第五章统计量及其分布复习自测题

合集下载

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案

(2)上班所需时间在半小时以内有 25 + 60 + 85 = 170 人. 5. 40 种刊物的月发行量(单位:百册)如下: 5954 5022 14667 6582 6870 1840 2662 4508 1208 3852 618 3008 1268 1978 7963 2048 3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为 1700(百册) ; (2)画出直方图. 解: (1)最大观测值为 353,最小观测值为 14667,则组距为 d = 1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300, 频率分布表为 组序 1 2 3 4 5 6 7 8 9 合计 (2)作图略.
1091 1572 775 1044 738
3. 假若某地区 30 名 2000 年某专业毕业生实习期满后的月薪数据如下: 909 1086 1120 999 1320 1071 1081 1130 1336 967 825 914 992 1232 950 1203 1025 1096 808 1224 871 1164 971 950 866 (1)构造该批数据的频率分布表(分 6 组) ; (2)画出直方图. 解: (1)最大观测值为 1572,最小观测值为 738,则组距为 d =
样本的分布为 p ( x1 , x2 , L , xn ) = λ eλ x1 ⋅ λ eλ x2 L λ eλ xn = λ n e

统计量及其分布练习题答案

统计量及其分布练习题答案

统计量及其分布练习题答案一、选择题1. 以下哪个是描述集中趋势的统计量?A. 方差B. 标准差C. 平均数D. 众数答案:C2. 在正态分布中,数据的分布特征是什么?A. 数据对称分布,均值等于中位数B. 数据不对称分布C. 数据集中在均值附近D. 数据集中在众数附近答案:A3. 以下哪个统计量用于衡量数据的离散程度?A. 均值B. 众数C. 方差D. 标准差答案:C4. 标准差与方差之间的关系是什么?A. 标准差是方差的平方B. 方差是标准差的平方C. 标准差是方差的立方D. 方差是标准差的立方答案:B5. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 二项分布D. 均匀分布答案:C二、简答题1. 请简述正态分布的特点。

答案:正态分布是一种连续概率分布,其特点是数据分布呈对称的钟形曲线,均值、中位数和众数相等。

在正态分布中,约68%的数据位于均值±1个标准差的范围内,约95%的数据位于均值±2个标准差的范围内,几乎所有数据(99.7%)位于均值±3个标准差的范围内。

2. 什么是标准正态分布?答案:标准正态分布是一种特殊的正态分布,其均值为0,标准差为1。

它是一种标准化的正态分布,常用于转换原始数据,使其具有标准正态分布的特性,便于进行统计分析。

三、计算题1. 假设有一个样本数据集:2, 4, 6, 8, 10,计算其平均数和标准差。

答案:平均数 = (2+4+6+8+10)/5 = 6标准差 = sqrt(((2-6)^2 + (4-6)^2 + (6-6)^2 + (8-6)^2 + (10-6)^2) / 5) = sqrt(20) ≈ 4.472. 给定一组数据:10, 12, 14, 16, 18, 20,求其方差。

答案:首先计算平均数 = (10+12+14+16+18+20)/6 = 15然后计算方差 = ((10-15)^2 + (12-15)^2 + ... + (20-15)^2) / 6 = 11.67四、应用题1. 某班级学生的数学成绩呈正态分布,均值为80分,标准差为10分。

概率论与数理统计(茆诗松)课后第五章习题参考答案

概率论与数理统计(茆诗松)课后第五章习题参考答案

第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。

统计学第五章练习题

统计学第五章练习题

第五章 统计推断一、填空题5.1.1 设样本n X X X ,,,21 来自总体)69.1,(μN ,则检验假设35:=μo H 时,使用的检验量是 。

5.1.2 设n X X X ,,,21 是来自总体X 的一个样本,又设μ=)(X E ,2)(σ=X D ,则总体均值μ的无偏估计为 ;总体方差σ2的无偏估计为 。

5.1.3 若检验统计量的观测值落在拒绝域内,则应 。

5.1.4 设∑==n i i X n X 11为来自正态总体),(2σμN 的样本均值,μ未知,欲检验假设22:σσ=o H ,需要使用的检验统计量为 。

5.1.5 其他条件不变时,置信度越高,则置信区间就越 。

☆5.1.6 检验两个正态总体均值的假设21:μμ=o H ,(已知2221σσ=)时,使用的检验量为 ,拒绝域为 。

二、单项选择题(在每小题的3个备选答案中选出1个正确答案,并将其字母填在题干后面的括号内。

)5.2.1 对总体参数进行抽样估计的首要前提是必须 ( ) A .事先对总体进行初步分析 B .按随机原则抽取样本C .保证调查数据的准确性、及时性5.2.2 若其它条件相同,则下列诸检验的P 值中拒绝原假设理由最充分的是 ( ) A .2% B .10% C .25%5.2.3 某校有学生8000人,随即抽查100人,其中有20人对学生管理有意见,则该校学生中对学校后勤管理有意见的人数的点估计值为 ( )A .20%B .20C .16005.2.4 如果总体服从正态分布,但总体均值和方差未知,样本量为n ,则用于构造总体方差置信区间的随机变量的分布是 ( )A .()0,1NB .),(2σμN C .χ2(n-1)5.2.5 其他条件相同时,要使抽样误差减少1/4,样本量必须增加 ( ) A .1/4 B .4倍 C .7/95.2.6 影响区间估计质量的因素不包括 ( ) A. 置信度 B. 总体参数 C. 样本量5.2.7 某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P 应选 ( )A .85%B .87%C .90%5.2.8 设),(~2σμN X ,(n X X X ,,,21 )是X 的一个简单随机样本,则未知参数2σ的矩估计量为 ( )A .nX Xni i∑=-12)( B .∑=-ni iX X12)( C .1)(12--∑=n X Xni i三、多项选择题(在下列4个备选答案中,至少有二个是正确的,请将其全部选出,并把字母填在题干后面的括号内。

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。

从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。

2、样本均值与总体均值之间的差被称作____________。

3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。

4、某校大学生中,外国留学生占10%。

随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。

5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。

A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。

A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。

A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。

如果从中随机抽取30只灯泡进行检测,则样本均值( )。

A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。

A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。

A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。

统计量及其分布练习题答案

统计量及其分布练习题答案

统计量及其分布练习题答案统计量及其分布练习题答案统计学是一门研究数据收集、分析和解释的学科,统计量是统计学中的重要概念。

统计量是根据样本数据计算出来的数值,用于描述总体或样本的特征。

在统计学中,我们经常使用统计量来推断总体的特征,并进行假设检验。

下面是一些统计量及其分布的练习题及其答案,希望对你的学习有所帮助。

1. 设X1, X2, ..., Xn是来自总体X的一个样本,其均值为μ,方差为σ²。

证明样本均值X̄和样本方差S²是总体均值μ和总体方差σ²的无偏估计。

答案:首先,样本均值X̄的期望值为E(X̄) = μ。

这是因为样本均值是所有样本观测值的总和除以样本容量n,而总体均值μ是所有总体观测值的总和除以总体容量N。

由于样本是从总体中随机抽取的,每个样本观测值都有相同的机会被选中,所以样本均值的期望值等于总体均值。

其次,样本方差S²的期望值为E(S²) = σ²。

这是因为样本方差是每个样本观测值与样本均值之差的平方和的平均值。

由于样本是从总体中随机抽取的,每个样本观测值都有相同的机会被选中,所以样本方差的期望值等于总体方差。

综上所述,样本均值X̄和样本方差S²是总体均值μ和总体方差σ²的无偏估计。

2. 在一个制药公司的质量控制部门,每天从生产线上随机抽取10个药片进行检验,得到的药片重量(单位:克)如下:12.1, 11.9, 12.5, 12.3, 12.2, 12.0, 11.8, 12.4, 12.1, 12.3计算样本均值、样本方差和样本标准差。

答案:样本均值的计算公式为X̄ = (12.1 + 11.9 + 12.5 + 12.3 + 12.2 + 12.0 + 11.8 + 12.4 + 12.1 + 12.3) / 10 = 12.2克。

样本方差的计算公式为S² = [(12.1 - 12.2)² + (11.9 - 12.2)² + (12.5 - 12.2)² + (12.3 - 12.2)² + (12.2 - 12.2)² + (12.0 - 12.2)² + (11.8 - 12.2)² + (12.4 - 12.2)² + (12.1 - 12.2)² + (12.3 - 12.2)²] / (10 - 1) ≈ 0.032克²。

(概率论与数理统计 茆诗松) 第5章 统计量及其分布(5.4)

(概率论与数理统计 茆诗松) 第5章 统计量及其分布(5.4)

当随机变量 2 2(n) 时,对给定 (01), 称满足 P(2 12(n)) 的 12(n) 是自由度为 n1的卡方分布的 1 分位数. 分位数 12(n) 可以从附表3 中查到。
P{ X
2 1
(n)} ,
该密度函 数的图像 是一只取 非负值的 偏态分布
特别,若12 =22 ,则
F=sx2/sy2 F(m1,n1)
推论5.4.2 设 x1, x2,…, xn 是来自N(, 2) 的 样本,则有
n(x ) t ~ t (n 1) s
习题5.4:Q5
推论5.4.3
在推论5.4.1的记号下,设 12 =22 = 2 ,
前缀“p”
正态分布:pnorm(x,mean,sd)
t 分布: pt(x,df) 卡方分布:pchisq(x,df) F分布: pf(x,df1,df2)
Q13
Q5
R软件: 转换概率为分位数, 即:找到x值,使得P(X≤x)=p 前缀“q” 正态分布:qnorm(p,mean,sd)
5.4.4 一些重要结论
正态总体的抽样分布定理 设 x1, x2,…, xn 是来自N(, 2) 的样本
定理5.4.1 设 x1, x2,…, xn 是来自N(, 2) 的 样本,其样本均值和样本方差分别为 x = xi/n 和 s2= (xix)2/(n1) 则有 (1) x 与 s2 相互独立; (2) x N(, 2/n) ;
(3) (n1) s2/2 2(n1)。
习题5.4:Q1~Q3
推论5.4.1 设 x1, x2,…, xn 是来自N(1, 12) 的 样本,y1, y2,…, yn 是来自N(2, 22) 的样本, 且此两样本相互独立,则有

概率论与数理统计第五章测试题

概率论与数理统计第五章测试题

第5章 数理统计的一些基本概念一、选择题1.设随机变量X 服从n 个自由度的t 分布,定义t α满足P(X ≤t α)=1-α,0<α<1。

若已知 P(|X|>x)=b ,b>0,则x 等于(A )t 1-b (B ) t 1-b/2 (C )t b (D )t b/22.设n X X X ,...,,21是来自标准正态总体的简单随机样本,X 和S 2为样本均值和样本方差,则(A )X 服从标准正态分布 (B )∑=ni iX12服从自由度为n-1的χ2分布(C )X n 服从标准正态分布 (D )2)1(S n -服从自由度为n-1的χ2分布 3.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,X 为其均值,记∑=-=n i i X n S 1221)(1μ,∑=-=n i i X X n S 1222)(1,∑=--=n i i X n S 1223)(11μ, ∑=--=ni i X X n S 1224)(11,服从自由度为n-1的t 分布的随机变量是 (A )1/1--=n S X T μ (B )1/2--=n S X T μ(C )1/3--=n S X T μ (D )1/4--=n S X T μ4.设21,X X 是来自正态总体N(μ,σ2) 的简单随机样本,则21X X +与21X X -必 (A )不相关 (B )线性相关 (C )相关但非线性相关 (D )不独立 5.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,统计量2⎪⎪⎭⎫ ⎝⎛-=S X n Y μ,则 (A )Y~χ2(n-1) (B )Y~t(n-1) (C )Y~F(n-1,1) (D )Y~F(1,n-1) 6.设随机变量X~N(0,1),Y~N(0,2),且X 与Y 相互独立,则(A )223231Y X +服从χ2分布 (B )2)(31Y X +服从χ2分布 (C )222121Y X +服从χ2分布 (D )2)(21Y X +服从χ2分布7.设X , 1021,...,,X X X 是来自正态总体N(0,σ2) 的简单随机样本,∑==ni i X Y 122101,则 (A )X 2~χ2(1) (B )Y 2~χ2(10) (C )X/Y~t(10) (D )X 2/Y 2 ~F(10,1)8.设总体X 与Y 相互独立且都服从正态分布N(μ,σ2) ,X ,Y 分别为来自总体X,Y 的容量为n 的样本均值,则当n 固定时,概率)|(|σ>-Y X P 的值随σ的增大而 (A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定 9设随机变量X 和Y 都服从标准正态分布,则 (A )X+Y 服从正态分布 (B )22Y X+服从χ2分布(C )X 2和Y 2都服从χ2分布 (D )22/Y X 服从F 分布 填空题1.已知随机变量 X ,Y 的联合概率密度为)}4849(721exp{121),(22+-+-=y y x y x f π, 则22)1(49-Y X 服从参数为 的 分布。

概率论与数理统计第五章习题详解 (2)

概率论与数理统计第五章习题详解  (2)

习题五1 .已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.解: 据切比雪夫不等式{}221P X σμεε-<≥-{}241 2.51 2.5P X -<≥-925=.2.设随机变量X 的数学期望()E X μ=,方程2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.解:令3εσ=,则由切比雪夫不等式{}2()||3D X P X μσε-≥≤, 有{}221||3(3)9P X σμσσ-≥≤=.3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.解: 设X 为6颗骰子所出现的点数之和;i X 为第i 颗骰子出现的点数,1,2,,6i = ,则61ii X X==∑,且126,,...,X X X 独立同分布,分布律为:126111666⎛⎫ ⎪⎪ ⎪⎝⎭,于是6117()62i k E X k ==⋅=∑6221191()66i k E X k ==⋅=∑所以22()()()i i i D X E X E X =-914964=-3512=,1,2,,6i =因此 617()()6212ii E X E X===⨯=∑6135()()612i i D X D X ===⨯∑352=故由切比雪夫不等式得:{}{}|5271428P X P X ≤≤=<<{}7217P X =-<-< {}|()|7P X E X =-<2()17D X ≥-13559114921414=-⨯=-=.即6颗骰子出现点数之和在1527 之间的概率大于等于914.4. 对敌阵地进行1000次炮击,每次炮击中。

炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.{}1|()|7P X E X =--≥解: 以i X 表示第i 次炮击击中的颗数(1,2,,1000)i =有()0.4i E X = ,() 3.6i D X =据 定理:则10001380420i i P X =⎧⎫<≤⎨⎬⎩⎭∑420400380400--≈Φ-Φ11()()33=Φ-Φ-12()13=Φ- 20.62931=⨯- 0.2586= .5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g . 求一盒螺丝钉的重量超过10.2kg 的概率.解: 设i X 为第i 个螺丝钉的重量,1,2,,100i = ,且它们之间独立同分布,于是一盒螺丝钉的重量1001ii X X==∑,且由()100i E X =10=知()100()10000i E X E X =⨯=,100=,由中心极限定理有:100001020010000(10200)10100X P X P --⎧⎫>=>⎨⎬⎩⎭100002100X P -⎧⎫=>⎨⎬⎩⎭1000012100X P -⎧⎫=-≤⎨⎬⎩⎭1(2)≈-Φ10.977250.02275=-= .6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布.(1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少? (2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.解: 设i X 为第i 个加数的取整舍入误差, 则{}i X 为相互独立的随机变量序列, 且均服从[]0.5,0.5-上的均匀分布,则0.50.5()0i E X xdx μ-===⎰0.5220.51()12i D X x dx σ-===⎰(1) 因1200n =很大,由独立同分布中心极限定理对该误差总和12001ii X=∑,1200115i i P X =⎧⎫>⎨⎬⎩⎭∑15P ⎫⎪=>12 1.5i i P X =⎫⎪=>⎬⎪⎭2(1(1.5))=-Φ 0.1336= .即误差总和的绝对值超过15的概率达到13.36% .(2) 依题意,设最多可有n 个数相加,则应求出最大的n ,使得1100.9n k k P X =⎧⎫<≥⎨⎬⎩⎭∑由中心极限定理:1110n ni ii i P X P X ==⎧⎧⎫⎪<=<⎨⎬⎨⎪⎩⎭⎩∑∑210.9≈Φ-≥ .即0.95Φ≥查正态分布得 1.64≥即21012()446.161.64n ≤≈取446n =,最多可有446个数相加 .7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.解 以X 表示1年死亡的人数 依题意,(3000,0.001)X B注意到{}{}200030000P P X =>保险公司亏本其概率为{}1530000.001151P X -⨯>≈-Φ1(6.932)=-Φ 0≈ .即保险公司亏本的概率几乎为0 .8. 假设12,,...,n X X X 是独立同分布的随机变量,已知()ki k E X α= (1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211nn i i Z X n==∑近似服从正态分布.证明:由于12,,...,n X X X 独立同分布,则22212,,...,n X X X 也独立同分布由()ki k E X α= (1,2,3,4;1,2,,)k i n ==有22()iE X α=,2242()((i iiD XE X E X ⎡⎤=-⎣⎦242αα=-2211()()nn i i E Z E X nα==⋅=∑2242211()()()nn i i D Z D X n nαα==⋅=-∑{}15P X =>因此,根据中心极限定理:(0,1)nZU Nα-=即当n充分大时,n Z近似服从2242(,())N nααα- .9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用德莫弗-位普拉斯中心极限定理.求:被盗索赔户不少于14户,且不多于30户的概率.解(1)(100,0.2)X B,所以{}1001000.20.80,1,2,,100k k kP X k C k-===()20E X np==,()(1)16D X np p=⋅-=(2){}|430P X≤≤1420203020XP---⎧⎫=≤≤(2.5)( 1.5)=Φ-Φ-(2.5)( 1.5)1=Φ+Φ--0.9940.93310.927=+-= .10 .某厂生产的产品次品率为0.1p=,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?解:设每盒中装n只产品,合格品数~(,0.9)X B n,()0.9E X n=,()0.09D X n=则{}{}1001100P X P X>=-≤1000.910.95n -=-Φ=1000.9 1.65n-=-解得117n =,即每盒至少装117只才能以95%的概率保证一盒内有100只正品。

统计量及其分布练习题答案

统计量及其分布练习题答案

统计量及其分布练习题答案一、选择题1. 在统计学中,以下哪个不是描述数据集中趋势的统计量?A. 平均数B. 中位数C. 众数D. 方差2. 标准正态分布的均值和标准差分别是多少?A. 0, 1B. 1, 0C. 1, 1D. 0, 03. 下列哪个分布是对称的?A. 泊松分布B. 二项分布C. 正态分布D. 指数分布4. 以下哪个统计量用于衡量数据的离散程度?A. 均值B. 方差C. 众数D. 中位数5. 假设检验中的P值是什么?A. 检验统计量B. 拒绝原假设的概率C. 接受原假设的概率D. 样本均值二、填空题6. 统计量是用来______数据集特征的数值,包括集中趋势、离散程度等。

7. 当总体很大时,我们通常使用______来估计总体参数。

8. 正态分布的密度函数表达式为f(x)=1/(σ√(2π))e^(-(x-μ)²/(2σ²)),其中μ是______,σ是______。

9. 样本均值的抽样分布是______分布,当样本容量足够大时,根据中心极限定理,即使总体不是正态分布,样本均值的分布也近似为正态分布。

10. 假设检验的基本步骤包括:提出原假设H0、提出备择假设H1、选择适当的______和______、计算检验统计量、确定P值、做出决策。

三、简答题11. 请简述正态分布的三个主要特征。

12. 什么是样本均值的分布?为什么样本均值的分布对于统计推断很重要?13. 什么是P值?它在假设检验中的作用是什么?14. 请解释什么是置信区间,并简述其在统计推断中的应用。

四、计算题15. 某班级有50名学生,他们的平均成绩为85分,标准差为10分。

如果从这个班级随机抽取一个样本容量为5的学生,求这个样本均值的期望值和标准误差。

16. 假设一个总体服从正态分布,总体均值μ=100,总体标准差σ=15。

如果从这个总体中随机抽取一个样本容量为100的样本,求样本均值的95%置信区间。

(概率论与数理统计 茆诗松) 第5章 统计量及其分布

(概率论与数理统计 茆诗松) 第5章 统计量及其分布

次序统计量的函数在实际中经常用到。 如 样本极差 Rn = x(n) x(1)
例5.3.9 设总体分布为U(0,1), x1, x2,…, xn 为 样本,则(x(n), x(1))的联合密度函数为
p1,n(y,z)=n(n1)(zy)n-2, 0 y z 1
令 R = x(n) x(1) ,由 R 0, 可以推出 0 x(1) = x(n)R 1 R ,
bk = (xi称 为x)k样/n 本k阶中心矩。 特别,样本二阶中心矩就是样本方差。
当总体关于分布中心对称时,我们用 x 和 s
刻画样本特征很有代表性,而当其不对称时,
只用 x 和 s 就显得很不够。为此,需要一些刻画
分布形状的统计量,如样本偏度和样本峰度,它 们都是样本中心矩的函数。
定义: 1 = b3/b23/2 称为样本偏度, 2 = b4/b22 称为样本峰度。
次序统计量的应用之一是五数概括与箱线图。在 得到有序样本后,容易计算如下五个值: 最小观测值 xmin= x(1) , 最大观测值 xmax=x(n) , 中位数 m0.5 , 第一4分位数 Q1 = m0.25, 第三4分位数 Q3 = m0.75. 所谓五数概括就是指用这五个数:
xmin , Q1 , m0.5 , Q3 , xmax 来大致描述一批数据的轮廓。
当n 时样本 p 分位数 mp 的渐近分布为
p(1 p)
mp ~ Nxp,
n p2xp
特别,对样本中位数,当n时近似地有
m0.5
~Nx0.5,
4n
1 p2x0.5
例5.3.10 设总体为柯西分布,密度函数为
p(x,)= 1/[(1+(x)2)] , x + 不难看出是该总体的中位数,即x0.5= 。

概率论与数理统计教程习题(第五章统计量及其分布)

概率论与数理统计教程习题(第五章统计量及其分布)

习题13(统计量及其分布)一.填空题1. 设总体X 具有分布函数()12,,,,n F x x x x 为取自该总体的容量为n 的样本,则样本联合分布函数_________________________________________.2. 为了解统计学专业本科毕业生的就业情况,我们调查了某地区30名2000年毕业的统计学专业本科生实习期满后的月薪情况,则总体是_____________,样本是___________,样本量是______。

二.选择题1. 设总体()2~,X N μσ,其中2σ已知,但μ未知,而12,,,n X X X 为它的一个简单随机样本,则下列量中( )是统计量,( )不是统计量:① 11n i i X n =∑; ② ()211n i i X n μ=-∑; ③ ()2111n i i X X n =--∑;④ X ⑤ X ⑥X . 三.解答题1. 证明 (1)()10n i i X X =-=∑;(2)()()()22211n n i i i i X A X X n X A ==-=-+-∑∑; (3)()22211n n i i i i X X X nX ==-=-∑∑。

2. 在一本书上随机检查了10页,发现每页上的错误个数分别为4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差。

3. 设总体总体X 的均值为μ,方差为2σ,而12,,,n X X X 为它的一个简单随机样本,X ,2S 是样本均值和样本方差,证明:()E X μ=;()2D X n σ=;()22E S σ=。

习题14(三大抽样分布)一.填空题1. 设4321,,,X X X X 相互独立且服从相同分布),(2n χ则________~34321X X X X ++; 2. 设)1,0(~N X ,随机抽取样本n X X X ,,,21 ,X 为样本均值,2S 为样本方差,则∑=-n i i X n X122~,~22S X n .3. 设总体()36.0,~μN X ,从中抽取容量为18的样本1821,,,X X X ,则()=⎪⎪⎭⎫ ⎝⎛<-∑=38.72181i i X X P ____. 二.选择题1. 设总体2~(,)X N μσ,X 为该总体的样本均值,则()P X μ<__________ ① 14<② 14= ③ 12> ④ 12= 2. 设随机变量()~()1X t n n >,21Y X =则__________ (A )()2~Y n χ (B )()2~1Y n χ-(C )()~,1Y F n (D )()~1,Y F n三.解答题1. 总体()2,σμN 中抽取16个样本,2,σμ均未知,2S 为样本方差,求⎪⎪⎭⎫ ⎝⎛≤04.222σS P2. 总体()22,0~N X ,4321,,,X X X X 是来自总体X 的简单随机样本.求b a ,的值,使243221)43()2(X X b X X a Y -+-=服从-2χ分布.并写出此分布的自由度.3. 设921,,,X X X 为来自正态总体X 的简单随机样本,记()621161X X X Y +++= ,()987231X X X Y ++=,()∑=-=97221221i Y Y S , ()S Y Y Z 212-=.证明:统计量Z 服从自由度为2的t 分布.。

统计学第五章课后题及答案解析

统计学第五章课后题及答案解析

第五章一、单项选择题1.抽样推断的目‎的在于()A.对样本进行全‎面调查B.了解样本的基‎本情况C.了解总体的基‎本情况D.推断总体指标‎2.在重复抽样条‎件下纯随机抽‎样的平均误差‎取决于()A.样本单位数B.总体方差C.抽样比例D.样本单位数和‎总体方差3.根据重复抽样‎的资料,一年级优秀生‎比重为10%,二年级为20‎%,若抽样人数相‎等时,优秀生比重的‎抽样误差()A.一年级较大B.二年级较大C.误差相同D.无法判断4.用重复抽样的‎抽样平均误差‎公式计算不重‎复抽样的抽样‎平均误差结果‎将()A.高估误差B.低估误差C.恰好相等D.高估或低估5.在其他条件不‎变的情况下,如果允许误差‎缩小为原来的‎1/2,则样本容量()A.扩大到原来的‎2倍B.扩大到原来的‎4倍C.缩小到原来的‎1/4D.缩小到原来的‎1/26.当总体单位不‎很多且差异较‎小时宜采用()A.整群抽样B.纯随机抽样C.分层抽样D.等距抽样7.在分层抽样中‎影响抽样平均‎误差的方差是‎()A.层间方差B.层内方差C.总方差D.允许误差二、多项选择题1.抽样推断的特‎点有()A.建立在随机抽‎样原则基础上‎ B.深入研究复杂‎的专门问题C.用样本指标来‎推断总体指标‎ D.抽样误差可以‎事先计算E.抽样误差可以‎事先控制2.影响抽样误差‎的因素有()A.样本容量的大‎小 B.是有限总体还‎是无限总体C.总体单位的标‎志变动度 D.抽样方法E.抽样组织方式‎3.抽样方法根据‎取样的方式不‎同分为()A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优‎良标准是()A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本‎容量的主要因‎素有()A.总体方差的大‎小 B.抽样方法C.抽样组织方式‎ D.允许误差范围‎大小E.要求的概率保‎证程度6.参数估计的三‎项基本要素有‎()A.估计值 B.极限误差C.估计的优良标‎准 D.概率保证程度‎E.显著性水平7.分层抽样中分‎层的原则是()A.尽量缩小层内‎方差 B.尽量扩大层内‎方差C.层量扩大层间‎方差 D.尽量缩小层间‎方差E.便于样本单位‎的抽取三、填空题1.抽样推断和全‎面调查结合运‎用,既实现了调查‎资料的___‎____性,又保证于调查‎资料的______‎_性。

数理统计之统计量及其分布(习题)

数理统计之统计量及其分布(习题)

计算题、证明题1. 设(x 1,2x ,…,n x )及(1u ,2u ,…,n u )为两组子样观测值,它们有如下关系i u =ba x i -(a b,0≠都为常数)求子样平均值u 与x ,子样方差2u s 与2xs 之间的关系. 解:b ax a x n b b a x n u i nn u i i i-=⎪⎭⎫ ⎝⎛-=-===∑1121121 ().11122222x i i us bb a x b a x n u u n S =⎪⎭⎫ ⎝⎛---∑=-∑= 2. 若子样观测值1x ,2x ,…,m x 的频数分别为1n ,2n ,…,m n ,试写出计算子样平均值x 和子样方差2n s 的公式 (这里n =1n +2n +…+m n ).解: ∑∑∑======m j m j jj j jm j j j x f x n n x n n x 1111()()()221221x x f x x n n x x n n S j j j j m j j j n-=-=-=∑∑∑= 其中nn f j j =,m j ,,2,1Λ=是j x 出现的频率。

3.利用契贝晓夫不等式求钱币需抛多少次才能使子样均值ξ落在0.4到0.6之间的概率至少为0.9 ? 如何才能更精确的计算使概率接近0.9所需抛的次数 ? 是多少? 解: 设需抛钱币n 次,第i 次抛钱币结果为n i i i i ,,2,101Λ=⎩⎨⎧=次抛出反面第次抛出正面第ξ, 则iξ独立同分布.且有分布()1,0,21===x x Piξ 从而41,21==i i D E ξξ。

设∑=i nξξ1是子样均值.则nD E 41,21==ξξ. 由契贝晓夫不等式()()()().9.0410011.011.01.05.01.06.04.02=-=-≥<-=<-<-=<<nD E P P P ξξξξξ2504.0100==∴n , 即需抛250次钱币可保证()9.06.04.0≥<<εP 为更精确计算n 值,可利用中心极限定理()()..9.012.02415.06.0415.0415.04.06.04.0≥-Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛-<-<-=<<n n n n P P ξξ645.12.0≥∴n 68≥∴n . 其中()x Φ是()1,0N 的分布函数.4. 若一母体ξ的方差2σ= 4, 而ξ是容量为100的子样的均值. 分别利用契夫晓夫不等式和极限定理求出一个界限, 使得ξ-μ (μ为母体ξ的数学期望E ξ) 夹在这界线之间的概率为0.9.解:设此界限为.ε由()9.012=-≥<-εξεμξDP由此.6325.04.0.10041.022≈=∴===εσξεnD 由中心极限定理,().9.012=-⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛<-=<-ξεξεξμξεμξD D D P P.645.1.95.0=∴=⎪⎪⎭⎫⎝⎛ΦξεξεD D .329.01004645.1=⨯=ε 5.假定1ξ和2ξ分别是取自正态母体N (μ,2σ)的容量为n 的两个子样(n 11211,,,ξξξΛ),和(n 22221,,,ξξξΛ)的均值,确定n 使得两个子样均值之差超过σ的概率大约为0.01.解: ⎪⎪⎭⎫ ⎝⎛n N i 2,~σμξ .2,1=i 且相互独立.,所以⎪⎪⎭⎫⎝⎛-n N 2212,0~σξξ于是()01.021222222121=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎪⎪⎭⎫⎝⎛>-=>-n n n P P σσσξξσξξ .005.02=⎪⎪⎭⎫⎝⎛-Φ∴n .258.2⨯=n .14=n 6.设母体ξ~N(μ,4 ),(n ξξξ,,,21Λ)是取自此母体的一个子样, ξ为子样均值,试问:子样容量n应取多大,才能使 (1) E (μξ-2)1.0≤;(2) E (μξ-)1.0≤; (3) P (μξ-1.0≤)95.0≥.解: (1)().401.04.1.042=≥∴≤==-n n D Eξμξ(2)()dx e x nE nx 422221μμπμξ--∞+∞--=-⎰=.1.0242262≤=-∞∞-⎰ndu e nπμπμ .255≥∴n(3)().95.021.021.0≥⎪⎪⎭⎫⎝⎛≤-=≤-n n P P μεμε.96.121.0≥n 1537≥n .7. 设母体()p b ,1~ξ(两点分布), (n ξξξ,,,21Λ)是取自此母体的一个子样, ξ为子样均值,若P =0.2,子样容量n 应取多大,才能使(1)P()1.0≤-p ξ;75.0≥ (2)E (丨p -ξ丨2).01.0≤若P ()1.0∈为未知数,则对每个p ,子样容量n 应取多大才能使E (丨p -ξ丨2).01.0≤解: (1) 要()().75.03.01.01.02.0≥≤≤=≤-ξξP P当n10=时,∑=ni i1ξ服从二项项分布().2.0,10,k b查二项分布表知().75.07717.01074.08791.0313.01.0101>=-=⎪⎭⎫⎝⎛≤≤=≤≤∑=i i P P ξξ所以n 应取10.(2)()np p D P E -==1.ξξ当2.0=p 时 ().16.01.016.02≥∴≤==-n n D p E ξξ(3) 当P 未知时,()()01.012≤-==-np p D p E ξξ由此知, ()p p n -≥1100, 要对一切()1,0∈p 此时均成立.只要求p 值使()p p -1最大, 显然当21=p , ()411=-p p 最大,.所以当2541100=⨯≥n 时,对一切p 的不等式均能成立.8 设母体ξ的k 阶原点矩和中心矩分别为k v =E ξk ,k μ=E()k E ξξ-,k =1,2,3,4,k1ξ和k m 分别为容量n 的子样k 阶原点矩和中心矩, 求证:(1) E()31νξ-=23nμ; (2) E()41νξ-=223nμ+32243n μμ-.解:()()()()()1213113311313[11νξνξνξνξνξ--+-=⎥⎦⎤⎢⎣⎡-=-∑∑∑≠==j i j i n i i n i E n n E E ++()()()]111γξγξγξ---∑k j iE注意到n ξξξ,,,21Λ独立, 且()0111=-=-νννξi E .,,2,1n i Λ=所以().13231μνξn E=- ()()()()()()+--+--+-=-∑∑∑≠≠=2121131414144134[1νξνξνξνξνξνξj i ji j i j i i i E E n E()()()()()()()]111111216νξνξνξνξνξνξνξ----+---∑∑≠≠≠≠≠l k j ilk j i k j i kj i E E=().3313132242222443nn n n n n μμμμμ-+=-+ 9. 设母体ξ~N ()2,σμ,子样方差2nS =n1()21∑=-ni iξξ, 求E 2n S ,D 2n S 并证明当n 增大时,它们分别为2σ+⎪⎭⎫ ⎝⎛n 1ο和n 42σ+⎪⎭⎫⎝⎛n 1ο.解: 由于().1~222-n nS nχσ所以()()()121.1122-=--=-n n DX n n E χ⎪⎭⎫ ⎝⎛+=-=⎪⎪⎭⎫ ⎝⎛=∴2222222101n n n nS E n ES n nσσσσ().10212244222242⎪⎭⎫⎝⎛+=-=⎪⎪⎭⎫ ⎝⎛=n n n n nS D n DS n nσσσσ .10. 设()21,ξξ为取自正态母体ξ~N ()2,σμ的一个子样, 试证: ξ1+ξ2, ξ1-ξ2是相互独立的. 证:()()()()()()()().,cov 21212221212121212121ξξξξξξξξξξξξξξξξξξ-+--=-+--+=-+E E E E E E E由于ξ1, ξ2 ~N ()2,σμ, 所以. E 212221,ξξξξE E E ==即()0,cov2121=-+ξξξξ 又()2212,2~σμξξN +Θ,().2.0~221σξξN -所以由两个变量不相关就推出它们独立.11.设母体ξ的分布函数为F()x ,()n ξξξ,,,21Λ是取自此母体的一个子样,若F ()x 的二阶矩存在,ξ为子样均值,试证ξ1--ξ与ξj --ξ的相关系数ρ=11--n ,j i ≠,.,,2,1,n j i Λ= 证 由于ξ的二阶矩存在,不妨设.μξ=E 2σξ=D()()()()()j i D E D ij i ij i ≠---=---=,,cov ξξξξξξξξξξξξρ()()().11111122222221σσξξξξξξn n n n n D n D n n n D D j ij in i i i i -=-+-=+-=⎪⎭⎫ ⎝⎛-=-∑∑≠=()()n E n E E E E E n j j i j i j i j i 221222σμξξμξξξξξξξξξξξ++⎪⎪⎭⎫ ⎝⎛-=+--=--∑=()[]n n n n E E E n n j i i j i 22222222212222σμσμσμξξξσμ-=-++-+=⎪⎪⎭⎫ ⎝⎛+-+=∑≠.11122--=--=∴n nn n σσρ12. 设ξ和2n S 分别是子样()n ξξξ,,,21Λ的子样均值和子样方差,现又获得第n +1个观测值,试证: (1)ξn+1=ξn +11+n (ξn+1-ξn );(2)12+n S =()⎥⎦⎤⎢⎣⎡-++++212111n n n n S n n ξξ. 证 (1)()()n n n n n n i i n n n n n ξξξξξξξ-++=++=+=+++=+∑11111111111()()()()2111211121112111111111)2(⎥⎦⎤⎢⎣⎡-+--+=-+-+=-+=++-++-++-+∑∑∑n n n i n i n n n i n i n i n i n n n n n S ξξξξξξξξξξ()()()()()()()21211121211112{11nn n n n n n i n i n n n i ni n n n n ξξξξξξξξξξξξ-+++-⨯⎥⎦⎤⎢⎣⎡-+-+--+-+=+++-+-∑∑=()().112122n n n n n S n n ξξ-++++ 13. 从装有一个白球、两个黑球的罐子里有放回地取球, 令ξ=0表示取到白球, ξ=1表示取到黑球.求容量为5的子样()51,,ξξΛ的和的分布,并求子样均值ξ和子样方差2n S 的期望值.解:i ξ相互独立都服从二点分布,32;1⎪⎭⎫⎝⎛b E i ξ=.32 D .92=i ξ 5,2,1Λ=i所以,32=ξE .4589212=⨯-=n n ES n 521ξξξη+++=Λ服从二项分布.32;5⎪⎭⎫⎝⎛b 其分布列().313255kk k k p -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==η.5,2,1,0Λ=k14. 设母体ξ服从参数为λ的普哇松分布, ()n ξξξ,,,21Λ 是取自此母体的一个子样,求: (1)子样的联合概率分布列:(2)子样均值ξ的分布列、E ξ、D ξ、和E 2n S 。

统计学第五章自测题

统计学第五章自测题

自测题1. 总体均值的区间估计是在点估计的基础上给出总体均值的一个估计区间,该区间等于样本均值加减A. 样本标准差B. 样本均值的标准误差C. 估计误差D. 总体标准差2. 下面关于置信区间的表述正确的是A. 任何总体参数的置信区间都等于点估计值加减估计误差B. 一个具体样本构建的总体参数的95%的置信区间,将以95%的概率包含总体参数C. 在样本量相同的情况下,总体均值的90%的置信区间要比95%的置信区间窄D. 在相同的置信水平下,一个较大的样本构建的总体均值的置信区间要比一个较小的样本构建的置信区间准确3. 根据样本均值的抽样分布可知,样本均值的期望值等于总体均值。

因此,用样本均值作为总体均值的估计量时,称其为总体均值的A. 无偏估计量B. 有效估计量C. 可靠估计量D. 一致估计量4. 质检部门的一项抽样调查表明,某种袋装食品平均重量的99%的置信区间为490克~505克之间,这里的99%是指A. 食品重量的合格率为99%B. 在100袋食品中,有99袋的重量在490克~505克之间C. 可以用99%的概率保证该食品每袋的平均重量在490克~505克之间D. 如果用相同的方法进行多次估计,每袋食品重量的平均值在490克~505克之间的频率约为99%5. 某个地区的家庭年收入额通常是右偏的,从该地区随机抽取2000个家庭作为样本,估计该地区家庭的年平均收入额,所使用的分布是A. 正态分布B. t分布D. F分布6. 已知某种灯泡的使用寿命服从正态分布,方差。

从该种灯泡中随机抽取15只,测得平均使用寿命为2800小时。

则该种灯泡平均使用寿命的95%的置信区间为7. 在某个电视节目的收视率调查中,随机抽取由165个家庭构成的样本,其中观看该节目的家庭有33个。

用90%的置信水平(注:)估计观看该节目的家庭比例的置信区间为A. 20%±3%B. 20%±4%C. 20%±5%D. 20%±6%8. 随机抽取10个消费者,让他们分别品尝两个品牌的饮料,然后进行打分,得到两种饮料得分差值的均,标准差为,两种饮料得分差值的95%()的置信区间为A. 3.5±1.88B. 3.5±0.59C. 3.5±2.18D. 3.5±0.289. 某城市准备提出一项出租汽车运营的改革措施,为估计出租车司机中赞成该项改革的人数的比例,要求估计误差不超过0.03,置信水平为90%(),应抽取的样本量为A. 552B. 652C. 752D.85210. 随机抽取20罐啤酒,得到装填的标准差为0.5升。

(第五章)统计量及其分布习题解答

(第五章)统计量及其分布习题解答

第五章 统计量及其分布一、 填空题1. 设来自总体X 的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 ,样本方差 = 9.23 。

2.设随机变量12100,,,X X X 独立同分布,且0,10,i i EX DX == 1,2,,100i =,令10011100i i X X ==∑,则10021{()}i i E X X =-=∑__________. 解: 设1100,,X X 为总体X 的样本,则1002211()99i i S X X ==-∑为样本方差,于是210ES DX ==,即10021()1099990.i i E X X =-=⨯=∑3.设12,,,n X X X 是总体(,4)N μ的样本,X 是样本均值,则当n ≥__________时,有2E X 4. 设12,,,n X X X 是来自0–1分布:(1),(0)1P X p P X p ====-的样本,则EX =__________,DX =__________,2ES =__________.解:11,(1)ni i i i X X EX p DX pq p p n =====-∑2111(1)i i EX nEX pDX nDX p p n n n=⋅==⋅=- 22222111()[]11n i i i ES E X nX nEX nEX n n ==-=⋅---∑ 2211[((1))((1))]1n p p p n p p p n n =-+--+-21[(1)](1).1np p n p p p n =---=--5.设总体12~(),,,,n X P X X X λ为来自X 的一个样本,则EX =_________,DX =__________.解:~()i i X P EX DX EX DX nλλλλ====6.设总体12~[,],,,n X U a b X X X 为X 的一个样本,则EX =________,DX =__________.解:2()~[,]212a b b a X U a b EX DX +-==2a bEX += 2()12b a DX n -=7.设总体2126~(0,),,,,X N X X X σ为来自X 的一个样本,设22123456()()Y X X X X X X =+++++,则当C =_________时,2~(2).CY χ解:123456()()0E X X X E X X X ++=++=2123456()()33i D X X X D X X X DX σ++=++==12312321)]()13D X X X D X X X σ++=++=123)~(0,1)X X X N ∴++,456)~(0,1)X X X N ++且独立 213C σ∴= 8.设1216,,,X X X 是总体2(,)N μσ的样本,X 是样本均值,2S 是样本方差,若()0.95P X aS μ>+=,则a =__________.解:0.95()((15))0.95X P X aS P P t t μ>+=≥=≥-=,查t 分布表0.954(15) 1.750.4383.a t a =-=-⇒=-9. 在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值X 落在4与6之间的概率 = ()2 1.51Φ- 。

统计第五章练习题

统计第五章练习题

第五章参数估计(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.在抽样推断中,必须遵循( )抽取样本。

①随意原则②随机原则③可比原则④对等原则2.抽样调查的主要目的在于( )。

①计算和控制抽样误差②了解全及总体单位的情况③用样本来推断总体④对调查单位作深入的研究3.抽样误差是指()。

①计算过程中产生的误差②调查中产生的登记性误差③调查中产生的系统性误差④随机性的代表性误差4.在抽样调查中( )。

①既有登记误差,也有代表性误差②既无登记误差,也无代表性误差③只有登记误差,没有代表性误差④没有登记误差,只有代表性误差5.在抽样调查中,无法避免的误差是( )。

①登记误差②系统性误差③计算误差④抽样误差6.能够事先加以计算和控制的误差是( )。

①抽样误差②登记误差③系统性误差④测量误差7.抽样平均误差反映了样本指标与总体指标之间的( )。

①可能误差范围②平均误差程度③实际误差④实际误差的绝对值8.抽样平均误差的实质是( )。

①总体标准差②全部样本指标的平均差③全部样本指标的标准差④全部样本指标的标志变异系数9.在同等条件下,重复抽样与不重复抽样相比较,其抽样平均误差( )。

①前者小于后者②前者大于后者③两者相等④无法确定哪一个大10.在其他条件保持不变的情况下,抽样平均误差( )。

①随着抽样数目的增加而加大②随着抽样数目的增加而减小③随着抽样数目的减少而减小④不会随抽样数目的改变而变动11.允许误差反映了样本指标与总体指标之间的( )。

①抽样误差的平均数②抽样误差的标准差③抽样误差的可靠程度④抽样误差的可能范围12.极限误差与抽样平均误差数值之间的关系为( )。

①前者一定小于后者②前者一定大于后者③前者一定等于后者④前者既可以大于后者,也可以小于后者13.所谓小样本一般是指样本单位数()。

①30个以下②30个以上③100个以下④100个以上14.样本指标和总体指标( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∑ xi
n
n− ∑ x i
i =1
n
; p , 5、
p(1 − p) , p(1 − p ) 。 n
0.95 。 6、 F (1, n ) 。
2 (5) = 1.1455 。 4、 χ 0.05
三、计算题 1、解: X 1 , X 2 , X 3 独立且都服从 N (1, 4) ,得 E ( X i ) = 1 ,
)。
X −µ s1 s3 n−1


(B) t=
X −µ s2 s4 n−1


(C) t=
X −µ n
(D) t=
X −µ n
6、设随机变量 X ~ N (0,1) ,而 uα 满足 P { X ≤ uα } = α ,若 P{ X < x } = 1 − α ,则 x = (A) uα 2 ; (B) u1−α 2 ; (C) u1− 2α ; (D) u(1−α ) 2 。
4、设 X ~ χ 2 (5 ) ,则 λ =
5、设 X ~ F ( n, n ) ,若 P { X > λ } = 0.05 ,则 P{ X > 1 λ } = 6、设 T ~ t ( n ) ,则 T 2 ~ 三、计算题 1、设总体 X 。
2 2 X3 ), D( X 1 X 2 X 3 ) 。 ~ N (1, 4) , X 1 , X 2 , X 3 是 X 的样本,试求 E ( X 12 X 2
第五章 统计量及其分布 复习自测题
一、单项选择题 1、设总体 X ~ N ( µ , σ 2 ) , µ 未知,而 σ 2 已知, X 1 , X 2 ," , X n 为一样本,
X=
__
__ 1 n 1 n 2 , X S = X − X ( )2 ,则以下样本的函数为统计量的是( ∑ ∑ i i n i =1 n − 1 i =1
1
二、填空题 1、 X 1 , X 2 ," , X n 是总体 X 的简单随机样本的条件是:
__

2、设 X 1 , X 2 ," , X n 是取自于 0—1 分布b(1, p) 的样本, X 为样本均值, S 2 为样本方 差,则X1 , X2 ,…, Xn的概率分布为 ; E( X ) =
2
__
(2)若 σ 2 未知,而 S = 2.5 ,求 P{ X > 6.569} 。 若已知 σ 2 = 4 ,求 P { S > 2.908} ; 6、分别从方差为 36 和 16 的两个正态总体中抽取容量为 10 和 8 的两个独立样本,求 第一个样本方差不大于第二个样本方差的 8.28 倍的概率。 试给出一 7、 设 x1 , x 2 ," , x n 是取自几何分布 P ( X = x ) = θ (1 − θ ) x , x = 0,1, 2," 的样本, 个充分统计量。
__
__
欲使 2Φ(0.05 n ) − 1 ≥ 0.95 ,则 Φ(0.05 n ) ≥ 0.975 , 0.05 n ≥ 1.96 ⇒ n ≥ 1536.64 , 得 n 至少为 1537。 5、解: (1)因为
( n − 1) S 2
σ2
=
9S 2 9S 2 ~ χ 2 (9) ,所以 P { S > 2.908} = P { > 19.027} , 4 4
2
第五章 统计量及其分布 复习自测题解答
一、单项选择题 1、 (B) ; 二、填空题 1、 X 1 , X 2 ," , X n 相互独立且与X 同分布。 2、 P ( X 1 = x1 ," , X n = x n ) = p i =1 (1 − p ) 3、4 , 16 。 2、 (C) ; 3、 (B) ; 4、 (C) ; 5、 ( B ) ; 6、 (B) 。
T=
4X
∑ Yi2
i =1
4
,试确定 t 0 使 P {| T |> t0 } = 0.01 。
4、设总体 X 服从方差为 4 的正态分布, X 1 , X 2 ," , X n 是一样本,求 n 使样本均值与 总体均值之差的绝对值不超过 0.1 的概率不小于 0.95。 5、设 X 1 , X 2 ," , X 10 为总体 N (4, σ ) 的样本, X 为样本均值, S 2 为样本方差,试(1)
x 7、解:样本的联合概率分布为 p( x1 ," , xn ;θ ) = ∏ θ (1 − θ ) i = θ n (1 − θ ) i =1 , i =1
n
∑ xi
n
取 T = ∑ xi ,并令 g (T ,θ ) = θ n (1 − θ ) T , h( x1 ," , xn ) = 1 ,则
1
3、设 X 1 , X 2 ," , X n 是总体 N ( µ , σ 2 ) 的一样本,则 (A) χ 2 ( n − 1) ; (B) χ 2 ( n ) ;
σ
2
∑ ( X i − µ )2 ~ (
i =1
n

(C) N ( µ , σ 2 ) ; )
(D) N ( µ , σ 2 n ) 。
2、解:令 5 个元件的失效时间为 x1 ," , x 5 ,则 x1 ," , x 5 独立且都服从均值为 2000/3 小时的指数分布,其概率密度为 p( x ) =
3 3x exp{− }, x > 0; 从而所求概率x(1) ≥ 800} = P{ x1 ≥ 800," , x5 ≥ 800} = ∏ P { xi ≥ 800}
__
, D( X ) =
16
__
, E(S 2 ) =
。 时,
3、设 X 1 , X 2 ," , X 17 是取自总体 N (2,1) 的样本,而 Y = ∑ ( X i − 2)2 ,则当 C =
i =1
C ( X 17 − 2)
Y 服从自由度为
的 t 分布。 时 P { X ≤ λ } = 0.05 。 。
2 s1 n n 1 n 1 n 2 2 1 2 2 2 2 1 2 = X i − X ) , s2 = ∑ ( X i − X ) , s3 = X i − µ ) , s4 = ∑ ( X i − µ ) ( ( ∑ ∑ n − 1 i =1 n i =1 n − 1 i =1 n i =1
则服从自由度为 n − 1 的 t 分布的随机变量是 ( (A) t =
t0 = t0.995 (4) = 4.6041
3
4 X −µ 4、解: 样本均值 X ~ N ( µ , ) , ~ N (0, 1) , n 2 n
__
__
X −µ 从而 P {| X − µ |≤ 0.1} = P {| |≤ 0.05 n } = 2Φ(0.05 n ) − 1 , 2 n
i =1
=∏∫
i =1
5
+∞
800
3 3x exp{ − }dx = e −6 2000 2000
4 2
⎛Y ⎞ 3、解:由条件得 ∑ ⎜ i ⎟ ~ χ 2 (4) 且与 X 独立,从而 T ~ t (4) ; i =1 ⎝ 2 ⎠
而由 P{| T |> t0 } = 2 P {T > t0 } = 2 − 2 P{T ≤ t0 } 得 P{T ≤ t 0 } = 0.995 ,因此
2、 设电子元件的失效时间服从均值为 2000/3 小时的指数分布, 今独立测试了 5 个元件, 记录它们的失效时间,求没有元件在 800 小时前失效的概率。 3、设 X ~ N (0,1) ,而 Y1 , Y2 , Y3 , Y4 都服从 N (0, 4) ,且 X , Y1 , Y2 , Y3 , Y4 相互独立,
i =1
n
p( x1 ," , xn ;θ ) = g (T ,θ )h( x1 ," , xn ) ,所以 T = ∑ xi 为充分统计量。
i =1
n
4

(A)
1
σ
2
∑ ( Xi − µ)
i =1
n
2
; (B)
1
σ
2
∑ ( X i − X )2 ;
i =1
n
(C)
X −µ
σ2 n
; (D ) )
X −µ S2 n

2、设随机变量 X ~ N (1, 4) , X 1 , X 2 ," , X n 为 (A)
的样本,则 (
X −1 X −1 X −1 X −1 ~ N (0,1) (B) ~ N (0,1) (C) ~ N (0,1) (D) ~ N (0,1) 2 4 2 n 2
E ( X i2 ) = D( X i2 ) + [ E ( X i )]2 = 5 , i = 1, 2, 3 ;
2 2 2 2 2 2 X2 X3 ) = E( X 1 )E( X 2 )E( X 3 ) = 125 , 从而 E ( X 1 2 2 2 D( X 1 X 2 X 3 ) = E ( X 1 X2 X3 ) − [ E ( X 1 X 2 X 3 )] 2 = 2 2 2 E( X 1 )E( X 2 )E( X 3 ) − [ E ( X 1 ) E ( X 2 ) E ( X 3 )]2 = 124
4、设随机变量 X 与 Y 都服从标准正态分布,则( (A) X + Y 服从正态分布; (C) X 2 , Y 2 都服从 χ 2 分布;
(B) X 2 + Y 2 服从 χ 2 分布; (D) X 2 Y 2 服从 F 分布。
__
5、设 X 1 , X 2 ," , X n 是总体 N ( µ , σ 2 ) 的一样本, X 为样本均值, 记
相关文档
最新文档