6、用牛顿运动定律解决问题(一)课后题

合集下载

4.6 用牛顿运动定律解决问题(一)1

4.6 用牛顿运动定律解决问题(一)1

用牛顿运动定律解决问题(一)1.用30 N的水平外力F,拉一个静止放在光滑水平面上的质量为20 kg的物体,力F作用3 s后消失,则第5 s末物体的速度和加速度分别是()A.v=4.5 m/s,a=1.5 m/s2B.v=7.5 m/s,a=1.5 m/s2C.v=4.5 m/s,a=0D.v=7.5 m/s,a=02.如图所示,底板光滑的小车上用两个量程为20 N,完全相同的弹簧秤甲和乙系住一个质量为1 kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10 N,当小车做匀加速直线运动时,弹簧秤甲的示数变为8 N,这时小车运动的加速度大小是() A.2 m/s2B.4 m/s2C.6 m/s2D.8 m/s23.如图所示为一光滑的斜面小车,若斜面的倾角为θ,则使斜面上的物体能与斜面小车共同运动的加速度是()A.向左g sin θB.向右gC.向左g tan θD.向左g cos θ4.质量为8 t的汽车,以2 m/s2的加速度在动摩擦因数为0.03的平直公路上行驶,g取10 m/s2,则汽车行驶的牵引力是()A.1.6×104 N B.2.4×104 NC.1.84×104 N D.1.0×104 N5.质量为1 kg、初速度v0=10 m/s的物体,受到一个与初速度v0方向相反,大小为3 N的外力F的作用力,沿粗糙的水平面滑动,物体与地面间的动摩擦因数为0.2,经3 s后撤去外力,则物体滑行的总位移为(取g=10 m/s2)()A.7.5 m B.9.25 mC.9.5 m D.10 m6.在光滑的水平面上有一个物体同时受到水平力F1和F2的作用,在第1 s内保持静止状态,若两个力随时间变化情况如图所示,则下列说法中正确的是()A.在第2 s内物体做匀加速运动,加速度大小恒定,速度均匀增大B.在第5 s内物体做变加速运动,加速度均匀减小,速度逐渐增大C.在第3 s内物体做变加速运动,加速度均匀减小,速度均匀减小D.在第6 s末,物体的速度和加速度均为零7.如图所示,一水平传送带以v=2 m/s的速度做匀速运动,将一物体轻放在传送带一端,已知物体与传送带间的动摩擦因数为0.1,物体由传送带一端运动到另一端所需时间为11 s,求传送带两端的距离.(g取10 m/s2)8.物体以12 m/s的初速度从斜面底端冲上倾角为37°的斜坡,已知物体与斜面间的动摩擦因数为0.25,g取10 m/s2,求:(sin 37°=0.6,cos 37°=0.8)(1)物体沿斜面上滑的最大位移;(2)物体再滑到斜面底端时的速度大小;(3)物体在斜面上运动的时间.参考答案课后巩固提升1.C 2.B 3.C 4.C5.B [刚开始物体受合外力F +μmg =ma ,代入数据,解得a =5 m/s 2,由于a 与v 0方向相反,所以由v =v 0-at 得到t =2 s 时物体速度为零,位移x =v 02t =10 m ;接下来反向匀加速运动1 s ,加速度a 1=F -μmg m ,代入数据解得a 1=1 m/s 2,位移x 1=12a 1t 2=0.5 m ,方向与x 相反.v 1=a 1t 1=1×1 m/s =1 m/s ,接下来做加速度a 2=μg =2 m/s 2的匀减速运动,所以x 2=v 212a 2=0.25 m ,所以总位移为x -x 1-x 2=9.25 m .] 6.B [在第1 s 内,F 1=F 2,方向相反,物体静止;在第2 s 内,F 1>F 2,F 1恒定,F 2变小,合力F 变大,加速度方向与F 1相同,为正,a 逐渐变大,物体做变加速运动,速度方向与F 1方向一致,为正,A 不正确.在第3 s 内,F 2继续变小,合力F 变大,加速度继续逐渐变大,物体继续做变加速运动,C 不正确.在第5 s 内,F 2由零均匀增大到等于F 1,合力均匀减小到零,加速度均匀减小,合力方向与速度方向一致,速度逐渐增大,B 正确.在第6 s 内,F 1=F 2,加速度为零,速度不变,且与5 s 末相同,不为零,物体做匀速直线运动,D 不正确.]7.20 m解析 物体在刚放上传送带的瞬间,物体的速度为零,而传送带有速度,物体被加速,滑动摩擦力是物体所受的合外力,由牛顿第二定律,得a =F f m =μmg m =μg =1 m/s 2,经时间t 1=v a=21s =2 s 后,物体与传送带同速,此后物体做匀速直线运动,共9 s. 匀加速位移x 1=12at 21=2 m ,匀速运动的位移x 2=v ·t 2=18 m ,所以物体的总位移x =x 1+x 2=20 m ,即传送带两端的距离.8.(1)9 m (2)8.48 m/s(或6 2 m/s) (3)3.62 s [或1.5(2+1) s ]解析 (1)由牛顿第二定律得物体上升时的加速度大小a 1=g sin 37°+μg cos 37°=8 m/s 2故上滑的最大位移x =v 202a 1=9 m (2)物体下滑时的加速度大小a 2=g sin 37°-μg cos 37°=4 m/s 2物体到斜面底端时的速度v =2a 2x =6 2 m /s≈8.48 m/s (3)物体在斜面上运动的时间t =v 0a 1+v a 2=(1.5+1.52) s ≈3.62 s。

2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修

2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修

用牛顿运动定律解决问题(一)教材分析力和物体运动的关系问题,一直是动力学研究的基本问题,人们对它的认识经历了一个漫长的过程,直到牛顿用他的三个定律对这一类问题作出了精确的解决.牛顿由此奠定了经典力学的基础.牛顿三定律成为力学乃至经典物理学中最基本、最重要的定律.牛顿第一定律解决了力和运动的关系问题;牛顿第二定律确定了运动和力的定量关系;牛顿第三定律确定了物体间相互作用力遵循的规律.动力学所要解决的问题由两部分组成:一部分是物体运动情况;另一部分是物体与周围其他物体的相互作用力的情况.牛顿第二定律恰好为这两部分的链接提供了桥梁.应用牛顿运动定律解决动力学问题,高中阶段最为常见的有两类基本问题:一类是已知物体的受力情况,要求确定出物体的运动情况;另一类是已经知道物体的运动情况,要求确定物体的受力情况.要解决这两类问题,对物体进行正确的受力分析是前提,牛顿第二定律则是关键环节,因为它是运动与力联系的桥梁.教学重点应用牛顿运动定律解决动力学的两类基本问题.教学难点动力学两类基本问题的分析解决方法.课时安排1课时三维目标1.知识与技能(1)知道动力学的两类基本问题,掌握求解这两类基本问题的思路和基本方法.(2)进一步认识力的概念,掌握分析受力情况的一般方法,画出研究对象的受力图.2.过程与方法(1)培养学生运用实例总结归纳一般解题规律的能力.(2)会利用正交分解法在相互垂直的两个方向上分别应用牛顿定律求解动力学问题.(3)掌握用数学工具表达、解决物理问题的能力.3.情感、态度与价值观通过牛顿第二定律的应用,提高分析综合能力,灵活运用物理知识解决实际问题.教学过程导入新课情境导入利用多媒体播放“神舟”五号飞船的发射升空、“和谐号”列车高速前进等录像资料.如图甲、乙所示.引导:我国科技工作者能准确地预测火箭的升空、变轨,列车的再一次大提速节约了很多宝贵的时间,“缩短”了城市间的距离.这一切都得益于人们对力和运动的研究.我们现在还不能研究如此复杂的课题,就让我们从类似较为简单的问题入手,看一下这类问题的研究方法.推进新课牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与受力的情况联系起来.因此,它在天体运动的研究、车辆的设计等许多基础学科和工程技术中都有广泛的应用.由于我们知识的局限,这里只通过一些最简单的例子作介绍.一、从受力确定运动情况如果已知物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律就可以确定物体的运动情况.例1一个静止在水平地面上的物体,质量是2 kg,在6.4 N的水平拉力作用下沿水平方向向右运动.物体与地面间的摩擦力是4.2 N,求物体在4 s末的速度和4 s内发生的位移.分析:这个问题是已知物体受的力,求它的速度和位移,即它的运动情况.教师设疑:1.物体受到的合力沿什么方向?大小是多少?2.这个题目要求计算物体的速度和位移,而我们目前只能解决匀变速运动的速度和位移.物体的运动是匀变速运动吗?师生讨论交流:1.对物体进行受力分析,如图.物体受力的图示物体受到四个力的作用:重力G ,方向竖直向下;地面对物体的支持力F N ,竖直向上;拉力F 1,水平向右;摩擦力F 2,水平向左.物体在竖直方向上没有发生位移,没有加速度,所以重力G 和支持力F N 大小相等、方向相反,彼此平衡,物体所受合力等于水平方向的拉力F 1与摩擦力F 2的合力.取水平向右的方向为正方向,则合力:F =F 1-F 2=2.2 N ,方向水平向右.2.物体原来静止,初速度为0,在恒定的合力作用下产生恒定的加速度,所以物体做初速度为0的匀加速直线运动.解析:由牛顿第二定律可知,F 1-F 2=maa =F 1-F 2ma =2.22m/s 2=1.1 m/s 2 求出了加速度,由运动学公式可求出4 s 末的速度和4 s 内发生的位移v =at =1.1×4 m/s=4.4 m/sx =12at 2=12×1.1×16 m=8.8 m.讨论交流:(1)从以上解题过程中,总结一下运用牛顿定律解决由受力情况确定运动情况的一般步骤.(2)受力情况和运动情况的链接点是牛顿第二定律,在运用过程中应注意哪些问题? 参考:运用牛顿定律解决由受力情况确定物体的运动情况大致分为以下步骤:(1)确定研究对象.(2)对确定的研究对象进行受力分析,画出物体的受力示意图.(3)建立直角坐标系,在相互垂直的方向上分别应用牛顿第二定律列式F x =ma x ,F y =ma y .求得物体运动的加速度.(4)应用运动学的公式求解物体的运动学量.3.受力分析的过程中要按照一定的步骤以避免“添力”或“漏力”.一般是先场力,再接触力,最后是其他力.即一重、二弹、三摩擦、四其他.再者每一个力都会独立地产生一个加速度.但是解题过程中往往应用的是合外力所产生的合加速度.再就是牛顿第二定律是一矢量定律,要注意正方向的选择和直角坐标系的应用.课堂训练(课件展示)如图所示自由下落的小球,从它接触竖直放置的弹簧开始到弹簧压缩到最大程度的过程中,小球的速度和加速度的变化情况是().A.加速度变大,速度变小B.加速度变小,速度变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大解析:小球接触弹簧后,受到竖直向下的重力和竖直向上的弹力,其中重力为恒力.在接触开始阶段,弹簧形变较小,重力大于弹力,合力方向向下,故加速度方向也向下,加速度与速度方向相同,因而小球做加速运动.随着弹簧形变量的增加,弹力不断增大,向下的合力逐渐减小,小球加速度也逐渐减小.当弹力增大到与重力相等时,小球加速度等于0.由于小球具有向下的速度,仍向下运动.小球继续向下运动的过程,弹力大于重力,合外力方向变为竖直向上,小球加速度也向上且逐渐增大,与速度方向相反.小球速度减小,一直到将弹簧压缩到最大形变量,速度变为0.答案:C二、从运动情况确定受力与第一种情况过程相反,若已经知道物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的外力,这是力学所要解决的又一方面的问题.例2 一个滑雪的人,质量m=50 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡倾角θ=30°,在t=5 s的时间内滑下的路程x=60 m,求滑雪人受到的阻力(包括摩擦和空气阻力).合作探讨:这个题目是已知人的运动情况,求人所受的力.应该注意三个问题:滑雪人受到的力1.分析人的受力情况,作出受力示意图.然后考虑以下几个问题:滑雪的人共受到几个力的作用?这几个力各沿什么方向?它们之中哪个力是待求的,哪个力实际上是已知的?2.根据运动学的关系得到下滑加速度,求出对应的合力,再由合力求出人受的阻力.3.适当选取坐标系.坐标系的选择,原则上是任意的,但是为了解决问题的方便,选择时一般根据以下要求选取:(1)运动正好沿着坐标轴的方向.(2)尽可能多的力落在坐标轴上.如有可能,待求的未知力尽量落在坐标轴上,不去分解.解析:如图,受力分析建立如图坐标系,把重力G 沿x 轴和y 轴的方向分解,得到求滑雪人受到的阻力G x =mg ·sin θG y =mg ·cos θ与山坡垂直方向,物体没有发生位移,没有加速度,所以G y 与支持力F N 大小相等、方向相反,彼此平衡,物体所受的合力F 等于G x 与阻力F 阻的合力.由于沿山坡向下的方向为正方向,所以合力F =G x -F 阻,合力的方向沿山坡向下,使滑雪的人产生沿山坡向下的加速度.滑雪人的加速度可以根据运动学的规律求得:x =v 0t +12at 2 a =2(x -v 0t )t 2 a =4 m/s 2 根据牛顿第二定律F =maG x -F 阻=maF 阻=G x -maF 阻=mg ·sin θ-ma 代入数值后,得F 阻=67.5 N.答案:67.5 N结合两种类型中两个例题的解题过程,总结出用牛顿定律解题的基本思路和解题步骤:1.选定研究对象,并用隔离法将研究对象隔离出来.2.分别对研究对象进行受力分析和运动情况分析,并作出其受力图.3.建立适当的坐标系,选定正方向,正交分解.4.根据牛顿第二定律分别在两个正交方向上列出方程.5.把已知量代入方程求解,检验结果的正确性.课堂训练(课件展示)1.一个物体的质量m =0.4 kg ,以初速度v 0=30 m/s 竖直向上抛出,经过t =2.5 s 物体上升到最高点.已知物体上升过程中所受到的空气阻力大小恒定,求物体上升过程中所受空气阻力的大小是多少?解析:设物体向上运动过程中做减速运动的加速度大小为a ,以初速度方向为正方向. 因为v t =v 0-a t ,v t =0所以a =0v t=12 m/s 2 对小球受力分析如图,由牛顿第二定律f +mg =maf =m (a -g )=0.4×(12-9.8)N=0.88 N.答案:0.88 N2.如图所示,光滑地面上,水平力F 拉动小车和木块一起做匀加速运动,小车的质量为M ,木块的质量为m .设加速度大小为a ,木块与小车之间的动摩擦因数为μ,则在这个过程中大木块受到的摩擦力大小是( ).A.μmg B.ma C.mM+mF D.F-ma解析:这是一道根据物体运动状态求物体受力情况的典型习题.题中涉及两个物体,题干中的已知量又比较多,对此类题目,要注意选取好研究对象.两者无相对运动,它们之间的摩擦力只能是静摩擦力.因而滑动摩擦力公式f=μmg就不再适用.A选项错误.以木块为研究对象,则静摩擦力产生其运动的加速度F合=f=ma,再由牛顿第三定律可知B选项正确.以小车为研究对象,F-f=Ma,f=F-Ma,D选项也正确.以整体为研究对象,则a=FM+m,再代入f=ma可得f=mFM+m.故C选项也正确.答案:BCD教学建议:1.授课过程中,教师提示分析思路之后.受力分析、过程分析先由学生完成,教师则将解题过程完整写出,以便总结规律、让学生养成规范解题的习惯.2.运算过程中,物理量尽量用相应的字母表示,将所求量以公式形式代出,最后再将已知量代入,求出结果.课堂小结本节课主要讲述了动力学中的两类基本问题:(1)已知受力情况求解运动情况.(2)已知运动情况求物体受力情况.通过对例题的分析解决过程,总结出这两类基本问题的解决方法、思路和一般解题步骤.布置作业教材第87页“问题与练习”1、2、3、4题.板书设计6 用牛顿运动定律解决问题(一)一、从受力情况确定运动情况例1二、从运动情况确定受力情况例2总结:加速度是连接动力学和运动学的桥梁活动与探究课题:牛顿运动定律的适用条件.牛顿运动定律虽然是一个伟大的定律,但它也有自己适用的条件.通过对其适用条件的了解,使学生进一步完整地掌握这个规律,并且为相对论的提出打好基础.习题详解1.解答:如图所示,用作图法求出物体所受的合力F =87 Na =F m =872m/s 2=43.5 m/s 2 v =at =43.5×3 m/s=131 m/sx =12at 2=12×43.5×32 m =196 m. 2.解答:电车的加速度为:a =v -v 0t =0-1510m/s 2=-1.5 m/s 2. 电车所受阻力为:F =ma =-6.0×103 N ,负号表示与初速度方向相反.3.解答:人在气囊上下滑的加速度为:a =mg sin θ-F m =g sin θ-F m =(10×3.24.0-24060) m/s 2=4.0 m/s 2 滑至底端时的速度为:v =2ax =2×4.0×4.0 m/s =5.7 m/s.4.解答:卡车急刹车时的加速度大小为:a =F m =μmg m=μg =7 m/s 2 根据运动学公式:v 0=2ax =2×7×7.6 m/s =10.3 m/s≈37.1 km/h>30 km/h 所以,该车超速.设计点评动力学的两类基本问题在高中阶段的地位相当重要,对于培养学生的分析、判断、综合能力有很大的帮助.对于方法的总结,遵循由特殊到一般、再由一般到特殊的人们认识事物的基本发展思路.过程清晰,层次分明,有助于学生理解和掌握.备课资料一、牛顿运动定律的适用范围17世纪以来,以牛顿运动定律为基础的经典力学不断发展,在科学研究和生产技术上得到了极其广泛的应用,取得了巨大的成就.这一切不仅证明了牛顿运动定律的正确性,甚至使有些科学家认为经典力学已经达到十分完善的地步,一切自然现象都可以由力学来加以说明,过分地夸大了经典力学的作用.但是,实践表明,牛顿运动定律和所有的物理定律一样,只具有相对的真理性.1905年,著名的美籍德国物理学家爱因斯坦(1879—1955)提出了研究匀速相对运动体系的狭义相对论,引起了物理学的一场巨大革命.他指出,经典力学中的绝对时空观并不是直接从观察和实验中得出的.实际上,时间、空间和观察者是相对的.根据相对论原理,物体的质量也不是恒定不变的,而是随着物体运动状态的变化而变化.1916年爱因斯坦又发表了研究加速相对运动的广义相对论.运用这些理论所得出的结论和实验观察基本一致.这表明:对于接近光速的高速运动的问题,经典力学已不再适用,必须由相对论力学来研究.经典力学可以看做是相对论力学在运动速度远小于光速时的特例.从20世纪初以来,原子物理学发展很快,发现许多新的物理现象(如光子、电子、质子等微观粒子的波粒二象性)无法用经典力学来说明.后来,在普朗克(1858—1947)、海森堡(1901—1976)、薛定谔(1887—1961)、狄拉克(1902—1984)等物理学家的努力下创立了量子力学,解决了经典力学无法解决的问题.因此经典力学可以看做是量子力学在宏观现象中的极限情况.总之,“宏观”“低速”是牛顿运动定律的适用范围.二、用整体法与局部法巧解动力学问题在实际问题中,还常常碰到几个物体连在一起,在外力作用下的共同运动,称为连接体的运动.在分析和求解物理连接体问题时,首先遇到的关键之一,就是研究对象的选取问题.其方法有两种:一是隔离法,二是整体法.所谓隔离(体)法就是将所研究的对象——包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法.所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析研究的方法.以系统为研究对象,运用牛顿第二定律求解动力学问题能回避系统内的相互作用力,使解题过程简单明了.隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.例1 用力F 推M ,使M 和m 两物体一起在光滑水平面上前进时,求两物体间的相互作用力.解析:如图所示,对整体应用牛顿第二定律有F =(M +m )a隔离m ,m 受外力的合力为M 对m 的推力N ,由牛顿第二定律N =ma ,解得:N =m M +m F . 答案:mM +m F 例2 如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球.开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即a =12g .则小球在下滑的过程中,木箱对地面的压力为多少?解析:解法一:(隔离法)木箱与小球没有共同加速度,用隔离法解决如下.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′,如图. 据物体平衡条件得:F N -F f ′-Mg =0②且F f =F f ′③由①②③式得F N =2M +m 2g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =2M +m 2g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依据牛顿第二定律列式: (mg +Mg )-F N =ma +M ×0故木箱所受支持力:F N =2M +m 2g . 由牛顿第三定律知:木箱对地面压力F N ′=F N =2M +m 2g . 答案:2M +m 2g 例3 一个质量为0.2 kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦.当斜面以10 m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.解析:当加速度a 较小时,小球与斜面体一起运动,此时小球受重力、绳的拉力和斜面的支持力作用,绳平行于斜面.当加速度a 足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a =10 m/s 2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a 0.(此时,小球所受斜面支持力恰好为零)由mg cot θ=ma 0,所以a 0=g cot θ=7.5 m/s 2因为a =10 m/s 2>a 0,所以小球离开斜面,N =0,小球受力情况如图,则T cos α=mg ,所以T =(ma )2+(mg )2=2.83 N ,N =0.答案:2.83 N 0例4 如图所示,三个物体的质量分别为m 1、m 2、M ,斜面的倾角为α,绳的质量不计,所有接触面光滑.当m 1沿斜面下滑时,要求斜面体静止,则对斜面体应施加多大的水平力F?解析:对m 1、m 2构成的系统由牛顿第二定律知:m 1g sin α-m 2g =(m 1+m 2)a ①对m 1、m 2和M 构成的整个系统就水平方向而言,若施力使斜面体静止,只有m 1具有水平方向向右的加速度分量a 1,且有a 1=a cos α②所以,对斜面体必须施加水平向右的推力F ,如图,则对整个系统在水平方向上由牛顿第二定律知:F =m 1a 1③解①②③得:F =m 1g (m 1sin α-m 2)cos αm 1+m 2. 答案:m 1g (m 1sin α-m 2)cos αm 1+m 2这种以系统为研究对象的解题方法,只研究了系统在水平方向上的动力学行为即达目的,既回避了物体运动的多维性和相互作用的复杂性,又体现了牛顿第二定律在某一方向上的独立性.。

用牛顿运动定律解决问题(一)

用牛顿运动定律解决问题(一)

第四章 第6节
第3页ห้องสมุดไป่ตู้
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
课前· 新知预习
(对应学生用书P113)夯实基础
自填要点 形成认识
第四章 第6节
第4页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
一、从受力确定运动情况
运动和力 1.牛顿第二定律确定了___________的关系,使我们能够 受力情况 把物体的运动情况和__________联系起来. 牛顿第二定律 2.如果已知物体的受力情况,可以由_______________求 运动学规律 出物体的加速度,再通过____________确定物体的运动情况.
1 2 由x=v0t+ at 得: 2 h 1 = gsinθ· t2 sinθ 2 1 解得:t= sinθ 2h g 2h g = 2gh
1 由v=v0+at得:v=at=gsinθ· sinθ
第四章 第6节
第17页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(三)解后总结规律方法 应用牛顿第二定律解题时求合力的方法 (1)合成法:物体只受两个力的作用产生加速度时,合力的 方向就是加速度的方向,解题时要求准确作出力的平行四边 形,然后运用几何知识求合力F合.反之,若知道加速度方向就 知道合力方向. (2)正交分解法:当物体受到两个以上的力作用而产生加速 度时,通常用正交分解法解答,一般把力正交分解为加速度方 向和垂直于加速度方向的两个分量.即沿加速度方向;Fx= ma,垂直于加速度方向:Fy=0.
第四章 第6节
第36页
金版教程 · 人教版物理 · 必修1

人教版--高一物理课后习题答案

人教版--高一物理课后习题答案

人教版--高一物理课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN答案仅供参考人教版高中物理Ⅰ课后习题答案第一章:运动的描述第1节:质点参考系和坐标系1、“一江春水向东流”是水相对地面(岸)的运动,“地球的公转”是说地球相对太阳的运动,“钟表时、分、秒针都在运动”是说时、分、秒针相对钟表表面的运动,“太阳东升西落”是太阳相对地面的运动。

2、诗中描写船的运动,前两句诗写景,诗人在船上,卧看云动是以船为参考系。

云与我俱东是说以两岸为参考系,云与船均向东运动,可认为云相对船不动。

3、x A=-0.44 m,x B=0.36 m第2节:时间和位移1.A.8点42分指时刻,8分钟指一段时间。

B.“早”指时刻,“等了很久”指一段时间。

C.“前3秒钟”、“最后3秒钟”、“第3秒钟”指一段时间,“3秒末”指时刻。

2.公里指的是路程,汽车的行驶路线一般不是直线。

3.(1)路程是100 m,位移大小是100 m。

(2)路程是800 m,对起跑点和终点相同的运动员,位移大小为0;其他运动员起跑点各不相同而终点相同,他们的位移大小、方向也不同。

4.解答第3节:运动快慢的描述——速度1.(1)1光年=365×24×3600×3.0×108m=9.5×1015 m。

(2)需要时间为16154.010 4.29.510⨯=⨯年2.(1)前1 s平均速度v1=9 m/s前2 s平均速度v2=8 m/s前3 s平均速度v3=7 m/s前4 s平均速度v4=6 m/s全程的平均速度v5=5 m/sv1最接近汽车关闭油门时的瞬时速度,v1小于关闭油门时的瞬时速度。

(2)1 m/s,03.(1)24.9 m/s,(2)36.6 m/s,(3)0 第4节:实验:用打点计时器测速度1.电磁打点记时器引起的误差较大。

因为电磁打点记时器打点瞬时要阻碍纸带的运动。

最新人教版 高一物理 必修一 用牛顿运动定律解决问题(一) 导学案(部分答案)

最新人教版 高一物理 必修一 用牛顿运动定律解决问题(一) 导学案(部分答案)

用牛顿运动定律解决问题(一)组题人:一、两类动力学问题(1)已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

(2)已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示:(3)在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。

在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。

运动学和动力学中公共的物理量是加速度a。

在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。

二、应用牛顿第二定律解题的一般步骤:1确定研究对象:依据题意正确选取研究对象2分析:对研究对象进行受力情况和运动情况的分析,画出受力示意图和运动情景图3列方程:选取正方向,通常选加速度的方向为正方向。

方向与正方向相同的力为正值,方向与正方向相反的力为负值,建立方程4解方程:用国际单位制,解的过程要清楚,写出方程式和相应的文字说明,必要时对结果进行讨论三、整体法与隔离法处理连接体问题1.连接体问题所谓连接体就是指多个相互关联的物体,它们一般具有相同的运动情况(有相同的速度、加速度),如:几个物体或叠放在一起,或并排挤放在一起,或用绳子、细杆联系在一起的物体组(又叫物体系).2.隔离法与整体法(1)隔离法:在求解系统内物体间的相互作用力时,从研究的方便性出发,将物体系统中的某部分分隔出来,单独研究的方法.(2)整体法:整个系统或系统中的几个物体有共同的加速度,且不涉及相互作用时,将其作为一个整体研究的方法.3.对连接体的一般处理思路(1)先隔离,后整体.(2)先整体,后隔离典例剖析典例一、由受力情况确定运动情况【例1】将质量为0.5 kg的小球以14 m/s的初速度竖直上抛,运动中球受到的空气阻力大小恒为2.1 N,则球能上升的最大高度是多少?解析通过对小球受力分析求出其上升的加速度及上升的最大高度.以小球为研究对象,受力分析如右图所示.在应用牛顿第二定律时通常默认合力方向为正方向,题目中求得的加速度为正值,而在运动学公式中一般默认初速度方向为正方向,因而代入公式时由于加速度方向与初速度方向相反而代入负值.根据牛顿第二定律得mg +Ff =ma ,a =mg +Ff m=0.5×9.8+2.10.5m/s2=14m/s2上升至最大高度时末速度为0,由运动学公式0-v20=2ax 得最大高度x =02-v202a =0-1422×(-14) m =7 m.答案 7 m 1.受力情况决定了运动的性质,物体具体的运动状况由所受合外力决定,同时还与物体运动的初始条件有关. 2.受力情况决定了加速度,但与速度没有任何关系.【例2】如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m =1kg 的物体,物体与斜面间动摩擦因数μ=0.25.现用轻细绳将物体由静止沿斜面向上拉动,拉力F =10N ,方向平行斜面向上,经时间t =4s 绳子突然断了,求:(1)绳断时物体的速度大小.(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(sin 37°=0.60,cos 37°=0.80,g =10 m/s2)解析 (1)物体受拉力向上运动过程中,受拉力F 、斜面的支持力FN 、重力mg 和摩擦力Ff ,如右图所示,设物体向上运动的加速度为a1,根据牛顿第二定律有:F-mgsin θ-Ff=ma1因Ff=μFN ,FN=mgcos θ 解得a1=2 m/s2t=4 s 时物体的速度大小为v1=a1t=8 m/s.(2)绳断时物体距斜面底端的位移m t a x 1621211==绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a2,受力如上图所示,则根据牛顿第二定律,对物体沿斜面向上运动的过程有:mgsin θ+Ff=ma2 Ff=μmgcos θ 解得a2=8 m/s2物体做减速运动的时间s t a v1212==减速运动的位移m t a x 4222212==此后物体将沿着斜面匀加速下滑,设物体下滑的加速度为a3,受力如右图所示,根据牛顿第二定律对物体加速下滑的过程有:mgsin θ-Ff=ma3 Ff=μmgcos θ解得a3=4 m/s2设物体由最高点到斜面底端的时间为t3,所以物体向下匀加速运动的位移:2332121t a x x =+解得s t 2.3103≈= 所以物体返回到斜面底端的时间为t 总=t2+t3=4.2 s典例二、由运动情况确定受力情况【例3】民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4m ,构成斜面的气囊长度为5 m .要求紧急疏散时乘客从气囊上由静止下滑到达地面的时间不超过2 s ,则(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?(g =10 m/s2) 解析(1)设h =4 m ,L =5 m ,t =2 s ,斜面倾角为θ,则Lh=θsin .乘客在气囊上下滑过程,由221at L = 解得: a =2.5 m/s2(2)乘客下滑过程受力分析如右图则有:FN=mgcos θ ,Ff =μFN = μmgcos θ 由牛顿第二定律可得:mgsin θ- Ff=ma代入数据解得:1211=μ规律总结:物体的加速度由物体所受的合力决定,两者大小、方向及变化一一对应;速度大小的变化情况取决于加速度的方向与速度方向的关系,当两者同向时,速度变大,当两者反向时,速度变小。

4-6用牛顿运动定律解决问题(一)

4-6用牛顿运动定律解决问题(一)

第四章
6.用牛顿运动定律解决问题(一)
成才之路 ·物理 ·人教版 · 必修1
考点题型设计
第四章
6.用牛顿运动定律解决问题(一)
成才之路 ·物理 ·人教版 · 必修1
题型 1
已知物体的受力情况分析物体的运动情况
法国人劳伦特· 菲舍尔在澳大利亚伯斯的冒险世界
进行了超高空特技跳水表演(如图所示), 他从 30m 高的塔上跳 下准确地落入水池中。已知水对他的阻力(包括浮力)是他的重 力的 3.5 倍, 他在空中时空气对他的阻力是他的重力的 0.2 倍。 为了保证他的安全,水池的深度至少是多少米?(g=10m/s2)
第四章
6.用牛顿运动定律解决问题(一)
成才之路 ·物理 ·人教版 · 必修1
三、从受力确定运动情况 1.分析思路 (1)确定研究对象,对研究对象进行受力分析, 并画出物 体的受力分析图。 (2)根据力的合成与分解,求出物体所受的合外力(包括大 小和方向)。 (3)根据牛顿第二定律列方程,求出物体运动的加速度。
考点题型设计 方法警示探究
知识自主梳理
易错案例剖析
重点难点突破
课后强化作业
第四章
6.用牛顿运动定律解决问题(一)
成才之路 ·物理 ·人教版 · 必修1
学习目标定位
第四章
6.用牛顿运动定律解决问题(一)
成才之路 ·物理 ·人教版 · 必修1
※ 掌握应用牛顿运动定律解决问题的基本 ※ 思路和方法 ※ 知道运动力学的两类基本问题及其特点 ※ 能够运用牛顿定律和运动学公式解决简 ※ 单的力学问题
第四章
6.用牛顿运动定律解决问题(一)
成才之路 ·物理 ·人教版 · 必修1
(河北冀州中学 11~12 学年上学期期中)L 型木板 P(上表 面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一 端与置于木板上表面的滑块 Q 相连,如图所示。若 P、Q 一 起沿斜面匀速下滑,不计空气阻力。则木板 P 的受力个数为 ( )

用牛顿运动定律解决问题(一)含答案

用牛顿运动定律解决问题(一)含答案

一、选择题1、用3N的水平恒力,在水平面上拉一个质量为2kg的木块,从静止开始运动,2s内的位移为2m,则木块的加速度为() A.0.5m/s2 B.1m/s2 C.1.5m/s2 D.2m/s22、据《新消息》报道,在北塔公园门前,李师傅用牙齿死死咬住长绳的一端,将停放着的一辆卡车缓慢拉动。

小华同学看完表演后做了如下思考,其中正确的是()A.李师傅选择斜向上拉可以减少车对地面的正压力,从而减少车与地面间的摩擦力B.若将绳系在车顶斜向下拉,要拉动汽车将更容易C.车被拉动的过程中,绳对车的拉力大于车对绳的拉力D.当车由静止被拉动时,绳对车的拉力大于车受到的摩擦阻力3、行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害。

为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带。

假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车闸到车完全停止需要的时间为5s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( )A.450NB.400NC.350ND.300N4、粗糙水平面上的物体在水平拉力F作用下做匀加速直线运动,现使F不断减小,则在滑动过程中( )A.物体的加速度不断减小,速度不断增大B.物体的加速度不断增大,速度不断减小C.物体的加速度先变大再变小,速度先变小再变大D.物体的加速度先变小再变大,速度先变大再变小6、有种自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转。

一顾客乘扶梯上楼,正好经历了这两个过程,则能正确反映该乘客在这两个过程中的受力示意图的是()二、多项选择7、正在加速上升的气球,下面悬挂重物的绳子突然断开,此时( )A.重物的加速度立即发生改变 B.重物的速度立即发生改变C.气球的速度立即改变 D.气球的加速度立即增大三、计算题8、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s内速度由5.0m/s增加到15.0m/s.(1)求列车的加速度大小.(2)若列车的质量是1.0×106kg,机车对列车的牵引力是1.5×105N,求列车在运动中所受的阻力大小.9、质量为1000Kg的汽车在水平路面上从静止开始运动,经过4s速度达到10m/s,汽车受到的水平牵引力为3000N。

4-6用牛顿运动定律解决问题(一)

4-6用牛顿运动定律解决问题(一)

v 答案:由图得:a= =0.5m/s2, t 前2s有:F2-mgsinα=ma,2s后有:F2= mgsinα,代入数据可解得:m=1kg,α=30° .

例4如图所示,风洞实验室中可产生水平方向 的、大小可调节的风力.现将一套有小球的细 直杆放入风洞实验室,小球孔径略大于直径.


(1)当杆在水平方向固定时,调节风力的大小, 使小球在杆上做匀速运动,这时小球所受的 风力为小球所受重力的0.5倍,求小球与杆间 的动摩擦因数. (2)保持小球所受的风力不变,使杆与水平方 向的夹角为37°并固定,则小球从静止出发 在细杆上滑下距离s所需时间为多少? (sin37°=0.6,cos37°=0.8)

6.物体的运动情况是由物体所受的合外力与 物体运动的初始条件共同决定的.


例1在交通事故的分析中,刹车线的长度是很 重要的依据,刹车线是汽车刹车后,停止转 动的轮胎在地面上发生滑动时留下的滑动痕 迹.在某次交通事故中,汽车的刹车线长度 是14m,假设汽车轮胎与地面间的动摩擦因 数恒为0.7,g取10m/s2,则汽车刹车前的速度 为 ( ) A.7m/s B.10m/s C.14m/s D.20m/s
解析:以物体为研究对象进行受力分析,由牛顿第 二定律得:水平方向:Fcosθ-Ff=ma1① 竖直方向:FN+Fsinθ-mg=0② Ff=μFN③ 联立①②③得:a1=6m/s2, 5s 末的速度为:v=a1t1=6×5m/s=30m/s 1 2 1 5s 内的位移为:x= a1t = ×6×52m=75m. 2 2

例2一个滑雪人质量为75kg,以v0=2m/s的初 速度沿山坡匀加速滑下,山坡的倾角θ=30°. 在t=5s时间内滑下的路程s=60m,求滑雪人 受到的阻力.(包括摩擦和空气阻力)

4.6用牛顿运动定律解决问题(一)

4.6用牛顿运动定律解决问题(一)

从受力确定运动
所求量
a
物 体 运 动 分 析
【练习1】质量为40kg的物体静止在水
平面上, 当在400N的水平拉力作用下由
静止开始经过16m时, 速度为16 m/s, 求
物体受到的阻力是多少?
【答案】80N
F
【练习2】用弹簧秤拉着一个物体在水平面
上做匀速运动, 弹簧秤的示数是0.40N. 然后
用弹簧秤拉着这个物体在水平面上做匀变
所需求的运动学量——任意时刻的位移和速度,以及运动轨
迹等。 返回
1.假设汽车紧急制动后,受到的阻力与汽车所受重力的大小
差不多。当汽车以20 m/s的速度行驶时,突然制动,它还
能继续滑行的距离约为 ) A.40 m B.20 m ( B
C.10 m D.5 m 解析:由题意可知关闭发动机后,汽车的加速度 a=g,所以
解题步骤
(1)确定研究对象,对研究对象进行受力分析和运动过程
分析,并画出受力图和运动草图。 (2)选择合适的运动学公式,求出物体的加速度。 (3)根据牛顿第二定律列方程,求物体所受的合外力。 (4)根据力的合成与分解的方法,由合力求出所需求的力。
返回
2.某司机遇到紧急情况急速刹车,使车在1.25 s内迅速停 下。若刹车前的车速为16 m/s,司机的质量为60 kg,刹车 过程中汽车其他部分对司机的阻力是司机体重的0.5倍,则 468 安全带对司机的作用为________N。(g=10 m/s2)
复习: 牛顿第二定律
1、内容: 物体的加速度跟所受合力
成正比,跟物体质量成反比;加速度方向 跟合力方向相同。
2、公式: F=ma 注意:(1)同时性
(2)同向性
运动学公式
速度公式 :v = vo+at 位移公式:x= vot +at2 /2

【新步步高】2016-2016学年高一物理人教版必修一学案与检测:4.6 用牛顿运动定律解决问题(一) Word版含解

【新步步高】2016-2016学年高一物理人教版必修一学案与检测:4.6 用牛顿运动定律解决问题(一) Word版含解

学案6 用牛顿运动定律解决问题(一)[目标定位] 1.明确动力学的两类基本问题.2.掌握应用牛顿运动定律解题的基本思路和方法.一、从受力确定运动情况受力情况→F 合――→F 合=ma求a , ⎩⎪⎨⎪⎧ x =v 0t +12at2v =v 0+at v 2-v 20=2ax →求得x 、v 0、v 、t .例1 如图1所示,质量m =2 kg 的物体静止在水平地面上,物体与水平面间的滑动摩擦力大小等于它们间弹力的0.25倍,现对物体施加一个大小F =8 N 、与水平方向成θ=37°角斜向上的拉力,已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.求:图1(1)画出物体的受力图,并求出物体的加速度;(2)物体在拉力作用下5 s 末的速度大小;(3)物体在拉力作用下5 s 内通过的位移大小.解析 (1)对物体受力分析如图:由图可得:⎩⎪⎨⎪⎧F cos θ-μF N =ma F sin θ+F N =mg解得:a =1.3 m/s 2,方向水平向右(2)v =at =1.3×5 m /s =6.5 m/s(3)x =12at 2=12×1.3×52 m =16.25 m 答案 (1)见解析图 1.3 m/s 2,方向水平向右(2)6.5 m/s (3)16.25 m二、从运动情况确定受力运动情况――――――――→匀变速直线运动公式求a ――→F 合=ma受力情况.例2 民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上.若某型号的客机紧急出口离地面高度为4.0 m ,构成斜面的气囊长度为5.0 m .要求紧急疏散时,乘客从气囊上由静止下滑到达地面的时间不超过2.0 s(g 取10 m/s 2),则:(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?解析 (1)由题意可知,h =4.0 m ,L =5.0 m ,t =2.0 s.设斜面倾角为θ,则sin θ=h L . 乘客沿气囊下滑过程中,由L =12at 2得a =2L t2,代入数据得a =2.5 m/s 2. (2)在乘客下滑过程中,对乘客受力分析如图所示,沿x 轴方向有mg sin θ-F f =ma ,沿y 轴方向有F N -mg cos θ=0,又F f =μF N ,联立方程解得μ=g sin θ-a g cos θ≈0.92. 答案 (1)2.5 m/s 2 (2)0.92针对训练1 质量为0.1 kg 的弹性球从空中某高度由静止开始下落,该下落过程对应的v -t图象如图2所示.弹性球与水平地面相碰后离开地面时的速度大小为碰撞前的34.设球受到的空气阻力大小恒为F f ,取g =10 m/s 2,求:图2(1)弹性球受到的空气阻力F f 的大小;(2)弹性球第一次碰撞后反弹的高度h .答案 (1)0.2 N (2)0.375 m解析 (1)由v -t 图象可知,弹性球下落过程的加速度为a 1=Δv Δt =4-00.5m /s 2=8 m/s 2 根据牛顿第二定律,得mg -F f =ma 1所以弹性球受到的空气阻力F f =mg -ma 1=(0.1×10-0.1×8) N =0.2 N(2)弹性球第一次反弹后的速度v 1=34×4 m /s =3 m/s 根据牛顿第二定律mg +F f =ma 2,得弹性球上升过程的加速度为a 2=mg +F f m =0.1×10+0.20.1m /s 2=12 m/s 2 根据v 2-v 21=-2a 2h ,得弹性球第一次反弹的高度h =v 212a 2=322×12m =0.375 m. 三、多过程问题分析1.当题目给出的物理过程较复杂,由多个过程组成时,要明确整个过程由几个子过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过程.联系点:前一过程的末速度是后一过程的初速度,另外还有位移关系等.2.注意:由于不同过程中力发生了变化,所以加速度也会发生变化,所以对每一过程都要分别进行受力分析,分别求加速度.例3 质量为m =2 kg 的物体静止在水平面上,物体与水平面之间的动摩擦因数μ=0.5,现在对物体施加如图3所示的力F ,F =10 N ,θ=37°(sin 37°=0.6),经t 1=10 s 后撤去力F ,再经一段时间,物体又静止,g 取10 m/s 2,则:图3(1)说明物体在整个运动过程中经历的运动状态.(2)物体运动过程中最大速度是多少?(3)物体运动的总位移是多少?解析 (1)当力F 作用时,物体做匀加速直线运动,撤去F 时物体的速度达到最大值,撤去F 后物体做匀减速直线运动.(2)撤去F 前对物体受力分析如图,有:F sin θ+F N1=mgF cos θ-F f =ma 1F f =μF N1x 1=12a 1t 21 v =a 1t 1,联立各式并代入数据解得x 1=25 m ,v =5 m/s(3)撤去F 后对物体受力分析如图,有:F f ′=μF N2=ma 2,F N2=mg2a 2x 2=v 2,代入数据得x 2=2.5 m物体运动的总位移:x =x 1+x 2得x =27.5 m答案 (1)见解析 (2)5 m/s (3)27.5 m针对训练2 冬奥会四金得主王濛于2014年1月13日亮相全国短道速滑联赛总决赛.她领衔的中国女队在混合3 000米接力比赛中表现抢眼.如图4所示,ACD 是一滑雪场示意图,其中AC 是长L =8 m 、倾角θ=37°的斜坡,CD 段是与斜坡平滑连接的水平面.人从A 点由静止下滑,经过C 点时速度大小不变,又在水平面上滑行一段距离后停下.人与接触面间的动摩擦因数均为μ=0.25,不计空气阻力,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:图4(1)人从斜坡顶端A 滑至底端C 所用的时间;(2)人在离C 点多远处停下?答案 (1)2 s (2)12.8 m解析 (1)人在斜坡上下滑时,受力分析如图所示.设人沿斜坡下滑的加速度为a ,沿斜坡方向,由牛顿第二定律得mg sin θ-F f =maF f =μF N垂直于斜坡方向有F N -mg cos θ=0由匀变速运动规律得L=122at联立以上各式得a=g sin θ-μg cos θ=4 m/s2t=2 s(2)人在水平面上滑行时,水平方向只受到地面的摩擦力作用.设在水平面上人减速运动的加速度为a′,由牛顿第二定律得μmg=ma′设人到达C处的速度为v,则由匀变速直线运动规律得人在斜面上下滑的过程:v2=2aL人在水平面上滑行时:0-v2=-2a′x联立以上各式解得x=12.8 m很多动力学问题,特别是多过程问题,是先分析合外力列牛顿第二定律方程,还是先分析运动情况列运动学方程,并没有严格的顺序要求,有时可以交叉进行.但不管是哪种情况,其解题的基本思路都可以概括为六个字:“对象、受力、运动”,即:(1)明确研究对象;(2)对物体进行受力分析,并进行力的运算,列牛顿第二定律方程;(3)分析物体的运动情况和运动过程,列运动学方程;(4)联立求解或定性讨论.1.(从受力确定运动情况)一个滑雪运动员从静止开始沿山坡滑下,山坡的倾角θ=30°,如图5所示,滑雪板与雪地间的动摩擦因数是0.04,求5 s内滑下来的路程和5 s末速度的大小(运动员一直在山坡上运动).图5答案58.2 m23.3 m/s解析以滑雪运动员为研究对象,受力情况如图所示.研究对象的运动状态为:垂直于山坡方向,处于平衡状态;沿山坡方向,做匀加速直线运动. 将重力mg 沿垂直于山坡方向和平行于山坡方向分解,据牛顿第二定律列方程:F N -mg cos θ=0①mg sin θ-F f =ma ②又因为F f =μF N ③由①②③可得:a =g (sin θ-μcos θ)故x =12at 2=12g (sin θ-μcos θ)t 2 =12×10×(12-0.04×32)×52 m ≈58.2 m v =at =10×(12-0.04×32)×5 m /s ≈23.3 m/s 2.(从运动情况确定受力)一物体沿斜面向上以12 m /s 的初速度开始滑动,它沿斜面向上以及沿斜面向下滑动的v -t 图象如图6所示,求斜面的倾角θ以及物体与斜面间的动摩擦因数μ.(g 取10 m/s 2)图6答案 30° 315解析 由题图可知上滑过程的加速度大小为:a 上=122m /s 2=6 m/s 2, 下滑过程的加速度大小为:a 下=125-2m /s 2=4 m/s 2 上滑过程和下滑过程对物体受力分析如图上滑过程a 上=mg sin θ+μmg cos θm=g sin θ+μg cos θ 下滑过程a 下=g sin θ-μg cos θ,联立解得θ=30°,μ=315 3.(多过程问题)一辆汽车在恒定牵引力作用下由静止开始沿直线运动,4 s 内通过8 m 的距离,此后关闭发动机,汽车又运动了2 s 停止,已知汽车的质量m =2×103 kg ,汽车运动过程中所受阻力大小不变,求:(1)关闭发动机时汽车的速度大小;(2)汽车运动过程中所受到的阻力大小;(3)汽车牵引力的大小.答案 (1)4 m/s (2)4×103 N (3)6×103 N解析 (1)汽车开始做匀加速直线运动x 0=v 0+02t 1解得v 0=2x 0t 1=4 m/s (2)关闭发动机后汽车减速过程的加速度a 2=0-v 0t 2=-2 m/s 2 由牛顿第二定律有-F f =ma 2解得F f =4×103 N(3)设开始加速过程中汽车的加速度为a 1x 0=12a 1t 21 由牛顿第二定律有:F -F f =ma 1解得F =F f +ma 1=6×103 N题组一 从受力确定运动情况1.A 、B 两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A >m B ,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A 与x B 相比为( )A .x A =x BB .x A >x BC .x A <x BD .不能确定答案 A解析 通过分析物体在水平面上滑行时的受力情况可以知道,物体滑行时受到的滑动摩擦力μmg 为合外力,由牛顿第二定律知:μmg =ma 得:a =μg ,可见:a A =a B .物体减速到零时滑行的距离最大,由运动学公式可得:v 2A =2a A x A ,v 2B =2a B x B ,又因为v A =v B ,a A =a B .所以x A =x B ,A 正确.2.假设洒水车的牵引力不变且所受阻力与车重成正比,未洒水时,车匀速行驶,洒水时它的运动将是( )A .做变加速运动B .做初速度不为零的匀加速直线运动C .做匀减速运动D .继续保持匀速直线运动答案 A解析 a =F 合m =F -kmg m =F m-kg ,洒水时质量m 减小,则a 变大,所以洒水车做加速度变大的加速运动,故A 正确.3.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10 m/s 2,则汽车刹车前的速度为( )A .7 m /sB .14 m/sC .10 m /sD .20 m/s答案 B解析 设汽车刹车后滑动过程中的加速度大小为a ,由牛顿第二定律得:μmg =ma ,解得:a =μg .由匀变速直线运动的速度位移关系式v 20=2ax ,可得汽车刹车前的速度为:v 0=2ax =2μgx =2×0.7×10×14 m /s =14 m/s ,因此B 正确.4.用30 N 的水平外力F 拉一静止在光滑的水平面上质量为20 kg 的物体,力F 作用3 s 后消失,则第5 s 末物体的速度和加速度分别是( )A .v =7.5 m /s ,a =1.5 m/s 2B .v =4.5 m /s ,a =1.5 m/s 2C .v =4.5 m/s ,a =0D .v =7.5 m/s ,a =0答案 C解析 前3 s 物体由静止开始做匀加速直线运动,由牛顿第二定律得:F =ma ,解得:a =F m=3020m /s 2=1.5 m/s 2,3 s 末物体的速度为v =at =1.5×3 m /s =4.5 m/s ;3 s 后,力F 消失,由牛顿第二定律可知加速度立即变为0,物体做匀速直线运动,所以5 s 末的速度仍是3 s 末的速度,即4.5 m/s ,加速度为a =0,故C 正确.题组二 从运动情况确定受力5.某气枪子弹的出口速度达100 m/s ,若气枪的枪膛长0.5 m ,子弹的质量为20 g ,若把子弹在枪膛内的运动看做匀变速直线运动,则高压气体对子弹的平均作用力为( )A .1×102 NB .2×102 NC .2×105 ND .2×104 N答案 B解析 根据v 2=2ax ,得a =v 22x =10022×0.5 m /s 2=1×104 m/s 2,从而得高压气体对子弹的作用力F =ma =20×10-3×1×104 N =2×102 N.6.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车闸到车完全停止需要的时间为5 s ,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( )A .450 NB .400 NC .350 ND .300 N答案 C解析 汽车的速度v 0=90 km /h =25 m/s设汽车匀减速的加速度大小为a ,则a =v 0t=5 m/s 2 对乘客应用牛顿第二定律可得:F =ma =70×5 N =350 N ,所以C 正确.7.某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍答案 B解析由自由落体规律可知:v2=2gH缓冲减速过程:v2=2ah由牛顿第二定律列方程F-mg=ma解得F=mg(1+Hh)=5mg,故B正确.8.如图1所示,质量为m=3 kg的木块放在固定的倾角为θ=30°的足够长斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F作用于木块上,使其由静止开始沿斜面向上加速运动,经过t=2 s时间物体沿斜面上升4 m的距离,则推力F为(g取10 m/s2)()图1A.42 N B.6 NC.21 N D.36 N答案 D解析因木块能沿斜面匀速下滑,由平衡条件知:mg sin θ=μmg cos θ,所以μ=tan θ;当在推力作用下加速上滑时,由运动学公式x=12得a=2 m/s2,由牛顿第二定律得:F-mg sin2atθ-μmg cos θ=ma,解得F=36 N,故选D.9.如图2所示为某小球所受的合力与时间的关系,各段的合力大小相同,且一直作用下去,作用时间相同,设小球从静止开始运动.由此可判定()图2A.小球向前运动,再返回停止B.小球向前运动再返回不会停止C.小球始终向前运动D.小球向前运动一段时间后停止答案 C解析作出相应的小球的v-t图象如图所示,小球的运动方向由速度的方向决定.由图象可以看出,小球的速度方向始终没有变化,故小球始终向前运动,故选C.题组三综合应用10.物体以14.4 m/s的初速度从斜面底端冲上倾角为θ=37°的斜坡,到最高点后再滑下,如图3所示.已知物体与斜面间的动摩擦因数为0.15,求:图3(1)物体沿斜面上滑的最大位移;(2)物体沿斜面下滑的时间.(已知sin 37°=0.6,cos 37°=0.8)答案(1)14.4 m(2) 6 s解析(1)上滑时加速度大小设为a1,由牛顿第二定律得:mg sin 37°+μmg cos 37°=ma1解得a1=7.2 m/s2上滑最大位移为x=v202a1代入数据得x=14.4 m(2)下滑时加速度大小设为a2,由牛顿第二定律得:mg sin 37°-μmg cos 37°=ma2解得a2=4.8 m/s2由x=12a2t2得下滑时间t=2xa2= 6 s11.如图4所示,在海滨游乐场里有一场滑沙运动.某人坐在滑板上从斜坡的高处A点由静止开始滑下,滑到斜坡底端B点后,沿水平的滑道再滑行一段距离到C点停下来.如果人和滑板的总质量m=60 kg,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(已知sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,人从斜坡滑上水平滑道时没有速度损失,重力加速度g取图4(1)人从斜坡上滑下的加速度为多大?(2)若由于场地的限制,水平滑道的最大距离BC为L=20 m,则人从斜坡上滑下的距离AB 应不超过多少?答案(1)2 m/s2(2)50 m解析(1)人在斜坡上受力如图所示,建立直角坐标系,设人在斜坡上滑下的加速度为a1,由牛顿第二定律得:mg sin θ-F f1=ma1F N1-mg cos θ=0又F f1=μF N1联立解得a1=g(sin θ-μcos θ)=10×(0.6-0.5×0.8) m/s2=2 m/s2.(2)人在水平滑道上受力如图所示,由牛顿第二定律得:F f2=ma2,F N2-mg=0又F f2=μF N2联立解得a2=μg=5 m/s2设人从斜坡上滑下的距离为L AB,对AB段和BC段分别由匀变速直线运动公式得:v2-0=2a1L AB,0-v2=-2a2L联立解得L AB=50 m.12.如图5所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L=20 m.物体与地面间的动摩擦因数μ=0.5,现用大小为20 N、与水平方向成53°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t(已知sin 53°=0.8,cos 53°=0.6,g取10 m/s2).图5解析 物体先以大小为a 1的加速度匀加速运动,撤去外力后,再以大小为a 2的加速度减速到B ,且到B 时速度恰好为零.力F 作用时:F cos 53°-μ(mg -F sin 53°)=ma 1 t 时刻:x 1=12a 1t 2 v =a 1t撤去力F 后:μmg =ma 2v 2=2a 2x 2由于x 1+x 2=L解得t =2 s。

高中物理:第四章 第6节 用牛顿运动定律解决问题(一)

高中物理:第四章 第6节 用牛顿运动定律解决问题(一)

[随堂检测]1.(2019·陕西咸阳高一期中)图甲是某景点的山坡滑道图片,为了探究滑行者在滑道直线部分AE 滑行的时间,技术人员通过测量绘制出如图乙所示的示意图,AC 是滑道的竖直高度,D 点是AC 竖直线上的一点,且有AD =DE =15 m ,滑道AE 可视为光滑,滑行者从坡顶A 点由静止开始沿滑道AE 向下做直线滑动,g 取10 m/s 2,则滑行者在滑道AE 上滑行的时间为( )A. 2 s B .2 s C. 6 sD .2 2 s解析:选C.如图所示,设斜面坡角为θ,取AE 中点为F ,则:AE =2AF =30sinθ,物体做匀加速直线运动,对物体受力分析,受重力和支持力,将重力沿着平行斜面和垂直斜面正交分解,根据牛顿第二定律,有:mg sin θ=ma ,解得:a =g sin θ; 根据速度位移公式,有:AE =12at 2;解得:t = 6 s.2.用30 N 的水平外力F 拉一个静止在光滑水平面上的质量为20 kg 的物体,力F 作用3 s 后撤去,则第5 s 末物体的速度和加速度分别是( ) A .4.5 m/s ,1.5 m/s 2 B .7.5 m/s ,1.5 m/s 2 C .4.5 m/s ,0D .7.5 m/s ,0解析:选C.有力F 作用时,物体做匀加速直线运动,加速度a =Fm =1.5 m/s 2.力F 作用3 s 撤去之后,物体做匀速直线运动,速度大小为v =at =4.5 m/s ,而加速度为0.选项C 正确. 3.如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( ) A .2∶1 B .1∶1 C.3∶1D .1∶ 3解析:选B.设光滑斜槽轨道与水平面的夹角为θ,则重物下滑时的加速度为a =g sin θ,由几何关系,斜槽轨道的长度s =2(R +r )sin θ,由运动学公式s =12at 2,得t =2s a= 2×2(R +r )sin θg sin θ=2R +rg,即所用时间t 与倾角θ无关,所以t 1=t 2,B 项正确.4.(2019·济宁高一检测)民航客机都有紧急出口,发生意外情况时打开紧急出口,狭长的气囊会自动充气生成一条通向地面的斜面,乘客可沿斜面滑行到地面上.如图所示,某客机紧急出口离地面高度AB =3.0 m ,斜面气囊高度AC =5.0 m ,要求紧急疏散时乘客从气囊上由静止下滑到地面的时间不超过2 s ,g 取10 m/s 2,求:(1)乘客在气囊上滑下的加速度至少为多大?(2)乘客和气囊间的动摩擦因数不得超过多大?(忽略空气阻力) 解析:(1)根据运动学公式x =12at 2①得:a =2x t 2=2×5.022 m/s 2=2.5 m/s 2②故乘客在气囊上滑下的加速度至少为2.5 m/s 2. (2)乘客在斜面上受力情况如图所示. F f =μF N ③ F N =mg cos θ④ 根据牛顿第二定律: mg sin θ-F f =ma ⑤由几何关系可知sin θ=0.6,cos θ=0.8 由②~⑤式得:μ=g sin θ-a g cos θ=716=0.437 5 故乘客和气囊间的动摩擦因数不得超过0.437 5. ☆答案☆:(1)2.5 m/s 2 (2)0.437 5[课时作业]一、单项选择题1.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车闸到车完全停止需要的时间为5 s ,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( ) A .450 N B .400 N C .350 ND .300 N解析:选C.汽车的速度v 0=90 km/h =25 m/s ,设汽车匀减速的加速度大小为a ,则a =v 0t =5m/s 2,对乘客应用牛顿第二定律可得:F =ma =70×5 N =350 N ,所以C 正确.2.(2019·沈阳高一检测)A 、B 两物体以相同的初速度在一水平面上滑动,两个物体与水平面间的动摩擦因数相同,且m A =3m B ,则它们能滑动的最大距离x A 和x B 的关系为( ) A .x A =x B B .x A =3x B C .x A =13x BD .x A =9x B解析:选A.对物体受力分析,由牛顿第二定律μmg =ma 得a =μg .则a A =a B ,x A =v 202a A ,x B =v 202a B ,故x A =x B .3.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2ght +mgB.m 2gh t -mgC.m gh t+mgD.m gh t-mg解析:选A.设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma 又v =at解得F =m 2ght+mg .选项A 正确.4.(2019·黑龙江绥化高一期中)一条足够长的浅色水平传送带自左向右匀速运行,现将一块木炭无初速度地放在传送带的最左端,木炭在传送带上将会留下一段黑色的痕迹,下列说法正确的是( )A .黑色的痕迹将出现在木炭的左侧B .木炭的质量越大,痕迹的长度越短C .传送带运动的速度越大,痕迹的长度越短D .木炭与传送带间动摩擦因数越大,痕迹的长度越短解析:选D.刚放上木炭时,木炭的速度慢,传送带的速度快,木炭向后滑动,所以黑色的径迹将出现在木炭的右侧,所以A 错误;木炭在传送带上运动靠的是与传送带之间的摩擦力,摩擦力作为它的合力产生加速度,所以由牛顿第二定律知,μmg =ma ,所以a =μg ;当达到共同速度时,不再有相对滑动,由v 2=2ax得,木炭位移x 木=v 22μg,设相对滑动的时间为t ,由v =at ,得t =v μg ,此时传送带的位移为x 传=v t =v 2μg ,所以滑动的位移是Δx =x 传-x 木=v 22μg ,由此可以知道,黑色的径迹与木炭的质量无关,所以B 错误;由B 知,传送带运动的速度越大,径迹的长度越长,所以C 错误;木炭与传送带间动摩擦因数越大,径迹的长度越短,所以D 正确.5.(2019·成都高一检测)某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍解析:选B.由自由落体v 2=2gH ,缓冲减速v 2=2ah ,由牛顿第二定律F -mg =ma ,解得F =mg ⎝⎛⎭⎫1+Hh =5mg ,故B 正确. 6.为了使雨滴能尽快地淌离房顶,要设计好房顶的高度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么如图所示的四种情况中符合要求的是( )解析:选C.设屋檐的底角为θ,底边长为2L (不变).雨滴做初速度为零的匀加速直线运动,根据牛顿第二定律得加速度a =mg sin θm =g sin θ,位移大小x =12at 2,而x =L cos θ,2sin θcosθ=sin 2θ,联立以上各式得t =4Lg sin 2θ.当θ=45°时,sin 2θ=1为最大值,时间t 最短,故选项C 正确.7.(2019·太原高一测试)质量为m =3 kg 的木块放在倾角为θ=30°的足够长斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F 作用于木块上,使其由静止开始沿斜面向上加速运动,经过t =2 s 时间物体沿斜面上升4 m 的距离,则推力F 为(g 取10 m/s 2)( ) A .42 N B .6 N C .21 ND .36 N解析:选D.因木块能沿斜面匀速下滑,由平衡条件知:mg sin θ=μmg cos θ,所以μ=tan θ;当在推力作用下加速上滑时,由运动学公式x =12at 2得a =2 m/s 2,由牛顿第二定律得:F -mg sinθ-μmg cos θ=ma ,得F =36 N ,故选D.8.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10 m/s 2,则汽车刹车前的速度为( )A.7 m/s B.14 m/sC.10 m/s D.20 m/s解析:选B.设汽车刹车后滑动的加速度大小为a,由牛顿第二定律得:μmg=ma,解得:a=μg.由匀变速直线运动的速度位移关系式v20=2ax,可得汽车刹车前的速度为v0=2ax=2μgx=2×0.7×10×14 m/s=14 m/s,因此B正确.二、多项选择题9.(2019·江苏镇江高一月考)如图所示,在一无限长的水平小车上,在质量分别为m1和m2的两个滑块(m1>m2)随车一起向右匀速运动,设两滑块与小车间的动摩擦因数均为μ,其他阻力不计,当车突然停止时,以下说法中正确的是()A.若μ=0,两滑块一定相碰B.若μ=0,两滑块一定不相碰C.若μ≠0,两滑块一定相碰D.若μ≠0,两滑块一定不相碰解析:选BD.若μ=0,当车突然停止时,两物块所受的合力为零,将以相同的速度做匀速直线运动,一定不会相撞,故A错误,B正确;若μ≠0,当车突然停止时,两物块做匀减速运动,加速度a=μg,因为初速度相同,所以两滑块一定不相撞,故C错误,D正确.10.(2019·天津高一检测)如图所示,光滑斜面CA、DA、EA都以AB为底边.三个斜面的倾角分别为75°、45°、30°.物体分别沿三个斜面由顶端从静止滑到底端,下面说法中正确的是()A.物体沿DA滑到底端时具有最大速率B.物体沿EA滑到底端所需时间最短C.物体沿CA下滑,加速度最大D.物体沿DA滑到底端所需时间最短解析:选CD.设AB=l,当斜面的倾角为θ时,斜面的长度x=lcos θ;由牛顿第二定律得,物体沿光滑斜面下滑时加速度a=g sin θ,当θ=75°时加速度最大,选项C正确;由v2=2ax可得,物体沿斜面滑到底端时的速度v=2ax=2g sin θlcos θ=2gl tan θ,当θ=75°时速度最大,选项A错误;由x=12at2可得t=2xa=2lcos θg sin θ=2lg sin θcos θ=4lg sin 2θ,当θ=45°时t最小,故选项B错误,选项D正确.11.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F推第1块木块使它们共同加速运动时,下列说法中正确的是()A.由右向左,两块木块之间的相互作用力依次变小B.由右向左,两块木块之间的相互作用力依次变大C.第2块木块与第3块木块之间的弹力大小为0.6FD.第3块木块与第4块木块之间的弹力大小为0.6F解析:选BC.取整体为研究对象,由牛顿第二定律得F-5μmg=5ma.再选取1、2两块木块为研究对象,由牛顿第二定律得F-2μmg-F N=2ma,两式联立解得F N=0.6F,进一步分析可得,从右向左,木块间的相互作用力是依次变大的.选项B、C正确.12.(2019·江西吉安高一诊断)绷紧的传送带长L=32 m,铁块与带间动摩擦因数μ=0.1,g=10 m/s2,下列正确的是()A.若皮带静止,A处小铁块以v0=10 m/s向B运动,则铁块到达B处的速度为6 m/s B.若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,铁块到达B 处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B处的速度为8 m/s解析:选ABD.若传送带不动,物体做匀减速直线运动,根据牛顿第二定律得,匀减速直线运动的加速度大小a=μg=1 m/s2,根据v2B-v20=-2aL,解得:v B=6 m/s,故A正确;若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,物块滑上传送带做匀减速直线运动,到达B点的速度大小一定等于6 m/s,故B正确;若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块先向右做匀加速运动,加速到4 m/s经历的位移x=v22a=422×1m=8 m<32 m,之后随皮带一起做匀速运动,C错误;若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,若铁块一直向右做匀加速运动,铁块到达B 处的速度:v B=2aL=2×1×32 m/s=8 m/s<10 m/s,则铁块到达B处的速度为8 m/s,故D正确.三、非选择题13.公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s.当汽车在晴天干燥沥青路面上以108 km/h的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.解析:设路面干燥时,汽车与地面间的动摩擦因数为μ0,刹车时汽车的加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得μ0mg =ma 0①s =v 0t 0+v 202a 0②式中,m 和v 0分别为汽车的质量和刹车前的速度.设在雨天行驶时,汽车与地面间的动摩擦因数为μ,依题意有μ=25μ0③设在雨天行驶时汽车刹车的加速度大小为a ,安全行驶的最大速度为v ,由牛顿第二定律和运动学公式得μmg =ma ④s =v t 0+v 22a⑤联立①②③④⑤式并代入题给数据得 v =20 m/s(72 km/h). ☆答案☆:20 m/s14.(2019·宁波高一检测)风洞实验室中可产生方向、大小都可以调节控制的各种风力.如图所示为某风洞里模拟做实验的示意图.一质量为1 kg 的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°.现小球在F =20 N 的竖直向上的风力作用下,从A 点静止出发沿直杆向上运动,已知杆与球间的动摩擦因数μ=36.试求: (1)小球运动的加速度a 1;(2)若风力F 作用1.2 s 后撤去,求小球上滑过程中距A 点的最大距离x m ;(3)在上一问的基础上若从撤去风力F 开始计时,小球经多长时间将经过距A 点上方为2.25 m 的B 点.解析:(1)在力F 作用时有:(F -mg )sin 30°-μ(F -mg )cos 30°=ma 1, 解得a 1=2.5 m/s 2.(2)刚撤去F 时,小球的速度v 1=a 1t 1=3 m/s 小球的位移x 1=v 12t 1=1.8 m.撤去力F 后,小球上滑时有:mg sin 30°+μmg cos 30°=ma 2,a 2=7.5 m/s 2. 因此小球上滑时间t 2=v 1a 2=0.4 s.上滑位移x 2=v 12t 2=0.6 m.则小球上滑的最大距离为x m =x 1+x 2=2.4 m. (3)在上滑阶段通过B 点: x AB -x 1=v 1t 3-12a 2t 23.经过B 点时的时间为t 3=0.2 s ,另t 3=0.6 s(舍去) 小球返回时有:mg sin 30°-μmg cos 30°=ma 3,a 3=2.5 m/s 2. 因此小球由顶端返回B 点时有: x m -x AB =12a 3t 24,t 4=35 s. 经过B 点时的时间为t 2+t 4=2+35s ≈0.75 s. ☆答案☆:(1)2.5 m/s 2 (2)2.4 m (3)0.2 s 和0.75 s。

物理:4.6《用牛顿运动定律解决问题(一)》(人教版必修一)

物理:4.6《用牛顿运动定律解决问题(一)》(人教版必修一)
N f
O
F
G
思考:如果物体与地面的动摩擦因数为 , 思考 如果物体与地面的动摩擦因数为0.2, 如果物体与地面的动摩擦因数为 其他条件不变。其结果如何? 其他条件不变。其结果如何?
一、 从受力确定运动情况
已知物体受力情况确定运动情况, 已知物体受力情况确定运动情况,指 的是在受力情况已知的条件下, 的是在受力情况已知的条件下,要求判断 出物体的运动状态或求出物体的速度、 出物体的运动状态或求出物体的速度、位 移等。 移等。 处理这类问题的基本思路是: 处理这类问题的基本思路是:先分 析物体受力情况求合力 求合力, 析物体受力情况求合力,据牛顿第二定律 求加速度,再用运动学公式求所求量 求加速度,再用运动学公式求所求量(运 动学量) 动学量)。
解:物体受力如图 由图知:F合=F-f=ma − f 6.4 − 4.2 = = 1.1m / s 2 m 2
G
vt = v0 + at = 0 + 1.1× 4 = 4.4m / s
1 2 1 s = v0 t + at = × 1.1 × 4 2 = 8 .8 m 4s内的位移 内的位移 2 2
【练习2】用弹簧秤拉着一个物体在水平面 练习2 上做匀速运动, 弹簧秤的示数是0.40N. 然后 上做匀速运动 弹簧秤的示数是 用弹簧秤拉着这个物体在水平面上做匀变 速运动, 测得加速度是 速运动 测得加速度是0.85 m/s2, 弹簧秤的 示数是2.10N。这个物体的质量是多大? 。这个物体的质量是多大 示数是
【答案】µ=0.48 答案】
θ
练习: 练习:
蹦床是运动员在一张绷紧的弹性网上蹦 翻滚并做各种空中动作的运动项目, 跳、翻滚并做各种空中动作的运动项目, 一个质量为60kg的运动员,从离水平网面 的运动员, 一个质量为 的运动员 3.2m高处自由下落,着网后沿竖直方向蹦 m高处自由下落, 回到离水平网面5.0m高处。 回到离水平网面 m高处。已知运动员与 网接触的时间为1.2s, s,若把在这段时间内 网接触的时间为 s,若把在这段时间内 网对运动员的作用力当作恒力处理, 网对运动员的作用力当作恒力处理,求此 力的大小( 取 力的大小(g取10m/s2)。 F = 1.5×103N ×

高一物理必修一人教版4.6用牛顿运动定律解决问题(一)

高一物理必修一人教版4.6用牛顿运动定律解决问题(一)

(3)选择正方向并建立直角坐标系,由牛顿第二定律及运动学
规律列方程。 (4)计算,求解未知量。
【典例2】(2012·郑州高一检测)质量为2 kg的物体置于水平
地面上,用10 N的水平拉力使它从静止开始运动,第3 s末物 体的速度达到6 m/s,求: (1)物体在运动过程中的加速度的大小。 (2)物体在运动过程中受到的地面摩擦力。
(4)根据牛顿第二定律列方程,求出物体的加速度; (5)找出题中给出的初始条件,选择合适的运动学公式,求出
所需的运动参量。
【知识点拨】 受力分析的一般步骤 (1)明确研究对象,即对谁进行受力分析。 (2)把要研究的物体从周围物体中隔离出来。
(3)按顺序分析受力情况,画出力的示意图,其顺序为:重力、
(3)由运动学公式求速度。
【解析】取木箱为研究对象,木箱受力情况如图所示,其中 F 为推力,mg为重力,FN为支持力,Ff为滑动摩擦力。建立直角 坐标系xOy,并取加速度a的方向为x轴的正方向。 y FN Ff Fx F O Fy mg
30°
x
(1)将推力F沿x轴和y轴两个方向进行分解得: Fx=Fcos30°,Fy=Fsin30° 根据牛顿第二定律有Fcos30°-Ff=ma FN-Fsin30°-mg=0,又有Ff=μFN
【知识点拨】
加速度a是联系力和运动的桥梁
(1)牛顿第二定律公式(F=ma)和运动学公式(匀变速直线运动公 式v=v0+at,x=v0t+at2/2,v2-v02=2ax等)中,均有一个共同的物 理量——加速度a。 (2)由物体的受力情况,用牛顿第二定律可求加速度,再由运
动学公式便可确定物体的运动状态及其变化;反过来,由物体
(4)物体运动状态的变化情况是由它的受力决定的,不是由它 对其他物体的施力决定。( )

高中必刷题 物理必修1 第四章 牛顿运动定律 第6节 用牛顿运动定律解决问题(一)整体法和隔离法临界问题

高中必刷题 物理必修1 第四章  牛顿运动定律 第6节  用牛顿运动定律解决问题(一)整体法和隔离法临界问题

课时3 连接体问题(整体法和隔离法)、临界问题刷基础题型1 连接体问题(整体法和隔离法)1.[河北保定唐县一中2019高一上月考](多选)如图所示,在光滑的桌面.上有质量分别为m 和M 的A 、B 两个物块,现用水平方向的力F 推物块A ,使A 、B 两物块在桌面上一起向右加速,则A 、B 间的相互作用力为 ( )A .若桌面光滑,作用力为MFM m+ B .若桌面光滑,作用力为mFM m+ C .若A 、B 与桌面间的动摩擦因数均为μ,A 、B 仍向右加速,则A 、B 间的相互作用力为MFMg M mμ++ D .若A 、B 与桌面间的动摩擦因数均为μ,A 、B 仍向右加速,则A 、B 间的相互作用力为MFM m+ 2.如图甲所示,当A 、B 两物块放在光滑的水平面上时,用水平恒力F 作用于A 的左端,使A 、B 一起向右做匀加速直线运动时的加速度大小为1a ,A 、B 间的相互作用力的大小为1N .如图乙所示,当A 、B 两物块放在固定光滑斜面上时,在恒力F 作用下,使A 、B 一起沿斜面向上做匀加速直线运动时的加速度大小为2a ,A 、B 间的相互作用力大小为2N ,则有关1a 、2a 和1N 、2N 的关系正确的是( )A .12a a >,12N N >B .12a a >,12N N <C .12a a =,12N N =D .12a a >,12N N =3.如图所示,楔形物体沿固定斜面加速下滑(楔形物体上表面水平),甲图中在楔形物体上再放上一个小物块,乙图中在楔形物体上施加一个竖直向下的力F ,则下列关于楔形物体运动情况的说法中正确的是 ( )A .甲图中楔形物体的加速度增大,乙图中楔形物体的加速度增大B .甲图中楔形物体的加速度增大,乙图中楔形物体的加速度不变C .甲图中楔形物体的加速度不变,乙图中楔形物体的加速度增大D .甲图中楔形物体的加速度不变,乙图中楔形物体的加速度不变4.如图所示,体积相同的两个小球A 和B 用1m 长的细线相连,A 的质量为m=1kg ,B 的质量为A 的质量的2倍.将它们都浸入水中后恰能处于静止状态(设水足够深,g 取10m/s 2).求:(1)此时细线的张力大小;(2)若细线被剪断,经时间2s 后两球相距多远?题型2 临界问题5.(多选)如图所示,A 、B 两物块叠在一起静止在水平地面上,A 物块的质量2kg A m =,B 物块的质量3kg B m =,A 与B 接触面间的动摩擦因数10.4μ=,B 与地面间的动摩擦因数20.1μ=,现对A 或对B 施加一水平外力F ,使A 、B 相对静止一起沿水平地面运动,重力加速度g 取10m/s 2,物块受到的最大静摩擦力等于滑动摩擦力.下列说法正确的是 ( )A .若外力F 作用到物块A 时,则其最小值为8NB .若外力F 作用到物块A 时,则其最大值为10NC .若外力F 作用到物块B 时,则其最小值为13ND .若外力F 作用到物块B 时,则其最大值为25N6.[四川绵阳2019高一上期末]如图所示,细线的一端固定在倾角为45°的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球.则( )A .当滑块向左做匀速运动时,细线的拉力为0.5mgB .当滑块以加速度a=g 向左加速运动时,小球对滑块压力为零C .当滑块以加速度a=g 向左加速运动时,细线中拉力为mgD .当滑块以加速度a=2g 向左加速运动时,细线中拉力为2mg 7.[重庆一中2019高一上期末](多选)如图所示,平行于光滑斜面的轻弹簧劲度系数为k ,一端固定在倾角为θ=30°的斜面底端,另一端与物块A 连接,两物块A 、B 质量均为m ,初始时均静止.现用平行于斜面向上大小等于2mg的恒力F 拉物块B ,使B 沿斜面向上缓慢运动,直到B 与A 开始分离.下列说法正确的是 ( ) A .静止时弹簧的压缩量为mgkB .从开始运动到B 与A 刚分离的过程中,B 沿斜面滑动的距离为2mgkC .从开始运动到B 与A 刚分离的过程中,B 物块的速度先增大后减小D .从开始运动到B 与A 刚分离的过程中,B 物块的加速度一直减小 刷提升1.[湖北荆州中学、宜昌一中等四地七校考试联盟2019高三上期末]如图所示,光滑的水平地面上有两块材料完全相同的木块A 、B ,质量均为m ,A 、B 之间用轻质细绳水平连接.现沿细绳所在直线施加一水平恒力F 作用在A 上,A 、B 开始一起做匀加速运动,在运动过程中把和木块A 、B 完全相同的木块C 放在某一木块上面,系统仍加速运动,且始终没有相对滑动,则在放上C 并达到稳定后,下列说法正确的是 ( )A .若C 放在A 上面,绳上拉力不变B .若C 放在B 上面,绳上拉力为2F C .C 放在B 上,B 、C 间摩擦力为3F D .C 放在A 上比放在B 上运动时的加速度大2.(多选)如图所示,小球A 、B 的质量相等,A 球光滑,B 球与斜面间的动摩擦因数0.5tan μθ=,中间用一根弹簧连接,弹簧的质量不计,斜面足够长,倾角为θ,将A 、B 和弹簧组成的系统放到斜面上,并让弹簧处于原长时由静止释放,弹簧轴线平行于斜面,下列说法正确的是 ( )A .刚开始释放时A 、B 两球的加速度大小均为sin g θB .刚开始释放时A 、B 两球的加速度大小分别为sin g θ、0.5sin g θC .A 球的加速度为零时,B 球的加速度大小为1.5sin g θD .A 、B 球的加速度第一次相等时,弹簧第一次最短 3.[江西九江一中2018高一上月考](多选)如图,在光滑水平面上放着紧靠在一起的A 、B 两物体,B 的质量是A 的2倍,B 受到向右的恒力2N B F =,A 受到的水平力92A F t =-(N )(t 的单位是s ).从t=0时刻开始计时,则( )A .A 物体3s 末时的加速度大小是初始时的511B .4s 后,B 物体做匀加速直线运动C .4.5s 时,A 物体的速度为零D .4.5s 后,A 、B 的加速度方向相同4.如图所示,一块质量m=2kg 的木块放置在质量M=6kg 、倾角θ=37°的粗糙斜面体上,木块与斜面体间的动摩擦因数μ=0.8,二者静止在光滑水平面上.现对斜面体施加一个水平向左的作用力F ,若要保证木块和斜面体不发生相对滑动,求F 的大小范围.(设最大静摩擦力等于滑动摩擦力,g 取10m/s 2)5.如图所示,质量为m=2kg 的物块放在一固定斜面上,斜面长L=11m ,当斜面倾角为37°时物块恰能沿斜面匀速下滑.现对物块施加一大小为F=100N 的水平向右的恒力,可使物块从斜面底端由静止开始向上滑行(已知sin37°=0.6,cos37°=0.8,g 取10m/s 2),求:(1)物块在力F 作用下从斜面底端运动到顶端所需的时间; (2)若要在力F 作用下保证物块可以从斜面底端运动到顶端,则该力作用的最短时间;(3)设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角0θ时,不论水平恒力F 多大,都不能使物块沿斜面向上滑行,试求这一临界角0θ的大小(可用三角函数表示).刷素养6.[北京市东城区2019高一上期末]如图所示,停放在水平冰面上的冰车由质量为M 、倾角为θ的斜面体改装而成,在斜面体上轻放一质量为m 的物块,不计物块与斜面、冰车与冰面之间的摩擦.(1)释放物块后,在物块沿斜面向下运动的同时,冰车也在水平冰面上运动请画出冰车受力的示意图,并根据示意图说明冰车由静止变为运动的原因(作图时冰车可视为质点).(2)若冰面上的人在车后方用水平方向的力推车,请分析下列两种可能情况:①当力的大小为1F 时,物块在斜面上滑动的同时冰车在冰面上保持静止,求1F 和物块加速度的大小1a ;①当力的大小为2F 时,物块和斜面保持相对静止一起加速运动,求2F 和物块加速度的大小2a .(3)第(1)问和第(2)问①所述的两种情况下,小物块对斜面压力的大小不同,分别记为N1F 和N2F ,请对N1F 和N2F 的大小关系作出猜想,并说明作出该种猜想的理由.。

新课程人教版高中物理必修1课后习题答案(安徽高考)

新课程人教版高中物理必修1课后习题答案(安徽高考)

人教版高中物理Ⅰ课后习题答案第一章:运动的描述第1节:质点 参考系和坐标系1、“一江春水向东流”是水相对地面(岸)的运动,“地球的公转”是说地球相对太阳的运动,“钟表时、分、秒针都在运动”是说时、分、秒针相对钟表表面的运动,“太阳东升西落”是太阳相对地面的运动。

2、诗中描写船的运动,前两句诗写景,诗人在船上,卧看云动是以船为参考系。

云与我俱东是说以两岸为参考系,云与船均向东运动,可认为云相对船不动。

3、x A =-0.44 m ,x B =0.36 m 第2节:时间和位移1.A .8点42分指时刻,8分钟指一段时间。

B .“早”指时刻,“等了很久”指一段时间。

C .“前3秒钟”、“最后3秒钟”、“第3秒钟”指一段时间,“3秒末”指时刻。

2.公里指的是路程,汽车的行驶路线一般不是直线。

3.(1)路程是100 m ,位移大小是100 m 。

(2)路程是800 m ,对起跑点和终点相同的运动员,位移大小为0;其他运动员起跑点各不相同而终点相同,他们的位移大小、方向也不同。

第3节:运动快慢的描述——速度1.(1)1光年=365×24×3600×3.0×108m=9.5×1015m 。

(2)需要时间为16154.010 4.29.510⨯=⨯年2.(1)前1 s 平均速度v 1=9 m/s前2 s 平均速度v 2=8 m/s 前3 s 平均速度v 3=7 m/s 前4 s 平均速度v 4=6 m/s 全程的平均速度 v 5=5 m/sv 1最接近汽车关闭油门时的瞬时速度, v 1小于关闭油门时的瞬时速度。

(2)1 m/s ,03.(1)24.9 m/s ,(2)36.6 m/s ,(3)0第4节:实验:用打点计时器测速度1.电磁打点记时器引起的误差较大。

因为电磁打点记时器打点瞬时要阻碍纸带的运动。

2.(1)纸带左端与重物相连。

(2)A 点和右方邻近一点的距离Δx =7.0×10-3 m ,时间Δt=0.02 s ,Δt 很小,可以认为A 点速度v =x t∆∆=0.35 m/s3.解(1)甲物体有一定的初速度,乙物体初速度为0。

人教版物理必修1第四章6:用牛顿运动定律解决问题(一)有答案

人教版物理必修1第四章6:用牛顿运动定律解决问题(一)有答案

人教版物理必修1第四章6:用牛顿运动定律解决问题(一)一、多选题。

1. 在水平地面上,A、B两物体叠放如图所示,在水平力F的作用下一起匀速运动,若将水平力F作用在A上,两物体可能发生的情况是()A.A、B一起匀速运动B.A加速运动,B匀速运动C.A加速运动,B静止D.A与B一起加速运动2. 如图所示,表示某小球所受的合力与时间关系,各段的合力大小相同,作用时间相同,设小球从静止开始运动,由此可以判定()A.小球向前运动,再返回停止B.小球向前运动,再返回不会停止C.小球始终向前运动D.小球在4秒末速度为0二、选择题。

如图甲所示,一质量为M的木板静止在光滑水平地面上,现有一质量为m的小滑块以一定的初速度v0从木板的左端开始向木板的右端滑行,滑块和木板的水平速度大小随时间变化的情况如图乙所示,根据图像作出如下判断,不正确的是()A.滑块始终与木板存在相对运动B.滑块未能滑出木板C.滑块的质量m大于木板的质量MD.在t1时刻滑块从木板上滑出一小球从空中由静止下落,已知下落过程中小球所受阻力与速度的平方成正比,设小球离地足够高,则()A.小球先加速后匀速B.小球一直在做加速运动C.小球在做减速运动D.小球先加速后减速在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10m/s2,不计空气阻力.则汽车刹车前的速度为()A.7m/sB.14m/sC.10m/sD.20m/s在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带.假定乘客质量为70kg,汽车车速为90km/ℎ,从踩下刹车到车完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)()A.450NB.400NC.350ND.300N三、解答题。

4.6 用牛顿运动定律解决问题(一) 学案(定稿)

4.6 用牛顿运动定律解决问题(一) 学案(定稿)

4.6 用牛顿运动定律解决问题(一)1.牛顿第二定律给出了加速度与力、质量之间的定量关系:____________.因此,我们在已知受力的情况下可以结合________________,解决有关物体运动状态变化的问题;我们也可以在已知物体运动状态发生变化的情况下,运用运动学公式求出物体的__________,再结合牛顿第二定律确定物体的受力情况.2.受力分析的一般顺序:先________,再______,最后____________.受力分析的方法有____________和____________.3.第一类基本问题已知物体的__________________,求解物体的________________.求解此类题的思路是:已知物体的受力情况,根据____________________,求出物体的____________,再由物体的初始条件,根据________________求出未知量(速度、位移、时间等),从而确定物体的运动情况.4.第二类基本问题已知物体的__________________,求出物体的________________.求解此类题的思路是:根据物体的运动情况,利用________________求出____________,再根据________________就可以确定物体________________,从而求得未知的力,或与力相关的某些量,如动摩擦因数、劲度系数、力的角度等.5.分析和解决这类问题的关键对物体进行正确的受力分析和运动情况分析,并抓住受力情况和运动情况之间联系的桥梁—— .一、从受力确定运动情况 解题思路 分析物体受力⇒求物体的合力⇒由a =F m求加速度⇒利用运动学公式⇒求运动学量 例1 静止在水平面上的物体质量为400 g ,物体与水平面间的动摩擦因数为0.5,在4 N 的水平拉力作用下,物体从静止开始运动,求出4 s 内物体的位移和4 s 末物体的速度.(g 取10 m/s 2)讨论交流1.从以上的解题过程中,总结一下运用牛顿定律解决由受力情况确定运动情况的一般步骤.2.受力情况和运动情况的链接点是牛顿第二定律,在运用过程中应注意哪些问题?变式训练1 如图所示,质量m =4 kg 的物体与地面间的动摩擦因数为μ=0.5,在与水平方向成θ=37°角的恒力F 作用下,从静止起向右前进t 1=2.0 s 后撤去F ,又经过t 2=4.0 s 物体刚好停下.求:F 的大小、最大速度v m 、总位移x .二、从运动情况确定受力解题思路 分析运动情况⇒利用运动学公式求a ⇒由F =ma 求合力⇒求其他力例2 质量为2.75 t 的载重汽车,在2.9×103 N 的牵引力作用下由静止匀加速开上一个山坡,沿山坡每前进100 m ,升高5 m .汽车由静止开始前进100 m 时,速度达到36 km/h ,求汽车在前进中所受摩擦力的大小.(g 取10 m/s 2)变式训练2 一个物体的质量m =0.4 kg ,以初速度v 0=30 m/s 竖直向上抛出,经过t =2.5 s 物体上升到最高点.已知物体上升过程中所受到的空气阻力大小恒定,求物体上升过程中所受空气阻力的大小是多少?例3 如图所示,光滑地面上,水平力F 拉动小车和木块一起做匀加速运动,小车的质量为M ,木块的质量为m .设加速度大小为a ,木块与小车之间的动摩擦因数为μ,则在这个过程中木块受到的摩擦力大小是( )A .μmgB .maC.m M +mF D .F -Ma【效果评估】1.如图所示,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.在某一段时间内小球与小车相对静止,且弹簧处于压缩状态,若忽略小球与小车间的摩擦力.则在这段时间内小车可能是( )A .向右做加速运动B .向右做减速运动C .向左做加速运动D .向左做减速运动2.两辆汽车在同一水平路面上行驶,它们的质量之比m 1∶m 2=1∶2,速度之比v 1∶v 2=2∶1.当两车急刹车后,甲车滑行的最大距离为s 1,乙车滑行的最大距离为s 2.设两车与路面间的动摩擦因数相等,不计空气阻力,则( )A .s 1∶s 2=1∶2B .s 1∶s 2=1∶1C .s 1∶s 2=2∶1D .s 1∶s 2=4∶13.如图所示,车沿水平地面做直线运动,车厢内悬挂在车顶上的小球与悬点的连线与竖直方向的夹角为θ,放在车厢底板上的物体A 与车厢相对静止.A 的质量为m ,则A受到的摩擦力的大小和方向分别是( )A .mg sin θ,向右B .mg tan θ,向右C .mg cos θ,向左D .mg tan θ,向左4.如图所示,静止的粗糙传送带上有一木块M 正以速度v 匀速下滑,滑到传送带正中央时,传送带开始以速度v 匀速斜向上运动.则木块从A 滑到B 所需的时间与传送带始终静止不动时木块从A 滑到B 所用的时间比较( )A .两种情况相同B .前者慢C.前者快D.不能确定5.如图所示,质量m=2 kg的物体静止在水平地面上,物体与水平面间的滑动摩擦力大小等于它们间弹力的0.25倍,现对物体施加一个大小F=8 N、与水平方向夹角θ=37°角的斜向上的拉力,已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2.求:(1)物体在拉力作用下5 s末的速度;(2)物体在拉力作用下5 s内通过的位移.参考答案课前自主学习1.a =F m运动学公式 加速度 2.重力 弹力 摩擦力 整体法 隔离法3.受力情况 运动情况 牛顿第二定律 加速度 运动学规律4.运动情况 受力情况 运动学公式 加速度 牛顿第二定律 所受的力5.加速度解题方法探究一、例1 40 m 20 m/s解析 设物体的质量为m ,水平拉力为F ,地面对物体的支持力,摩擦力分别为F N 、F f .对物体受力分析如图所示,由牛顿第二定律可得F 合=F -F f =ma ,由于F f =μF N ,F N =mg 得a =F -μmg m. 再由运动学公式得x =12at 2=12F -μmg m ·t 2=12×4-0.5×0.4×100.4×42 m =40 m. v =at =F -μmg m ·t =4-0.5×0.4×100.4×4 m/s =20 m/s. 讨论交流1.运用牛顿定律解决由受力情况确定物体的运动情况大致分为以下步骤:(1)确定研究对象.(2)对确定的研究对象进行受力分析,画出物体的受力示意图.(3)建立直角坐标系,在相互垂直的方向上分别应用牛顿第二定律列式F x =ma x ,F y =ma y .求得物体运动的加速度.(4)应用运动学的公式求解物体的运动学量.2.受力分析的过程中要按照一定的步骤以避免“添力”或“漏力”.一般是先场力,再接触力,最后是其他力,即一重、二弹、三摩擦、四其他.再者每一个力都会独立地产生一个加速度.但是解题过程中往往应用的是合外力所产生的合加速度.再就是牛顿第二定律是一矢量定律,要注意正方向的选择和直角坐标系的应用.变式训练1 54.5 N 20 m/s 60 m二、例2 150 N解析 设斜坡的倾角为θ,以汽车为研究对象,受力如图所示.已知汽车的质量m =2.75 t =2 750 kg ,初速度v 0=0,末速度v =36 km/h =10 m/s.匀加速运动的位移x =100 m ,根据运动学公式v 2-v 20=2ax ,得a =v 2-v 202x =102-02×100m/s 2=0.5 m/s 2. 由牛顿第二定律知,沿斜面方向有F -F f -mg sin θ=ma .其中sin θ=5100. 所以F f =F -mg sin θ-ma =[2 900-2 750×(10×5100+0.5)] N =150 N. 变式训练2 0.88 N例3 BCD [两者无相对运动,它们之间的摩擦力只能是静摩擦力,因而滑动摩擦力公式F f =μmg 就不再适用,A 选项错误;以m 为研究对象,则静摩擦力产生其运动的加速度a =F 静m,再由牛顿第三定律可知B 选项正确;以M 为研究对象,F -F 静=Ma ,F 静=F -Ma ,D 选项也正确;以整体为研究对象,则a =F M +m,再代入F静=ma可得F静=mFM+m.故C选项也正确.]效果评估1.AD 2.D 3.B 4.A 5.(1)6.5 m/s(2)16.25 m。

必修教材1第三章第6课时教案:用牛顿运动定律解决问题(一)

必修教材1第三章第6课时教案:用牛顿运动定律解决问题(一)

§4-6 用牛顿运动定律解决问题教学内容:牛顿第二定律应用教学目标:1、进一步灵活运用牛顿第二定律解题;2、学会归纳分析和总结知识,培养归纳能力;教学方法: 分析法教学难点:牛顿第二定律的运用 教学过程:引入:分析总结前面的知识,建立知识体系,如下图:几种基本题型:一、已知物体受力情况,求物体运动情况【例1】(教材P 85)一个静止在水平面上的物体,质量是2kg ,在6.4N的水平拉力作用下沿水平地面向右运动,物体与水平地面间的滑动摩擦力是4.2N ,求物体在4s 内发生的位移。

分析:已知物体的受力情况,求物体的运动有关量,通常需要先求F ,然后由牛顿第二定律求加速度a ,再过渡到运动学中来。

已知F=6.4N ,m=2kg ,f=4.2N ,t=4s ,求:S=?解:以物体为研究对象,受力分析如图所示,建立坐标。

由牛顿第二定律得:F-f=ma ,得a=F-f m =6.4-4.22 m/s 2=1.1m/s 2 →过桥再由运动学公式得:v t =at=1.1×4m/s=4.4m/s S=12at 2 =8.8m 讨论:如果物体在8s 内的位移是128m ,物体质量为2kg ,物体与地面间的动摩擦因数为μ=0.2,则物体所受水平拉力多大?分析:这里已知物体的运动情况,求物体受力的有关量。

通常先由运动学公式求加速度a ,再由牛顿第二定律求合外力,从而过渡到力学中来。

已知:m=2kg ,μ=0.2,t=8s ,S=100m ,求F=?解:由运动学公式S=12at 2 得:a=2S t 2 =2×12864m/s 2=4m/s 2→过桥再分析物体受力,如图所示,由牛顿第二定律得: F-f=ma ;N=mg ;f=μN由以上三式解得:F=μmg+ma=0.2×20N+2×4N=12N怎样求加速度 (1)a=v t -v 0t ;(2)v t =v 0+at ; (3)s=v 0t+12at 2 ;(4)v t 2-v 02=2as怎样求合力(1)G 、N 、f 等; (2)分析受力;(3)(4)力的平衡∑F=0 (5)力的正交分解法小结:用牛顿第二定律解题基本思路 ①确定研究对象;②分析对象受力情况,求出合外力; ③由牛顿第二定律列式; ④求解并检验。

高一物理必修一人教版分层达标·训练4.6用牛顿运动定律解决问题(一)

高一物理必修一人教版分层达标·训练4.6用牛顿运动定律解决问题(一)

高一物理必修一人教版4.6用牛顿运动定律解决问题(一)分层达标·训练【基础达标】1.用30 N的水平外力F拉一个静止在光滑水平面上的质量为20 kg的物体,力F作用3 s后消失。

则第5 s末物体的速度和加速度分别是( )A.v=4.5 m/s,a=1.5 m/s2B.v=7.5 m/s,a=1.5 m/s2C.v=4.5 m/s,a=0D.v=7.5 m/s,a=02.一个原来静止在光滑水平面上的物体,质量是7 kg,在14 N的水平恒力作用下,则 5 s末的速度及5 s内的位移为( )A.8 m/s 25 m B.2 m/s 25 mC.10 m/s 25 m D.10 m/s 12.5 m3.一个物体在水平恒力F的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t,速度变为v,如果要使物体的速度变为2v,下列方法正确的是( ) A.将水平恒力增加到2F,其他条件不变B.将物体质量减小一半,其他条件不变C.物体质量不变,水平恒力和作用时间都增为原来的两倍D.将时间增加到原来的2倍,其他条件不变4.A、B两物体以相同的初速度滑到同一粗糙水平面上,若两物体的质量m A>m B,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A与x B 相比为( )A.x A=x BB.x A>x BC.x A<x BD.不能确定5.(2012·天门高一检测)如图所示,小车运动时,看到摆球悬线与竖直方向成θ角并与小车保持相对静止,则下列说法中正确的是( )A.小车可能向右加速运动,加速度为gsinθB.小车可能向右减速运动,加速度为gtanθC.小车可能向左加速运动,加速度为gtanθD.小车可能向左减速运动,加速度为gtanθ6.(2012·衡水高一检测)固定光滑细杆与地面成一定倾角α,在杆上套有一个光滑小环,小环在沿杆方向的推力F作用下沿杆向上运动,推力F与小环速度v 随时间变化规律如图所示,取重力加速度g=10 m/s2.求:(1)小环的质量m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:由于两个力的大小相等其合力必然沿角平分线方向,所以以合 由于两个力的大小相等其合力必然沿角平分线方向, 力的方向为x轴建立坐标系 力的方向为 轴建立坐标系 轴和y轴分解 把F1和F2沿x轴和 轴分解,他们的分力为 轴和 轴分解, F1x=F1×cos30° F1y=F1×sin30° ° ° F2x=F2×cos30° F2y=F2×sin30° ° ° F1和F2在y轴方向的两个分力大小相等方向相反作用抵消,它们在 轴方向的两个分力大小相等方向相反作用抵消, 轴方向的两个分力大小相等方向相反作用抵消 它们在x 轴方向的分力方向相同所以F1x和F1x的合力就是 和F2的合力, 的合力就是F1和 的合力 的合力, 轴方向的分力方向相同所以 和 的合力就是 即 F合=F1x+F2x=F1cos60°+F2cos60° ° ° =87N 由F=ma得 加速度 得 加速度a=F合/m=87÷2m/s2=43.5m/s2 ÷ V=v0+at=43.5×3m/s=131m/s × X=vot+½at 2=½43.5×32m=196m ×
2 2
FN Ff
G
ν 0 = 10.21m / s = 36.8km / h > 30km / h
所以超速
F阻 FN
V
G
3、民航客机一般都有紧急出口,发生意外情况的飞 、民航客机一般都有紧急出口, 机紧急着陆后,打开紧急出口, 机紧急着陆后,打开紧急出口,狭长的气囊会自动 充气,生成一条连接出口与地面的斜面, 充气,生成一条连接出口与地面的斜面,人员可言 斜面滑行到地上。若机舱口下沿距地面3.2m,气囊 斜面滑行到地上。若机舱口下沿距地面 , 所构成的斜面长度为6.4m,一个质量 所构成的斜面长度为 ,一个质量60kg的人沿气 的人沿气 囊滑下时所受的阻力是240N,人滑至气囊底端时速 囊滑下时所受的阻力是 , 度有多大? 度有多大?
方法二: 方法二:用力的合成求合力
F1 F合=2F1×cos30°=2×50× 30° F合 =87N
3 2
F2
2、以15m/s的速度在水平路面行驶的无轨电 、 的速度在水平路面行驶的无轨电 在关闭发动机后,经过10s停了下来。电 停了下来。 车,在关闭发动机后,经过 停了下来 车的质量是4.0× 车的质量是 ×103kg,求电车所受的阻力。 ,求电车所受的阻力。 解析: 解析: 关闭发动机后,经过10s 10s停 关闭发动机后,经过10s停 v 了下来 FN
2
F阻 G
y
FN Gx
θ
G
Hale Waihona Puke 联立①、②、③式可得; mg sin θ − F阻 v= 2 x = 12.8m / s m
4、在某城市的一条水平道路上,规定车辆行驶速度不得超过30km/h。在一次交 通事故中,肇事车是一辆卡车,量的这辆卡车紧急刹车(车轮被抱死)时留下的 刹车痕迹长为7.6m。经过测试这种轮胎与路面的动摩擦因数为0.7,请判断该车 是否超速? 学习指导一
1、选
为研究对象,受几个力?合力是多少?
2、根据什么定律求解加速度a? 3、卡车做什么运动?根据哪个公式求解卡车的初 速度v。? 4、如何判断是否超速?
4、解: 对卡车受力分析,如图所示, G = FN ..............① 根据牛顿第二定律得 Ff = ma.............② 又Ff = µFN ........③ 联立①②③得a = 7m / s 2 卡车做匀减速运动,向右正方向, 由ν -ν 0 = 2aχ得
G
G x − F 阻 = mg sin θ − F 阻 = ma
第三步: 第三步: 根据运动学规律列出相应运动阶段的方 程式。 程式。
v − v0 = 2 ax
2 2
第四步: 第四步: 联立求解方程组
mg sin θ − F阻 v= 2 x = 12.8m / s m
y
解:选取人为研究对象,受力分析如图所示 x Gx sin θ = ⇒ Gx = Gsinθ = mg sin θ ...........① G 根据牛顿第二定律可得; G x - F阻 = ma................................................② 根据运动学规律可得; v 2 − v0 = 2ax.............................................③
由于阻力作用,电车的速度在 由于阻力作用, 10s内由15m/s减到 内由15m/s减到0 10s内由15m/s减到0 可以求出: 可以求出: 加速度 还知道: 还知道: 质量
F阻 G
受力分析
F合 = ma
合外力
阻力
解:由题意可知: 关闭发动机后, 电车加速度的大小为: ∆v 15 a= = m / s 2 = 1.5m / s 2 ∆t 10 对电车进行受力分析可知: F合 =F阻 由F合 = ma得 F阻 =ma = 4.0 ×103 ×1.5 N = 6.0 ×103 N 所以电车所受的阻力为6.0 × 103 N
1.一个原来静止的物体,质量是2kg,受到两个 大小都是50N且互成60°角的力的作用,此外 没有其他的力。3s这个物体的速度是多大?3s 内物体发生的位移是多少?
y F1y F1=50N 30° F1x F2x F2y F2=50N x
自学指导: 1、请同学们先画出两个力 然后用正交分解或者平行四 边形定则求出力F1和F2的合 力。 2、根据牛顿第二定律F=ma 求物体的加速度a 3、根据运动学公式v=v0+at x=v0t+½at 2求出速度大小和 位移
第一步: 第一步:
6.4m 对物体进行受力分析 , 对物体进行 受力分析, 画出受力分析 受力分析 3.2m 并判断物体运动情况。 图;并判断物体运动情况。
θ
y
FN F阻 Gx Gy
θ
Gx sin θ = G x ⇒ G x = G sin θ
第二步: 第二步: 根据牛顿第二定律列出相应运动阶段 的方程式。 的方程式。
相关文档
最新文档