高中数学必背公式——立体几何与空间向量(供参考)
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
高考数学必背知识点及公式归纳总结大全
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
空间向量与立体几何公式
空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。
它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。
换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。
2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。
通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。
3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。
从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。
二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。
立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。
2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。
例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。
3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。
这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。
高中数学公式大全立体几何与空间向量
高中数学公式大全立体几何与空间向量高中数学公式大全:立体几何与空间向量一、立体几何立体几何是数学中研究三维空间中的几何图形及其性质的分支,对于高中生来说,常见的立体几何包括了体积、表面积等方面的内容。
下面是一些常用的立体几何公式:1. 立方体体积公式立方体是一种边长相等的六个正方形围成的立体。
其体积公式为:V = 边长³。
2. 正方体体积公式正方体是一种六个面都是正方形的立体。
其体积公式为:V = 底面积 ×高。
3. 长方体体积公式长方体是一种六个面都是矩形的立体。
其体积公式为:V = 长 ×宽×高。
4. 圆柱体积公式圆柱体是一种底面为圆形的立体。
其体积公式为:V = π × 半径² ×高。
5. 圆锥体积公式圆锥体是一种底面为圆形,顶点和底面中心连线垂直于底面的立体。
其体积公式为:V = 1/3 × π × 半径² ×高。
6. 球体积公式球体是一种所有点到球心的距离都相等的立体。
其体积公式为:V= 4/3 × π × 半径³。
7. 棱柱表面积公式棱柱是一种顶面和底面是平行的多边形,侧面是平行四边形的立体。
其表面积公式为:S = 底面积 + 侧面积。
8. 棱锥表面积公式棱锥是一种底面为多边形,侧面是由底面上的点和顶点连线形成的三角形的立体。
其表面积公式为:S = 底面积 + 侧面积。
二、空间向量空间向量是指具有大小和方向的箭头,可以表示空间中的位移、速度、加速度等物理量。
在高中数学中,空间向量常用于解决线性相关、平面垂直、平面平行等问题。
下面是一些常用的空间向量公式:1. 两点之间的距离公式设空间中的两点为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),则两点之间的距离公式为:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)。
高中数学 2空间向量与立体几何(带答案)
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
立体几何与空间向量知识梳理
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
立体几何和空间向量综合知识点(高中数学)
立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。
2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。
3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。
(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。
(3)长方体外接球的直径是长方体的体对角线长222c b a ++。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
高中数学空间向量与立体几何知识总结(高考必备!)
辅导科目:数学授课教师:x年级:高二上课时间:教材版本:人教版总课时:已上课时:课时学生签名:课题名称教学目标重点、难点、考点空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示r r r r 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设i, j , k (单位正交基底) r r r r r 唯一的有序实数组(a1,a2,a3),使a a1i a2 j a3 k ,有序实数组( a1 , a2 , a3 )叫作向量a在r空间直角坐标系O xyz中的坐标,记作a (a1,a2,a3) .在空间直角坐标系O xyz中, 1 2 3uuur r r对空间任一点A ,存在唯一的有序实数组(x,y,z),使OA xi yj zk ,有序实数组(x,y,z)叫作向量A在空间直角坐标系O xyz中的坐标,记作A(x,y,z),x叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律rr(1)若a (a1,a2,a3) ,b (b1, b2 ,b3 ) ,rr则a b (a1 b1,a2 b2,a3 b3) ,r r r a b r(r a1 b1,a2 b2,a3 b3),a ( a1, a2, a3)( R) ,a//b a1 b1,a2 b2,a3 b3( R) ,uuur(2)若A(x1,y1,z1),B(x2, y2,z2),则AB (x2 x1, y2 y1,z2 z1) .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
r r r r b1a1(3) a//b b a b2 a2( R)b 3 a 3三、空间向量直角坐标的数量积1、设a,b是空间两个非零向量,我们把数量|a||b|cos a,b 叫作向量a,b的数量积,记作a b,即a b=|a||b|cos a,b 规定:零向量与任一向量的数量积为0。
2、模长公式|a| a a x12x22x323、两点间的距离公式:若A(x1,y1,z1),B(x2, y2,z2),则| u A u B ur | u A u B ur (x2 x1)2 (y2 y1)2 (z2 z1)2,或d A,B (x2 x1)2 (y2 y1)2 (z2 z1)2.4、夹角: cos a b ab注:① a |a| |b| r 2 r r r 2② |a|2 a a a 。
空间向量与立体几何公式大全
以下是部分空间向量与立体几何的公式:1. 向量的模:向量的长,可参考点点距离求模。
2. 向量的加法:三角形法则或平行四边形法则。
3. 向量的减法:三角形法则。
4. 向量的数乘:m*(x,y,z)=(mx,my,mz)。
5. 向量的积:向量m*向量n=m模*n模*cos<m,n>。
6. 向量的数乘:a=(x1,y1,z1),b=(x2,y2,z2) a+b=(x1+x2,y1+y2,z1+z2) a-b=(x1-x2,y1-y2,z1-z2) λa=(λx1,λy1,λz1) a·b=x1x2+y1y2+z1z2 a∥b:x1=λx2,y1=λy2,z1=λz2 a⊥b:x1x2+y1y2+z1z2=0。
7. 法向量与方向向量解答如下关系:线线平行:线L1方向向量为m,线L2方向向量为n,m=y*n;线面平行:法向量与方向向量垂直;面面平行:法向量平行;线线垂直:线L1方向向量为m,线L2方向向量为n,m*n=0;线面垂直:法向量与方向向量平行;面面垂直:法向量垂直;线线夹角:方向向量乘积公式求角;线面夹角:方向向量与法向量乘积公式求角;面面夹角:法向量乘积求角。
8. 点点距离:向量模长公式;点面距离:设点为o,取平面内点p,向量op*法向量n;线线距离:直线a,b,E、F为线a,b上点;直线ab距离d为=向量EF*公垂线方向向量n/向量n模;直线方向向量求法:(1)直线l:ax+by+c=0,则直线l的方向向量为=(-b,a)或(b,-a)。
(2)若直线l的斜率为k,则l的一个方向向量为=(1,k)。
(3)若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为=(x2-x1,y2-y1)。
9. 法向量求法:法向量(a,b,c)与面内向量乘积为零,带入求解方程。
如需更多公式和信息,建议查阅数学书籍或相关网站获取。
2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)
第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。
高中数学立体几何向量公式
高中数学立体几何向量公式立体几何是数学中研究三维空间中图形和对象特性的一个分支。
而向量是立体几何中非常重要的一部分,可以用来描述空间中的位置、方向和大小等。
在高中数学中,常常使用向量来解决立体几何问题。
下面将介绍一些高中数学中常用的立体几何向量公式。
1.向量的模和坐标向量的模表示向量的长度,也称为向量的大小。
记向量AB为→AB,则向量的模记作,→AB,表示向量AB的长度。
向量的模具有非负性、同一性和三角不等式等性质。
向量的坐标表示向量在一些坐标系中的位置。
以三维坐标系为例,向量→AB的坐标记作(AB)=(x1,y1,z1)-(x0,y0,z0),其中(x0,y0,z0)为向量起点A的坐标,(x1,y1,z1)为向量终点B的坐标。
2.向量的加法向量的加法表示将两个向量按照一定规则进行相加得到一个新的向量。
设有向量→AB和→CD,则向量→AB和→CD的和记作→AB+→CD。
3.向量的减法向量的减法表示将两个向量按照一定规则进行相减得到一个新的向量。
设有向量→AB和→CD,则向量→AB和→CD的差记作→AB-→CD。
向量的减法可以等价于向量的加法。
4.向量的数量积向量的数量积又称为点积,表示两个向量的乘积的数量。
设有向量→AB和→CD,则向量→AB和→CD的数量积记作→AB·→CD,满足以下计算公式:→AB · →CD = ,→AB,× ,→CD,× cosθ其中,θ为→AB和→CD之间的夹角。
从公式可以看出,数量积是一个标量,它表示的是两个向量之间的相似程度。
5.向量的向量积向量的向量积又称为叉积,表示两个向量的乘积的向量。
设有向量→AB和→CD,则向量→AB和→CD的向量积记作→AB×→CD,满足以下计算公式:→AB × →CD = ,→AB,× ,→CD,× sinθ × →n其中,θ为→AB和→CD之间的夹角,→n为单位向量,垂直于平面ABCD的法向量。
高中数学空间向量公式大全
高中数学中,空间向量是一个重要的概念,与之相关的公式较多。
以下是一些主要的空间向量公式:
1.空间向量的模长公式:若向量a = (x1, y1, z1),则其模长|a| = √(x1² + y1² + z1²)。
2.空间向量的数量积公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的数
量积a·b = x1x2 + y1y2 + z1z2。
3.空间向量的夹角公式:cosθ = (a·b) / (|a||b|),其中θ是向量a和向量b之间的夹角,a·b
是它们的数量积,|a|和|b|分别是它们的模长。
4.空间向量的加法公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的和a +
b = (x1 + x2, y1 + y2, z1 + z2)。
5.空间向量的减法公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的差a - b
= (x1 - x2, y1 - y2, z1 - z2)。
6.空间向量的数乘公式:若向量a = (x, y, z),实数λ,则数乘λa = (λx, λy, λz)。
以上是空间向量的基础公式,通过这些公式,可以解决很多与空间向量相关的问题。
请注意,这些公式都基于向量的坐标表示,因此在实际应用中,需要首先确定向量的坐标。
此外,还有一些空间向量的性质,如共线向量、共面向量等,这些性质在解决空间几何问题时非常有用。
如果需要更详细的信息,建议查阅高中数学教材或相关资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必背公式——立体几何与空间向量
知识点复习:
1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。
2. 在计算空间几何体体积时注意割补法的应用。
3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行
线面平行
面面平行,线线垂直
线面垂直
面面垂直。
4.求角:(1)异面直线所成的角:
可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>=
1212122
222
2
2
1
1
1
222
||||||
a b a b x y z x y z ⋅=
⋅++⋅++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。
(2)直线与平面所成的角:
在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin ||||
AB m AB m β⋅=
(m 为平面α的法向量). (3)二面角:
方法一:常见的方法有三垂线定理法和垂面法;
方法二:向量法:二面角l αβ--的平面角cos ||||
m n arc m n θ⋅=或cos ||||m n
arc m n π⋅-
(m ,n 为平面α,β 的法向量). 5. 求空间距离:
(1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:||
||
AB n d n ⋅=
(n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: ||
||
AB n d n ⋅=
(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。
题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,
其三视图如右,若图中圆的半径为1,等腰三角形的腰 长为5,则该几何体的体积是( ) A.
43π B.2π C.83π D.103
π 例2:某几何体的三视图如右图所示,则该几何体的表面积 为( )
A.180
B.200
C.220
D.240
例3:右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )
A .10π
B .11π
C .12π
D .π13 题型二:空间点、线、面位置关系的判断
例4:已知m 、n 是不重合的直线,α和β是不重合的平面,有下列命题:
(1)若α⊂m ,n ∥α,则m ∥n ;(2)若m ∥α,m ∥β,则α∥β; (3)若n =⋂βα,m ∥n ,则m ∥α且m ∥β; (4)若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是( ) A .0 B .1 C .2
D .3
例5:给出以下四个命题:
①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行; ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行; ④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直; 其中真命题的个数是( ).
A .4
B .3
C .2
D .1 例6:给出下列命题
①过平面外一点有且仅有一个平面与已知平面垂直;②过直线外一点有且仅有一个平面与已知直线平行;③过直线外一点有且仅有一条直线与已知直线垂直;④过平面外一点有且仅有一条直线与已知平面垂直; 其中正确命题的个数为( ).
俯视图 正(主)视图 侧(左)视图
2 3
2 2
A .0个
B .1个
C .2个
D .3个
☆题型三:空间线面位置关系的证明和角的计算
例7:空间四边形ABCD 中,CD AB =且成0
60的角,点M 、N 分别为BC 、AD 的中点,求异面直线AB 和MN 成的角.
例8:已知三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,AB AC PA 2
1
=
=, N 为AB 上一点,AN AB 4=,M ,S 分别为PB ,BC 的中点.
(1)证明:SN CM ⊥;(2)求SN 与平面CMN 所成角的大小. 例9:如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD . 底面ABCD 为梯形,//AB DC ,AB BC ⊥.PA AB BC ==, 点E 在棱PB 上,且2PE EB =. (1)求证:平面PAB ⊥平面PCB ; (2)求证:PD ∥平面EAC ;
(3)求平面AEC 和平面PBC 所成锐二面角的余弦值.
例10:已知四棱锥ABCD P -的底面为直角梯形,DC AB //,⊥=∠PA DAB ,90
底面ABCD , 且12
1
==
==AB DC AD PA ,M 是PB 的中点。
(1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角余弦值;
(3)求面AMC 与面BMC 所成二面角的余弦值。
题型四:空间距离的计算
例11:点M 是线段AB 的中点,若A 、B 到平面α的距离分别为cm 4和cm 6,则点M 到平面α的距离为 .
例12:如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离; 例13:如图,在长方体1111D C B A ABCD -中,5=AB ,2=BC ,
221=AA ,E 在AD 上,且1=AE ,F 在AB 上,且3=AF ,
(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。
例14:如图,正方形ABCD 与ABEF 成︒60的二面角,且正方形的边长为a ,M 、N 分别为BD ,EF 的中点,求异面直线BD 与EF 的距离。
例15:如图,四棱锥P-ABCD 的底面是正方形,,PA ABCD ⊥底面
33PA AB a ==,求异面直线AB 与PC 的距离。
例16:已知1111D C B A ABCD -是底面边长为1的正四棱柱,1O 为11C A 与11D B 的交点. (1)设1AB 与底面1111D C B A 所成角的大小为α,二面角111A D B A --的大小为β. 求证:αβtan 2tan =
;
(2)若点C 到平面11D AB 的距离为
3
4
,求正四棱柱1111D C B A ABCD -的高.。