液压控制系统课后题答案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章

思考题

1、为什么把液压控制阀称为液压放大元件?

答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀?

答: 理想滑阀是指径向间隙为零,工作边锐利的滑阀。

实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点?零位工作点的条件是什么?

答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时,阀的负载流量为q L 的位置。

零位工作点的条件是 q =p =x =0L L V 。

5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益q q =

x L

V

K ∂∂,为放大倍数,直接影响系统的开环增益。 流量-压力系数c q =-

p L

L

K ∂∂,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益p p =

x L

V

K ∂∂,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。

7、径向间隙对零开口滑阀的静态特性有什么影响?为什么要研究实际零开口滑阀的泄漏特性?

答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏

流量2c

c0r =

32W

K πμ

,p0c K ,两者相差很大。

理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。

9、什么是稳态液动力?什么是瞬态液动力?

答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。

瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。

第三章

思考题

1、 什么叫液压动力元件?有哪些控制方式?有几种基本组成类型?

答:液压动力元件(或称为液压动力机构)是由液压放大元件(液压控制元件)和液压执行元件组成的。控制方式可以是液压控制阀,也可以是伺服变量泵。有四种基本形式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸和泵控液压马达。 4、 何谓液压弹簧刚度?为什么要把液压弹簧刚度理解为动态刚度? 答:液压弹簧刚度2

e p

h t

4A K V β=

,它是液压缸两腔完全封闭由于液体的压缩性所形成的液压

弹簧的刚度。因为液压弹簧刚度是在液压缸两腔完全封闭的情况下推导出来的,实际上由于阀的开度和液压缸的泄露的影响,液压缸不可能完全封闭,因此在稳态下这个弹簧刚度是不存在的。但在动态时,在一定的频率范围内泄露来不及起作用,相当于一种封闭状态,因此液压弹簧刚度应理解为动态刚度。

第四章

思考题

1、 什么是机液伺服系统?机液伺服系统有什么优缺点? 答:由机械反馈装置和液压动力元件所组成的反馈控制系统称为机械液压伺服系统。机液伺服系统结构简单、工作可靠、容易维护。

2、 为什么机液位置伺服系统的稳定性、响应速度和控制精度由液压动力元件的特性所定?

答:为了使系统稳定,v h K ω<

(0.2~0.4),穿越频率c ω稍大于开环放大系数v K 而系统的频宽又稍大于c ω,即开环放大系数越大,系统的响应速度越快,系统的控制精度也越高,而v K 取决于f q p K K A 、、,所以说机液位置伺服系统的稳定性、响应速度和控制精度由液压动力元件的特性所定。

3、 为什么在机液位置伺服系统中,阀流量增益的确定很重要?

答:开环放大系数越大,系统的响应速度越快,系统的控制精度也越高,而v K 取决于

f q p K K A 、、,在单位反馈系统中,v K 仅由q K 和p A 所确定,而p A 主要由负载的要求确定

的,因此v K 主要取决于q K ,所以在机液位置伺服系统中,阀流量增益的确定很重要。 5、低阻尼对液压伺服系统的动态特性有什么影响?如何提高系统的阻尼?这些方法各有什

么优缺点? 答:低阻尼是影响系统的稳定性和限制系统频宽的主要因素之一。提高系统的阻尼的方法有以下几种:

1)设置旁路泄露通道。在液压缸两个工作腔之间设置旁路通道增加泄露系数tp C 。缺点是增大了功率损失,降低了系统的总压力增益和系统的刚度,增加外负载力引起的误差。另外,系统性能受温度变化的影响较大。

2)采用正开口阀,正开口阀的c0K 值大,可以增加阻尼,但也要使系统刚度降低,而且零位泄漏量引起的功率损失比第一种办法还要大。另外正开口阀还要带来非线性流量增益、稳态液动力变化等问题。

3)增加负载的粘性阻尼。需要另外设置阻尼器,增加了结构的复杂性。

4)在液压缸两腔之间连接一个机-液瞬态压力反馈网络,或采用压力反馈或动压反馈伺服阀。

6、考虑结构刚度的影响时,如何从物理意义上理解综合刚度?

答:结构感度与负载质量构成一个结构谐振系统,而结构谐振与液压谐振相互耦合,又形成一个液压-机械综合谐振系统。该系统的综合刚度n K 是液压弹簧刚度h K 和结构刚度s1K 、

s2K 串联后的刚度,它小于液压弹簧刚度和结构刚度。

7、考虑连接刚度时,反馈连接点对系统的稳定性有什么影响? 答:1)全闭环系统

对于惯性比较小和结构刚度比较大的伺服系统, s h ωω>>,因而可以认为液压固有频率就是综合谐振频率。此时系统的稳定性由液压固有频率h ω和液压阻尼比n ζ所限制。有些大惯量伺服系统,往往是s h ωω<<,此时,综合谐振频率就近似等于结构谐振频率,结构谐振频率成为限制整个液压伺服系统频宽的主要因素。 2)半闭环系统

如果反馈从活塞输出端P X 引出构成半闭环系统,此时开环传递函数中含有二阶微分环节,当谐振频率s2ω与综合谐振频率n ω靠的很近时,反谐振二阶微分环节对综合谐振有一个对消作用,使得综合谐振峰值减小,从而改善了系统的稳定性。

第五章

1、已知电液伺服阀在线性区域内工作时,输入差动电流i 10m A ∆=,负载压力

5p 2010a L P =⨯,负载流量q 60min

L L

=。求此电液伺服阀的流量增益及压力增益。

解:电液伺服阀的流量增益为 3q q m 0.1s i

L

K A ==⋅∆

压力增益 8p p a 210i

L

P K A =

=⨯∆

相关文档
最新文档