棱长为1.如图所示,以AB ―→,AD ―→,AA 1―→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0),所以BE ―→=⎝⎛⎭⎫-1,1,12,AD ―→=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD ―→是平面ABB 1A 1的一个法向量, 设直线BE 和平面ABB 1A 1所成的角为θ,则 sin θ=|BE ―→·AD ―→||BE ―→|·|AD ―→|=132×1=23. 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由n ·BA 1―→=0,n ·BE ―→=0, 得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,连接B 1F ,则F (t,1,1)(0≤t ≤1), 又B 1(1,0,1),所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .21.(本小题满分12分)(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.解:(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC . 又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎫-1,32,12.设n =(x 1,y 1,z 1)是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0. 可取n =⎝⎛⎭⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量, 则⎩⎪⎨⎪⎧ m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0, 可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D -AE -C 为锐角, 所以二面角D -AE -C 的余弦值为77.22.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD , 故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点, HF ―→的方向为x 轴正方向,建立空间直角坐标系H -xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),故AB ―→=(3,-4,0),AC ―→=(6,0,0),AD ′―→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB ―→=0,m ·AD ′―→=0即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AD ′―→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525.故sin 〈m ,n 〉=29525. 因此二面角B -D ′A -C 的正弦值是29525.。
高中数学必修二 选修2-1 知识点归纳
必修二 知识点归纳: 第一章 空间几何体1. 棱柱 直棱柱:侧棱垂直于底面的棱柱。
(正棱柱: 底面为正多边形的直棱柱。
)斜棱柱:侧棱不垂直于底面的棱柱。
(平行六面体:底面为平行四边形的斜棱柱。
) 棱锥 正棱锥:底面为正多边形,顶点在底面的投影为底面的中心的棱锥。
斜棱锥:以上条件之一不满足的棱锥。
棱台 正棱台:由平行于底面的平面截正棱锥得到的棱台。
斜棱台:由平行于底面的平面截斜棱锥得到的棱台。
四面体:三棱锥正四面体:六条棱均相等的三棱锥。
空间四边形ABCD :三棱锥,其中有四条边:AB 、BC 、CD 、DA ;两条对角线:AC 、BD 。
2. 三视图(会识别,会画图)3. 斜二测画法画直观图:见《名师面对面》P10:3题;P12:6、7题4. S 圆柱侧=2πrl S 圆柱表=2πrl+2πr 2S 圆锥侧=πrl S 圆锥表=πrl+πr 2S 圆台侧=π(r +r ′)l S 圆台表=π(r +r ′)l +πr 2+πr′2 其中r 为底面半径,l 为母线长 5. V 柱体=Sh V 锥体=13Sh V 台体=13(S+√SS′+S’)h 其中S ,S’为底面积,h 为高 6. S 球表=4πR 2 V 球=43πR 37. 球内接正方体棱长a 与球半径R 关系:2R=√3a 注意:将《名师面对面》P12-21重做一遍。
第二章:点、直线、平面之间的位置关系1.平面的概念,画法,与点的属于关系,与直线的包含关系。
2.三个公理:(1)如果一条直线上的两点在同一个平面内,那么这条直线在此平面内。
(2)不共线三点确定一个平面。
推论:①一条直线与直线外一点确定一个平面。
②两条平行直线确定一个平面。
③两条相交直线确定一个平面。
(3)如果两个不重合平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
注意:将《名师面对面》P22-24重做一遍。
3.空间两直线的位置关系:_____、_____、_____。
高二数学选修2-1知识点总结(完整版)
高二数学选修2-1知识点总结(完整版)算术平均数算术平均数是统计学中的一个重要概念,它是指把一组数字的和除以它们的个数,反映在一千个人中有多少人在某一条件方面的平度或中点,用数学公式表示就是:平均数= ∑(x1,x2,...Xn)/n其中,n表示给定的一组数字的个数,Xi表示具体的数字(i= 1,2,3,...n )。
中位数中位数也叫中点数,是统计学中常用的一种量化指标,它表示一组数字中,从小到大排列顺序时,处于中间位置的那个数,或者从大到小排列时,处于中间位置的数字。
当数据由奇数个时,中位数就是处于中间位置的那个数字;而若是数据由偶数个时,中位数就是这组数据所有数字加总后除以2所得的值(例如:1,2,3,3,中位数为2)。
标准差标准差是统计学中的一个重要概念,它可以反映出一组数据的离散程度,是用来衡量一组数据的变异情况的,又称为离散度。
数学公式表达形式为:标准差= ∑( xi-平均数)²/(n-1)其中,n表示样本数,Xi表示具体的数值,平均数表示数据的算术平均数。
众数众数=∑xi /n模数模数是数学中的一项概念,通常可以从1到最大数字取若干个数,这些数中,剩下不能用其他数表示的最大数,就叫做模数。
形式上可以用数学公式表示为:模数=M= GCD (a,b,c,…)其中,GCD表示最大公约数,a,b,c…表示一组数。
伯努利实验伯努利实验是统计学中的基本概念,它是指通过实验中多次试验,对两个或两个以上的事件的发生概率的分析,以估算出某个事件诞生的可能性,数学公式表示形式如下:P(A)= nA/nnA表示事件A成功的实验次数,n表示实验的总次数。
线性相关线性相关是统计学中常用的一种分析方式,它指的是通过查看两组数据间的关系,来判断两个或两个以上的变量之间是否存在直接关系,如果存在,就称之为线性相关。
数学表达式如下:其中,X1、X2、X3…Xn表示两组数据,n表示数据的个数。
高中数学选修2-1、2-2知识点小结
高中数学选修2-1、2-2知识点小结高中数学选修2-1、2-2知识点小结一、函数的概念和性质1. 函数的定义:函数是一个集合,它与另一个集合之间建立了一种特殊的对应关系,其中每一个输入元素对应唯一的输出元素。
2. 函数的性质:a. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
b. 奇偶性:函数的奇偶性取决于其对称性,奇函数关于原点对称,偶函数关于y轴对称。
c. 单调性:函数单调递增或单调递减等取决于导数的符号。
d. 周期性:函数的周期是指输入变量在一个范围内发生改变,输出值也以某种规律重复出现。
e. 增减性:函数增减性是指函数的导数的正负性质,导数大于0时函数增加,导数小于0时函数减少。
二、函数的基本类型1. 幂函数:y = x^a,其中a为常数,a>0时为增函数,a<0时为减函数。
2. 指数函数:y = a^x,其中a为常数,a>1时为增函数,0<a<1时为减函数。
3. 对数函数:y = loga(x),其中a为对数底,a>0且a≠1,a>1时为增函数,0<a<1时为减函数。
4. 三角函数:包括正弦函数、余弦函数、正切函数等。
5. 反三角函数:包括反正弦函数、反余弦函数、反正切函数等。
三、函数的图像与性质1. 函数的图像:通过计算函数的各个点的坐标,可以绘制出函数的图像。
2. 函数的对称性:可以通过判断函数的定义域和图像是否关于某条直线对称来确定函数的对称性。
3. 函数的周期性:可以通过计算函数在一个周期内的取值来确定函数的周期。
4. 函数的最值:可以通过计算函数的导数来确定函数的最值点。
四、函数的运算1. 函数的四则运算:可以通过加减乘除四则运算来得到新的函数。
2. 函数的复合:可以将多个函数合并成一个新函数,合并后的函数相当于依次将原函数的输出作为下一个函数的输入。
五、函数的导数1. 导数的定义:函数f(x)在点x处的导数定义为:f'(x)=lim(h→0)(f(x+h)-f(x))/h,表示函数的变化速率。
人教版高中数学选修21知识点小结
选修2-1知识点选修2-1第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”:p 称为命题的条件,q 称为命题的结论.3、若原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:q p ⇒,p q ≠> p 是q 的必要不充分条件:p q q p ⇒≠>,p 是q 的既不充分不必要条件:,q p ≠>p q ≠>8、逻辑联结词:(1)用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.全真则真,有假则假。
(2)用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.全假则假,有真则真。
(2)对一个命题p 全盘否定,得到一个新命题,记作p ⌝.真假性相反 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程1、椭圆定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程 b y x a =±a y x b=± 5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 8、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.9、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤解题注意点:1、“回归定义” 是一种重要的解题策略。
高中数学选修2-1-椭圆的方程及其性质
椭圆的方程及其性质知识集结知识元椭圆的定义知识讲解1.椭圆的定义【知识点的认识】1.椭圆的第一定义平面内与两个定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,其中,这两个定点F1、F2叫做椭圆的焦点,两焦点之间的距离|F1F2|叫做焦距.2.椭圆的第二定义平面内到一个定点的距离和到一条定直线的距离之比是常数e=(0<e<1,其中a是半长轴,c是半焦距)的点的轨迹叫做椭圆,定点是椭圆的焦点,定直线叫椭圆的准线,常数e 叫椭圆的离心率.3.注意要点椭圆第一定义中,椭圆动点P满足{P||PF1|+|PF2|=2a}.(1)当2a>|F1F2|时,动点P的轨迹是椭圆;(2)当2a=|F1F2|时,动点P的轨迹是线段F1F2;(3)当2a<|F1F2|时,动点P没有运动轨迹.【命题方向】利用定义判断动点运动轨迹,需注意椭圆定义中的限制条件:只有当平面内动点P与两个定点F1、F2的距离的和2a>|F1F2|时,其轨迹才为椭圆.1.根据定义判断动点轨迹例:如图,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆分析:根据CD是线段MF的垂直平分线.可推断出|MP|=|PF|,进而可知|PF|+|PO|=|PM|+|PO|=|MO|结果为定值,进而根据椭圆的定义推断出点P的轨迹.解答:由题意知,CD是线段MF的垂直平分线.∴|MP|=|PF|,∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),又显然|MO|>|FO|,∴根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.故选A点评:本题主要考查了椭圆的定义的应用.考查了学生对椭圆基础知识的理解和应用.2.与定义有关的计算例:已知椭圆上的一点P到左焦点的距离为,则点P到右准线的距离为()A.2B.2C.5D.3分析:先由椭圆的第一定义求出点P到右焦点的距离,再用第二定义求出点P到右准线的距离d.解答:由椭圆的第一定义得点P到右焦点的距离等于4﹣=,离心率e=,再由椭圆的第二定义得=e=,∴点P到右准线的距离d=5,故选C.点评:本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质.例题精讲椭圆的定义例1.'点M(x,y)与定点F(4,0)的距离和它到直线l:x=的距离的比是常数,求M的轨迹.'例2.'已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.'例3.'已知△ABC 的周长等于18,B 、C 两点坐标分别为(0,4),(0,-4),求A 点的轨迹方程.'椭圆的标准方程知识讲解1.椭圆的标准方程【知识点的认识】椭圆标准方程的两种形式:(1)(a >b >0),焦点在x 轴上,焦点坐标为F (±c ,0),焦距|F 1F 2|=2c ;(2)(a >b >0),焦点在y 轴上,焦点坐标为F (0,±c ),焦距|F 1F 2|=2c .两种形式相同点:形状、大小相同;都有a >b >0;a 2=b 2+c 2两种形式不同点:位置不同;焦点坐标不同.标准方程(a >b >0)中心在原点,焦点在x 轴上(a >b >0)中心在原点,焦点在y 轴上图形顶点A(a ,0),A ′(﹣a ,0)B (0,b ),B ′(0,﹣b )A (b ,0),A ′(﹣b ,0)B (0,a ),B ′(0,﹣a )对称轴x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c (c >0)c 2=a 2﹣b 2|F 1F 2|=2c (c >0)c 2=a 2﹣b 2离心率e =(0<e <1)e =(0<e <1)准线x =±y =±例题精讲椭圆的标准方程例1.'已知椭圆的焦点在x 轴上,长轴长为12,离心率为,求椭圆的标准方程.'例2.'写出适合下列条件的曲线方程:(1)求椭圆的标准方程.(2)已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1,F 2距离差的绝对值等于6,求双曲线的标准方程.'例3.'若椭圆ax2+by2=1与直线x+y=1交于A、B两点,M为AB的中点,直线OM(O为原点)的斜率为,且OA⊥OB,求椭圆的方程.'椭圆的性质知识讲解1.椭圆的性质【知识点的认识】1.椭圆的范围2.椭圆的对称性3.椭圆的顶点顶点:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标(如上图):A1(﹣a,0),A2(a,0),B1(0,﹣b),B2(0,b)其中,线段A1A2,B1B2分别为椭圆的长轴和短轴,它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.4.椭圆的离心率①离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率,用e表示,即:e=,且0<e<1.②离心率的意义:刻画椭圆的扁平程度,如下面两个椭圆的扁平程度不一样:e越大越接近1,椭圆越扁平,相反,e越小越接近0,椭圆越圆.当且仅当a=b时,c=0,椭圆变为圆,方程为x2+y2=a2.5.椭圆中的关系:a2=b2+c2.例题精讲椭圆的性质例1.'求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为.'例2.'已知中心在原点的椭圆C的两个焦点和椭圆C1:4x2+9y2=36的两个焦点是一个正方形的四个顶点,且椭圆C过点A(2,-3).(1)求椭圆C的方程;(2)若PQ是椭圆C的弦,O是坐标原点,OP⊥OQ,已知直线OP的斜率为,求点Q的坐标.'例3.'如图,椭圆E:+=1(a>b>0)经过点A(0,1),且离心率为.(1)求椭圆E的方程;(2)若M点为右准线上一点,B为左顶点,连接BM交椭圆于N,求的取值范围;(3)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A)证明:直线AP与AQ的斜率之和为定值.'当堂练习解答题练习1.'已知椭圆的中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与直线AB相交于点D,与椭圆相交于E,F两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若,求k的值;(Ⅲ)求四边形AEBF面积的最大值.'练习2.'椭圆C:=1(a>b>0)的左焦点为F1(-1,0),点P(1,)在椭圆上.(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆C交于A,B两点,椭圆C上另一点M满足△ABM的重心为坐标原点O,求△ABM的面积.'练习3.'已知P是右焦点为F的椭圆Γ:上一动点,若|PF|的最小值为1,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)当PF⊥x轴且点P在x轴上方时,设直线l与椭圆Γ交于不同的两点M,N,若PF平分∠MPN,则直线l的斜率是否为定值?若是,求出这个定值;若不是,说明理由.'练习4.'己知椭圆的一个顶点坐标为(2,0),离心率为,直线y=x+m 交椭圆于不同的两点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)设点C(1,1),当△ABC的面积为1时,求实数m的值.'练习5.'已知椭圆Γ:,B1,B2分别是椭圆短轴的上下两个端点,F1是椭圆的左焦点,P是椭圆上异于点B1,B2的点,若△B1F1B2的边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线PB1的一个方向向量是(1,1)时,求以PB1为直径的圆的标准方程;(3)设点R满足:RB1⊥PB1,RB2⊥PB2,求证:△PB1B2与△RB1B2的面积之比为定值.'练习6.'已知曲线Γ:=1的左、右顶点分别为A,B,设P是曲线Γ上的任意一点.(1)当P异于A,B时,记直线PA,PB的斜率分别为k1,k2,求证:k1∙k2是定值;(2)设点C满足=λ(λ>0),且|PC|的最大值为7,求λ的值.'练习7.'已知椭圆C:的左、右焦点分别是E、F,离心率,过点F的直线交椭圆C于A、B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M、N两点,点P为椭圆C 上一动点,若直线PM、PN与x轴分别交于G、H两点,求证:|OG|∙|OH|为定值.'练习8.'已知椭圆E:=1(a>b>0)的离心率为,且过点A(2,0).(1)求椭圆E的标准方程;(2)问:是否存在过点M(0,2)的直线l,使以直线l被椭圆E所截得的弦CD为直径的圆过点N(-1,0),若存在,求出直线l的方程;若不存在,请说明理由.'练习9.'已知椭圆C:=1(a>b>0)的短轴长为2,离心率为,直线l:y=k(x-1)与椭圆C交于不同的两点M,N,A为椭圆C的左顶点.(1)求椭圆C的标准方程;(2)当△AMN的面积为时,求1的方程.'练习10.'求与双曲线-=1有相同的焦点,且过点M(2,1)的椭圆的方程.'练习11.'求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.'练习12.'已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(-1),求椭圆方程.'。
选修2-1数学知识点大全
《选修2-1》(逻辑用语²二次曲线²空间向量)——教材深度反思作者:张建军我是河北人是我是中国人的什么条件?曲线与方程:在适与适在向量方法三部曲:转化²运算²翻译●专题教学,步骤讲解●语言生动,寓教于乐●重点解读,难点突破●思想方法,技巧规律【专题一】学语文,还是学数学﹖——谈命题及其四种关系【探究一】语文中的句子是怎样分类的?什么叫陈述句?答:按语气用途分:⎧⎪⎪⎨⎪⎪⎩陈述句:用来陈述一件实事,结尾用句号。
疑问句:用来提出一个问题,结尾用问号?祈使句:表示要求或者制止,结尾用叹号!感叹句:用来表示某种感情,结尾用叹号!【探究二】什么叫命题?怎样区分真假?答:一般地,在数学中,把可以判断真假的陈述句叫做命题,【模式】:“谁,怎么样”,动词总在第二位。
其中判断为真的的语句叫做真命题:判断为假的语句叫做假命题。
【点拨】:判断一个语句是不是命题,就要看它是否符合①“是陈述句”②“可以判断真假”这两个条件。
【探究三】命题的标准形式是什么?四种命题及其关系有哪些?1.命题的标准形式是什么?【标准形式】“若p,则q ”,其中p 叫条件,q 叫结论。
2. 四种命题互化及其等价关系? (1)四种命题互化关系: 语言转化 原命题逆命题否命题逆否命题自然语言 q 若p ,则 q,p 若则77,p 若则q77p 若q ,则符号语言p q ⇒q p ⇒77p ⇒q 77p ⇒q【点拨】:一个命题不是“若p,则q ”的形式,先要化为“若p,则q ”的形式,才能进行四种变换。
变换后条件和结论都是陈述句,且“主语相同,谓语可不同”。
(2)四种命题等价关系:原命题“q 若p ,则“ ⇔逆否命题“77p 若q ,则” 逆命题“q,p 若则” ⇔否命题“77,p 若则q ”【点拨】:ⅰ)原命题与逆否命题、逆命题与否命题互为逆否命题,数学上也叫做等价命,它们具有相同的真假性。
ⅱ)当原命题的证明较困难时,我们可以通过证明逆否命题而得到原命题的证明,这一 思想在数学上叫等价转化思想。
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_抛物线的方程与性质_基础
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习抛物线的方程与性质【学习目标】1.掌握抛物线的定义 、几何图形和标准方程.2.理解抛物线的简单性质(范围、对称性、顶点、离心率). 3.能用抛物线的方程与性质解决与抛物线有关的简单问题. 4. 进一步体会数形结合的思想方法. 【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若p ⇒q,q p,则p 是q 的充分不必要条件; 若p q,q ⇒p,则p 是q 的必要不充分条件;
若p ⇒q,q ⇒p,则p 是q 的充要条件;
若p q,q p,则p 是q 的既不充分也不必要条件. 第一章 常用逻辑用语
p q p q ⎧⎪⎨
⎪⎩定义:用语言、符号或式子表达的,可以判断真假的陈述句
1、命题形式:“若,则”.其中叫做命题的条件,叫做命题的结论
2、四种命题的关系:
结论:原命题和逆否命题、逆命题和否命题真假性相同
3、充分条件和必要条件
“若p,则q ”为真命题,则p ⇒q ,就说p 是q 的充分条件,q 是p 的必要条件。
4、充分必要条件的集合判断法
{|()}{|()}A x p x B x q x ==成立,成立
,A
B 若则p 是q 的充分不必要条件;,A 若B 则p 是q 的必要不充分条件;,A B =若则p 是q 的充要条件。
5、简单的逻辑联结词
(1)“且”,∧p q ,有假则假;(2)“或”,∨p q ,有真则真;(3)“非”,⌝p ,真假相反。
6、命题的否定和否命题
命题的否定:条件不变,只否定结论; 否命题:条件和结论都否定。
7、全称量词和全称命题
全称量词:所有的、任意一个、一切、每一个、任给… 符号:∀ 全称命题:∀x ∈M,p(x)(读作:对任意x 属于M ,有p(x)成立) 全称命题的否定:∃x 0∈M,⌝p(x 0) 8、存在量词和特称命题
存在量词:存在一个、至少有一个、有些、有的、对某个… 符号:∃ 特称命题:∃x 0∈M,p(x 0)(读作:存在M 中的元素x 0,使p(x 0)成立) 特称命题的否定:∀x ∈M,⌝p(x)
第二章 圆锥曲线与方程
1、曲线与方程: 直角坐标系中,若曲线C 上的点的坐标都是方程f(x,y)=0的解,且以方程f(x,y)=0的解为坐标的点都在曲线C 上,则方程是曲线的方程,曲线是方程的曲线。
2、椭圆的定义:
我们把平面与两个定点12,F F 的距离的和等于常数(大于|12F F |)的点的轨迹叫做椭圆。
两个定点12,F F 叫做椭圆的焦点.|12F F |叫做焦距。
122||||MF MF a += (2a>2c ) 12||2F F c =
若2a=2c,则点M的轨迹是线段12
F F;若2a<2c,则点M的轨迹不存在。
4、若已知两点求椭圆方程,若椭圆的焦点位置不确定,可设为一般方程221(0,0,)
mx ny m n m n
+=>>≠
5、椭圆上的点到焦点的距离最大和最小的点都是长轴的端点,最大值=a+c,最小值=a-c。
6、直线与椭圆位置关系
联立直线与椭圆方程,代入法消y,得关于x的一元二次方程20
Ax Bx C
++=,求24
B AC
∆=-
若∆>0,则直线与椭圆相交,有两个交点;若∆=0,则直线与椭圆相切,有一个交点;
若∆<0,则直线与椭圆相离,没有交点;
7、弦长公式(适用于椭圆、双曲线、抛物线和圆)
若斜率为k的直线与椭圆相交于A,B两点,设
1122
(,),(,)
A x y
B x y,则
弦长||
AB==
8、中点弦问题(点差法)
若直线交椭圆
22
22
1
x y
a b
+=于A,B两点,且AB的中点为00
(,)
M x y,则设
1122
(,),(,)
A x y
B x y;
12
12
2
2
x x
x
y y
y
+
⎧
=
⎪
⎨+
⎪=
⎩
12
12
AB
y y
k
x x
-
=
-
把点A,B 代入椭圆方程,得:22
1122121212122222
22221()()()()01
x y x x x x y y y y a b x y a b a
b ⎧+=⎪+-+-⇒+=⎨⎪+=⎩
9、双曲线的定义
把平面与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹叫做双曲线. |MF 1|-|MF 2||=2a (0<2a<|F 1F 2|) |F 1F 2|=2c
若2a=2c ,则点M 的轨迹是以F 1,F 2为端点的两条射线; 若2a>2c ,则点M 的轨迹不存在。
11、抛物线的定义
把平面与一定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线。
点F 叫做抛物线的焦点,直线l 叫做准线。
焦点 (,0)2p
F (,0)
2p
F - (0,)
2p F (0,)
2p F -
准线 2
p x =-
2
p x =
2p y =-
2p y =
顶点 原点(0,0)
对称轴 x 轴
y 轴
围 0,x y R ≥∈ 0,x y R ≤∈
0,y x R ≥∈
0,y x R ≤∈
离心率
e=1
抛物线22(0)y px p =>的焦半径、焦点弦、通径: 焦半径:1||2
p
AF x =+
焦点弦:12||AB x x p =++
通径:垂直对称轴的焦点弦,长度为2p
第三章 空间向量与立体几何
1、共线向量:(0)a b b a b λ≠⇔=
2、向量的数量积:||||cos ,a b a b a b =<>
3、空间向量的坐标运算:
111222121212
121212222
111(,,)(,,)
,,00
||a x y z b x y z a b a b x x y y z z a b a b x x y y z z a x y z λλλλ==⇔=⇔===⊥⇔=⇔++==++ 4、向量法证明平行和垂直
线面平行:直线与法向量垂直;线面垂直:直线与法向量平行; 面面平行:法向量互相平行;面面垂直:法向量互相垂直。
5、异面直线所成角
,a b θ两异面直线所成角为,它们的方向向量为
||cos |cos ,|||||a b a b a b θ=<>=
6、直线与平面所成角
||
sin |cos ,|||||a n a n a n θ=<>=
7、二面角的平面角
||
|cos ||cos ,|||||m n m n m n θ=<>=
8、点到平面的距离
AB 是平面α的一条斜线,A 在平面α外,B 在平面α,n 为α的法向量,则点A 到平面α的距离为:
||||AB n d n =。