最新大豆加工最新研究进展共34页文档
大豆加工 调研报告
大豆加工调研报告大豆加工调研报告一、调研目的和方法本次调研旨在了解大豆加工行业的发展现状和趋势,为投资者提供参考意见。
调研主要通过网络搜集资料和实地访谈的方式进行。
二、大豆加工行业概况大豆加工是将大豆加工成大豆油和豆粕的过程。
大豆油是一种重要的食用油,被广泛应用于食品加工、餐饮行业和家庭烹饪中;豆粕则是饲料厂生产动物饲料的重要原料。
大豆加工行业是农产品加工行业中的重要组成部分,也是农林牧渔业中的重要支柱产业。
三、大豆加工行业发展现状1. 行业规模大豆加工行业规模逐渐扩大,年产豆粕和豆油已分别达到X 和Y吨。
随着人们对健康饮食的追求,大豆油的市场需求不断增加,豆粕也逐渐成为饲料厂重要的原料之一。
2. 技术水平大豆加工行业的技术水平较高,主要分为传统压榨工艺和先进萃取工艺两种。
传统压榨工艺能够充分利用大豆原料,但油脂含量相对较低;而先进萃取工艺能够提取更多的油脂,但需要较高的设备投资和工艺控制。
3. 市场竞争大豆加工行业竞争激烈,主要集中在大型豆油企业和小型加工企业之间。
大型企业具有规模经济效应和品牌优势,能够提供更稳定的产品质量和较低的成本,占据了市场的主导地位。
小型企业则通过灵活的生产和销售方式,在一些地方市场上获得一定份额。
四、大豆加工行业的发展趋势1. 产业集中度提高随着市场竞争的加剧,大豆加工行业将逐渐呈现出产业集中度提高的趋势。
大型企业通过并购或自身发展,将增加市场份额,进一步巩固行业地位。
2. 开发大豆副产品大豆加工行业可以考虑进一步开发大豆副产品,如大豆蛋白粉、大豆异黄酮等,以提高产品附加值和利润空间。
3. 加强技术研发随着科技的进步,大豆加工行业应加强技术研发,提高生产效率和产品质量。
先进的加工技术和设备将成为企业提高竞争力的关键。
五、结论大豆加工行业发展前景广阔,市场需求不断增加。
投资者可以考虑在大型企业中寻找投资机会,同时关注技术创新和产品差异化,以提高竞争力。
此外,环保和可持续发展也是大豆加工行业需要关注的问题,应采取措施提升绿色生产水平和实现可持续发展。
大豆加工新技术
进行了改进
传统豆制品高新技术的选用
2
1.2 大豆蛋白食品加工技术
主要有大豆分离蛋白、大豆组织蛋白、大豆浓缩蛋白。 其应用: 在粮食及其制品中的应用 在饮品及糖果制品中的应用 在肉制品中的应用 在医药、化工方面的应用 在纺织品中的应用
3
1.3 大豆油脂食品加工技术
浸出技术与设备的改进 超临界流体技术、低湿膨化浸出设备、低湿浸出闪蒸脱 溶技术的应用 油脂精深加工产品的开发 人造奶油、起酥油、代可可脂、粉末油脂、改性油脂
中国大豆食品加工新技术
•前言——中国大豆食品的发展简历 •大豆食品加工技术现状 •大豆食品加工中高新技术的应用
•大豆加工利用研究新动向
•找出差距,定位研究方向推动我国大豆产业发展
1
1 大豆食品加工技术现状
1.1 全脂大豆食品加工技术
粉状制品的加工改变了传统工艺
豆奶加工从包装、风味及脂肪氧化酶的脱腥
↓ 成品←粉碎←脱水烘干←离心分离
利用黄浆水发酵制取B族维生素工艺
14
2.5 大孔树脂吸附技术
应用于大豆皂甙、大豆异黄酮等生理物质的纯化
大豆皂甙纯化技术原理
选用弱极性笨乙烯型交联树脂
在丙酮、乙醇、甲醇中可以梯度洗脱极性物质、较大
极性化学物质、次大极性物质、弱极性及非极性成分
前处理:大孔树脂的饱和度试验
加工产业科技信息不畅
标准不健全,不统一 多头管理,低水平重复
21
方向的定位:
突出自有优势
坚持市场为导向
强化自主创新
实施跨越战略
坚持持续发展
加强政府引导
22
具体工作:
(一)合理布局、精心策划,构筑大豆生产加工基地体系 建立原料生产基地
大豆加工新技术
• 大豆加工技术概述 • 大豆加工新技术介绍 • 大豆加工新技术的应用与优势 • 大豆加工新技术面临的挑战与解决
方案 • 大豆加工新技术的前景展望
01
大豆加工技术概述
大豆加工技术的定义与特点
定义
大豆加工技术是指通过物理、化学或 生物的方法,将大豆原料转化为大豆 制品的过程。
特点
大豆加工技术具有高效、节能、环保 等特点,能够满足人们对大豆制品的 多样化需求,提高大豆的附加值。
术
利用乙醇或乙酸乙酯等溶剂从大 豆中提取异黄酮,开发具有保健 功能的产品。
大豆低聚糖提取技
术
利用酶解或化学方法从大豆中提 取低聚糖,改善肠道菌群平衡和 免疫功能。
大豆磷脂提取技术
利用乙醇或丙酮等溶剂从大豆中 提取磷脂,用于药物、食品和化 妆品等领域。
大豆生物发酵技术
大豆酸奶发酵技术
01
将大豆经过乳酸菌发酵,生产出具有丰富营养价值和保健功能
生物技术的运用
通过生物技术手段,将大豆中的营养成分高效提取并应用于其他产业,如制药、化妆品 等。
大豆加工技术的智能化与自动化发展
智能化生产线的建设
利用先进的传感器、机器视觉等技术, 实现大豆加工过程的自动化控制和智能 化管理。
VS
自动化设备的研发
研发高效、精准的自动化设备,提高大豆 加工的生产效率和产品质量。
04
大豆加工新技术面临的挑战与解 决方案
技术推广与普及的挑战
1 2 3
缺乏专业人才
大豆加工新技术的推广和应用需要具备相关专业 知识和技能的人才,目前这方面的人才储备不足。
设备投入高
新技术的引入需要相应的设备支持,而这些设备 的购置和维护成本较高,对于一些小型企业来说 是一大负担。
大豆加工 调研报告
大豆加工调研报告调研背景及目的:在当前大豆产业逐渐发展壮大的背景下,了解大豆加工行业的现状和未来发展趋势,为相关企业制定战略规划提供依据。
一、大豆加工行业的现状1. 规模与产能:大豆加工企业数量逐年增加,但规模差异较大。
其中,大型企业的生产能力较大,占据较大市场份额。
小型企业生产能力较小,更注重区域特色产品的生产。
2. 加工品种与产量:大豆加工主要分为食用油、豆粕、豆浆等多个品种。
食用油是主要产出品种,占据市场的较大份额。
豆粕用于饲料行业,需求量稳定。
豆浆则多用于日常生活中的消费。
3. 加工技术与设备:大豆加工技术相对成熟,采用了多种先进的加工设备。
部分企业还引进了国外先进技术和设备,提高了产品的加工质量和产能。
4. 市场需求与消费趋势:随着人们对健康饮食的关注度提高,大豆制品受到越来越多消费者的青睐。
食用油与豆浆的消费量逐年增加,豆粕则主要供应饲料行业。
二、大豆加工行业的发展趋势1. 品质与品牌:由于市场竞争激烈,大豆加工企业需要通过提高产品的品质与品牌影响力来增强竞争力。
优质产品与知名品牌的建设将成为发展的重要方向。
2. 创新与研发:大豆加工行业需要不断进行技术创新和新产品研发,以提高产品附加值和市场适应能力。
研发高蛋白食品、二次加工产品等将会成为发展的热点。
3. 健康与绿色:大豆加工企业需要关注产品的健康与绿色性,避免使用有害物质和保证产品的安全性。
符合健康和环保要求的产品将获得更多消费者的认可。
4. 国际市场与运营:部分大豆加工企业将目光转向国际市场,加强国际贸易合作。
运营管理的现代化将成为未来发展的方向,提高企业的竞争力和运营效率。
结论:大豆加工行业当前呈现出规模扩大、产品品种丰富、技术水平提升等趋势。
未来的发展将注重品质与品牌、创新与研发、健康与绿色、国际市场与运营等方面。
相关企业应积极采取相应策略,提高产品质量,拓展市场份额,实现可持续发展。
中国大豆加工行业研究报告
中国大豆加工行业研究报告
引言:
大豆是世界上重要的经济作物之一,其广泛用于食品加工和畜禽饲料生产等方面。
中国作为全球最大的大豆进口国和消费国,大豆加工行业在中国的发展十分重要。
本报告将对中国大豆加工行业进行详细的研究,包括市场规模、产业链分析、发展趋势等方面的内容。
一、市场规模
目前,中国大豆加工行业已经形成了一个较为完善的产业体系。
根据统计数据显示,中国大豆加工行业的市场规模在近几年呈现出稳定增长的态势。
2024年,中国大豆加工行业收入达到了500亿元人民币,同比增长5%;产量达到了6000万吨,同比增长3%。
随着中国消费者对大豆及其副产品需求的进一步增加,预计未来几年该市场规模将继续扩大。
二、产业链分析
1.上游供应链:
中国大豆加工行业的上游供应链主要包括大豆种植、生产、加工等环节。
由于中国国内大豆产能有限,大部分大豆依赖进口。
主要的大豆供应国包括美国、巴西、阿根廷等。
然而,近年来中美贸易摩擦的升级,对中国大豆进口产生了一定的冲击。
2.中游加工环节:
3.下游销售环节:
三、发展趋势
随着生活水平的提高和消费观念的变化,中国大豆加工行业未来有望迎来更为广阔的发展机遇。
1.借助科技创新提升效率:
2.加强品牌建设:
3.探索多元化发展:
结论:
中国大豆加工行业在近几年呈现出稳定增长的态势,市场规模逐渐扩大。
未来,随着科技创新的推动和消费需求的变化,该行业有望迎来更为广阔的发展机遇。
中国大豆加工企业应加强品牌建设,提升产品质量和竞争力,拓展多元化发展领域,助力行业的可持续发展。
大豆食品最新研究进展Recent Progress in Research and Technology on Soybeans
Food Sci. Technol. Res., 7 (1), 8–16, 2001ReviewRecent Progress in Research and Technology on SoybeansDanji F UKUSHIMAKikkoman Corporation, Noda, Chiba 278-0037, JapanReceived December 12, 2000, Accepted January 11, 2001For a long time, it had been considered that soybean storage proteins play only a role as traditional nutrients and other soybean minor constituents such as isoflavones, saponins, trypsin inhibitors, phytic acid, lectin, etc., act as anti-nutrient factors. At present, however, these substances have all been recognized to have exciting roles in the prevention of heart disease, cancer, osteoporosis, etc. Besides these physiological effects, soybean storage proteins exhibit excellent functional properties physicochemically in food systems, such as gelation, bind ing, emulsification, fat and water absorption, etc. On the other hand, there are some substances having undesirable properties in soybeans, such as off-flavors, allergens, etc. Recently, there was a great progress in the research of a molecular basis on these functionalities, off-flavors, and allergenicities. By applying these results for soybean breeding, the creation of the new cultivars or lines having more improved properties is in progress. Another highlight in soybean research is the success of the crystalliza-tion of -conglycinin and glycinin and the subsequent complete determination of their three-dimensional molecular structures through X-ray crystallographic analysis. This paper overviews these recent investgations.Keywords: soybean, b-conglycinin, glycinin, physiological function, three-dimensional structure, isoflavone, lypoxygenase-free, allergen-less1. IntroductionFor more than 2000 years have people throughout East Asia consumed soybeans in the form of traditional soy foods, such as nimame (cooked whole soy), edamame (green fresh soy; Fuku-shima, 2000a), soy milk (Fukushima, 1994), tofu (Fukushima, 1981), kori-tofu (freeze-denatured and dry tofu; Fukushima, 1980 and 1994), abura-age (deep-fat-fried tofu; Fukushima, 1981), sufu or tofu-yo (fermented tofu; Fukushima, 1981 and 1985), soy sauce (Fukushima, 1985 and 1989), miso (Fukushi-ma, 1985), natto (Fukushima, 1985), tempeh (Fukushima & Hashimoto, 1980), etc. In Western countries, soybeans had be-come to draw people’s attention in 1960s as an economical and high quality vegetable protein source for humans. In the United States, new soy protein products were developed, such as soy flour, soy protein concentrates, soy protein isolates, and their tex-turized products. These soy products were introduced into Japan at the end of 1960s, but their consumption remains only 40,000 metric tons as products (see Table 1). The consumption of soy-beans as foods in Japan is mostly to the traditional soy foods, for which about one million metric tons of soybeans and soybean meal are used, as shown in Table 1. The manufacturing tech-niques and equipments of these traditional soy foods had made a great progress through the technical innovations after the World War II and the modernization of the manufacturing had almost been achieved, until the end of 1980.In Western countries, the history of soybeans for human con-sumption is only several decades, where the non-traditional pro-tein products described above are mainly used as ingredients in formulated foods for their functional properties, such as water and fat absorption, emulsification, foaming, gelation, binding, etc. These soy foods have penetrated steadily into Western coun-tries as healthy foods, but the growth is not so high as they expected, perhaps owing to their strong off-flavors associated with their products. However, the consumption of soy foods in the United States has begun to increase abruptly with a turning point in 1997 (Liu, 2000). Undoubtedly, this increase is due to the penetration of the recognition that soybeans possess the excit-ing physiological functions. Namely, numerous investigations during the 1990s put soybeans in the spotlight, where soybean storage proteins and soybean minor components traditionally considered to be antinutritional factors have been recognized to have exciting roles in the prevention of chronic disease. Further-more, FDA authorized “Soy Protein Health Claim” on October 26, 1999, that 25 grams of soy protein a day may reduce the risk of heart disease. Since the market is very much responsive to this Health Claim, soy foods will penetrate rapidly into Western cul-tures and diets.In the processing and utilization of soybeans, the following four points are very important. One is the nutritional and physio-logical aspects, the second is the functional properties working in food systems, the third is the unfavorable substances such as off-flavors, allergens, etc., and the forth is the creation of the benefi-cial cultivars and lines. This paper deals with the review on the recent progress in these subjects.2. Physiological Functions of Soybeans and Soy Food Prod-uctsReevaluation of nutritive value of soyb ean storage pro-teins The quality of soybean proteins has actually been under-valued until recently, because the protein efficiency ratio was based upon the growth of laboratory rats. Growing rats not only possess a much higher requirement for proteins than infants, but also a much higher need for certain amino acids than humans (Steinke, 1979). Particularly, the rat requirement for methionineE-mail: danjif@ka 2.so-net.ne.jpRecent Progress in Research and Technology on Soybeans9is about 50% higher (Sarwar, 1985). According to the Report of a Joint FAO/WHO/UNU Expert Consultation in 1985, the amino acid requirements are different depending upon human age and methionine is not a limiting amino acid for soybean proteins, except infants (see Table 2; Fukushima, 1991a). Both the World Health Organization (WHO) and the United States Food and Drug Administration (FDA) adopted the protein digestibility cor-rected amino acid score (PDCAAS) as the official assay for eval-uating protein quality. Soybean proteins have a PDCAAS of 1.0, indicating that it is able to meet the protein needs of children and adults when consumed as the sole source of protein at the recom-mended level protein intake of 0.6 g/kg body wt. (Y oung, 1991). It is now concluded that the quality of soybean proteins is com-parable to that of animal protein sources such as milk and beef.Physiological functions of soybean storage proteinsFormerly, soybean proteins had been considered to play only arole as traditional nutrients. In the latter half of 1970s, however, itwas found that soybean proteins have a hypocholesterolemiceffect. As shown in Fig. 1 (Descovich et al., 1980), the animalproteins in the diet are exchanged with soybean proteins, theserum cholesterol is lowered markedly. Since then, numerousinvestigations on the hypocholesterolemic effect of soybean pro-teins have been carried out. According to a meta-analysis of 38separate studies involving 743 subjects, the consumption of soyprotein resulted in significant reduction in total cholesterol Fig. 1.Total cholesterol levels in type II patients treated with soy proteindiets. Mark (*) indicates highly significant difference from mean plasmalipid levels during the term before soy protein diets. Source: Descovich etal. (1980).Table 1.Consumption of traditional soy food products in 1998 in Japan.Soybeans a)Soybean meal b)Total Tofu and its derivatives496,0000496,000Kori-tofu28,000028,000Natto128,0000128,000Miso162,0000162,000Soy sauce26,300157,600183,900Soy milk4,20004,200Major traditional products (Total above)844,500157,6001,002,100Non-traditional products (Soy proteins)4,000 (as product)4,000 (as product)Food use total1,032,000401,000c)1,433,000c)Source: a)Shokuhin Sangyou Shinbunsha and b)Ministry of Agriculture, Forestry, and Fishery. c)Including non-food meal other than feeds.Table 2.Patterns of amino acid requirements and soybean amino acid composition.Amino acid(mg/g protein)Pattern of requirement Amino a. comp.of soybeans3–4 Mo.2–5 Yr.10–12 Yr.Adult His2619191627 Ile4628281348 Leu9366441978 Lys6658441661 Met + Cys4225221726 Phe +Tyr7263221990 Thr433428935 Trp17119513 Val5535251348 Total (Including His)460339********* Total (Minus His)434320222111399 Source: Joint FAO/WHO/UNU Expert Consultation (1985).Table 3.Meta-analysis of effects of soy protein intake.No. ofstudiesNo. ofsubjectsChange(mg/dl)95%CI a)Change(%)Total cholesterol38730–23.2–32.9~–13.5–9.3LDL cholesterol31564–21.7–31.7~–11.2–12.9HDL cholesterol30551+1.2–3.1~+5.4+2.4VLDL cholesterol20255–0.4–4.6~+3.9–2.6Triglyceride30628–13.3–25.7~–0.3–10.5a)Confidence interval. Source: Anderson et al. (1995).10D. F UKUSHIMA(9.3%), LDL cholesterol (12.9%), and triglycerides (10.5%),with a small but insignificant increase (2.4%) in HDL cholesterol (see Table 3; Anderson et al ., 1995). In linear regression analysis,the threshold level of soy intake at which the effects on blood lip-ids became significant was 25 g. Thus, soy protein represents a safe, viable, and practical nonpharmacologic approach to lower-ing cholesterol. It is clear that soybean storage proteins possess the hypocholesterolemic effect in themselves, because the plas-ma total cholesterol of the rats fed casein-cholesterol diets was reduced by 35 and 34% by the administration of purely isolate b -conglycinin and glycinin, respectively (Lovati et al., 1992). The exact mechanism of the cholesterol reduction has not been estab-lished fully. Some suggest that cholesterol absorption and/or bile acid reabsorption is impaired, when soybean proteins are fed,while others propose that changes in endocrine status, such as alteration in insulin to glucagon ratio and thyroid hormone con-centrations, are responsible (Potter, 1995).In addition to the cholesterol-lowering effects described above, soybean proteins suppress the lipogenic enzyme gene ex-pression in the livers of genetically fatty rats (Wistar fatty rats),indicating that dietary soybean proteins are useful for the reduc-tion of body fats (Iritani et al., 1996).Physiologically active fragments derived from soyb ean storage protein molecules It has been suggested that some hydrophobic polypeptides produced through proteolytic hydroly-sis of soybean proteins, which bind well to bile acids, are in-volved in the hypocholesterolemic effect of soybean proteins (Iwami et al ., 1986; Sugano et al ., 1988). Minami et al. (1990)found that the A 1a and A 2, the acidic polypeptides of the glycinin subunits A 1a B 1b and A 2B 1a , strongly combine to bile acids. Fur-ther, they obtained the peptide fraction of Ile (114)–Arg (161)with 48 amino acid residues through a tryptic digestion of A 1a peptide. This peptide has a high hydrophobicity and provides a binding site to bile acids.Besides these, there are many physiologically active peptide fragments derived from storage protein molecules, which have antioxidative activities (Chen et al., 1995), the inhibitory action for angiotensin converting enzymes (Kawamura, 1997), or the promoting action for phagocytosis (Y oshikawa et al., 1993), as shown in Table 4.Physiological functions of soy bean minor com-ponents Another importance in the physiological action of soy-beans is that soybean minor components have exciting roles in the prevention of chronic disease (see Table 5). Hitherto, these minor components, such as isoflavones, saponins, trypsin inhibi-tors, phytic acid, lectin, etc., were thought to be antinutritional factors, but now they are recognized to have preventing effects on cancer (Messina & Barnes, 1991). Among these, isoflavones (mainly genistein and daidzein) are particularly noteworthy,because soybeans are the only significant dietary source of these compounds. Isoflavones have not only anticarcinogenic activi-ties, but also the preventive effects on osteoporosis (Anderson &G arner, 1997) and the alleviation of menopausal symptoms (Albertazzi et al., 1998).Physiologically functional sub stances produced b y micro-organisms contained in fermented soy foods The physiologi-cally functional substances described above are the components originally contained in soybeans. Besides these substances, how-ever, some of the traditional fermented soy foods, such as soy sauce, miso, natto, and tempeh, have the physiologically active substances which are produced by microorganisms. Particularly,it is very interesting that HEMF (see Fig. 2), the key flavor com-ponent in Japanese-style fermented soy sauce, has quite a strong anticarcinogenic activity (Nagahara et al., 1992). HEMF is bio-synthesized through the pentose-phosphate cycle by the yeast during the fermentation (Sasaki, 1996). Therefore, it is not present at tamari-type soy sauce, because of the lack of yeast fer-mentation. HEMF is a very unique compound which is not con-tained in foods other than Japanese-style fermented soy sauce and miso (Sasaki, 1996). The HEMF content in miso is low,namely around 0–7 ppm (Sugawara, 1991; Hayasida, 1999),Table 4.Physiologically active peptide fragments from soybean storage protein.Peptide fragmentsProtein sourceVNPHQNa )b -Conglycinin LVNPHDHQN a )b -ConglycininAntioxidant activities LLPHH a )b -Conglycinin LLPHHADADY a )b -ConglycininVIPAGYP a )b -Conglycinin LQSGDALRVPSGTTYY a )b -ConglycininInhibition of angiotensin-converting enzymes FVIPAGY b )a ,a ’(b -Conglycinin subunit)ASUDTLF b )a ,a ’ (b -Conglycinin subunit)DQTPRVF b )A 5A 4B 3 (Glycinin subunit)YRILEF b )a ’(b -Conglycinin subunit)Promoting action of phagocytosis MITLAIPVNKPGRc )a ’(b -Conglycinin subunit)HCQRPR d )A 1a B 1b (Glycinin subunit)QRPR d )A 1a B 1b (Glycinin subunit)Source: a )Chen et al . (1995); b )Kawamura (1997); c )Tanaka et al . (1994); and d )Yoshikawa et al . (1993).Fig. 2.4-Hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone. Abbrevi-ated as HEMF.Table 5.Physiological functions of minor components contained in soy-beans.Anticarcinogenic activities a ), prevention of cardiovascu-lar diseases b ), prevention of osteoporosis c ), antioxidant activeties d ), and alleviation of menopausal symptoms e ).IsoflavonesSaponinsAnticarcinogenic activities a ),f ),g ), hypocholesterolemic effects f ), Inhibition of platelet aggregation, HIV preventing effects (group B saponin)h ), and antioxidant activities (DDMP saponin)i ).Phytosterol Anticarcinogenic activities a ).Phytic acid Anticarcinogenic activities a ),f ).Lectin(Hemagglutinin)Activation of lymphocytes (T cell)h ) and aggregating action of tumor cells h ).Nicotianamine Inhibitor of angiotensin-converting enzymes j ), k ).Protease inhibitors Anticarcinogenic activities a ),f ).a )Hawrylewicz et al. (1995); b )Setchell and Cassidy (1999); c )Anderson and G arner (1997); d )Yoshiki and Okubo (1997); e )Albertazzi et al . (1998);f )Messina and Barnes (1991); g )Rao and Sung (1995); h )Harada (1999);i )Yoshiki and Okubo (1995); j )Kinoshita et al . (1993); and k )Kinoshita et al.(1994).Recent Progress in Research and Technology on Soybeans11whereas that in Japanese-style fermented soy and sauce is very high, namely around 230 ppm. HEMF is effective when it is fed to mouse at 4 mg/kg body wt./day, indicating that it is a potent anticarcinogen. As another physiological effect, fermented soy sauce has the activity to inhibit angiotensin I-converting enzyme,but this activity is mostly ascribed to nicotianamine (Kinoshita et al., 1994), which is the constituent of soybeans (see Table 5). Natto made through the fermentation by Bacillus natto has a strong fubrinolytic activity, which is due to the enzyme named nattokinase, produced by Bacillus natto (Sumi et al., 1987).Natto also has anti-tumor-promoting activity, because the extract prevented the reduction of dye transfer caused by a typical tumor promoter of 12-O-tetradecanoylphorbol-13-acetate (Takahashi et al., 1995). Besides these, natto possesses the activities to inhibit angiotensin I-converting enzyme, as soy sauce does (Okamoto et al., 1995). The substances responsible for these activities have not been elucidated yet. However, it is certain that nicotianamine does not relate to these activities, because it disappears during the fermentation of natto (Kinoshita et al., 1994).3. Physicochemical Functions of Soybean Storage Proteins Approximately 90% of the proteins in soybeans exist as stor-age proteins, which mostly consist of b -conglycinin and glyci-nin. b -Conglycinin (Koshiyama, 1965; Catsimpoolas & Eken-stam, 1969; Koshiyama & Fukushima, 1976a) has the sedimen-tation coefficients of 7S, whereas glycinin (Mitsuda et al., 1965)has that of 11S. Besides b -conglycinin, there are two kinds of globulins which have the sedimentation coefficient of 7S. They are g -conglycinin (Catsimpoolas & Ekenstam, 1969; Koshiyama & Fukushima, 1976b) and basic 7S globulin (Y amauchi et al.,1984). However, these two 7S globulins are minor components which account for less than a few percent. The major storage proteins of b -conglycinin and glycinin possess a variety of func-tional properties physicochemically for food applications as shown in the introduction. These functional properties are ascribed to the intrinsic physicochemical characteristics which are based on the molecular structures. Therefore, this chapter focuses on recent developments in the structure-function rela-tionship of b -conglycinin and glycinin.Basic structures of b -conglycinin and glycinin mole-cules b -Conglycinin is a glycoprotein and a trimer with a molecular mass of 150–200 kDa. Major subunits are a ’ (72kDa), a (68 kDa), and b (52 kDa) (Thanh & Shibasaki, 1977).Besides these, there is a minor subunit called g in b -conglycinin (Thanh & Shibasaki, 1977). The amino acid sequences of these subunits are similar each other (Hirano et al., 1987). Each of a ’and a subunits possesses one cysteine residue (-SH) near the N-termini, whereas b subunit does not possess any cysteine residue (Utsumi et al., 1997). No cystine residues (-SS-) exist in these subunits. b -Conglycinin exhibits molecular heterogeneity, where six molecular species are identified as a ’b 2, ab 2, aa ’b , a 2b ,a 2a ’, and a 3 (Thanh & Shibasaki, 1978; Y amauchi et al., 1981).In addition, Y amauchi et al. (1981) found another species of b 3.b -Conglycinin trimers cause association or dissociation depend-ing upon the pHs and ionic strengths of the solution (Thanh &Shibasaki, 1979).Glycinin is a hexamer with a molecular mass of 300–380 kDa.Each subunit is composed of acidic (~35 kDa) and basic (~20kDa) polypeptides, which are linked together by a disulfide bond(Staswick et al., 1984). In glycinin, five subunits are identified as A 1a B 1b (53.6 kDa), A 2B 1a (52.4 kDa), A 1b B 2 (52.2 kDa), A 5A 4B 3(61.2 kDa) and A 3B 4 (55.4 kDa), which are classified into group I (A 1a B 1b , A 2B 1a , A 1b B 2) and group II (A 5A 4B 3, A 3B 4) by the extent of the homology (Nielsen, 1985; Nielsen et al., 1989). Each sub-unit in group I has two cysteine and three cystine residues,whereas that in group II has two cysteine and two cystine resi-dues (Utsumi et al., 1997). Glycinin subunits exhibit polymor-phism, that is, there are some amino acid replacements in the same kind of subunit among soybean cultivars (Mori et al., 1981;Utsumi et al , 1987). Moreover, glycinin exhibits molecular heter-ogeneity, because the molecule is a hexamer with different sub-unit composition (Utsumi et al., 1981). Glycinin hexamers dis-sociate to their constituent polypeptides, subunits, and half-mole-cules, depending upon pHs, ionic strengths, and heating tempera-tures (Wolf & Briggs, 1958; Mori et al., 1982).Physicochemical functionalities and three-dimensional structures of protein molecules The difference of the function-alities on the gel formation, thermal stability, and emulsification,in soybean storage proteins and their subunits is shown in Table 6(Utsumi et al., 1997). The mechanisms on the gel formation of b -conglycinin (Nakamura et al., 1986) and glycinin (Mori et al.,1982; Nakamura et al., 1984) are studied in details. G lycinin forms a turbid, hard, and not fragile gel, whereas b -conglycinin forms a transparent, soft, but rather elastic gel, in 100˚C heating (Utsumi et al , 1997). The A 2 polypeptide of glycinin A 2B 1a sub-unit closely relates to gel turbidity, whereas the A 3 polypeptide of the A 3B 4 subunit relates to the gel hardness. The hardness of gly-cinin gel increases in proportion to the content of A 3 polypeptide.The A 5A 4B 3 subunit relates to the easiness of gel formation,because of the easy cleavage of the hydrophobic bonds between the A 5 and A 4 acidic chains during heating. b -Conglycinin is more unstable thermally than glycinin, but the emulsifying and emulsion-stabilizing abilities of b -conglycinin are much stronger than those of glycinin.The physicochemical functions of proteins depend upon their three-dimensional structures substantially. The polypeptide chains of the protein molecules are unfolded through the heat treatment of soybeans and as a result the amino acid side resi-Table 6.Functional properties of soybean storage proteins and their sub-units working physicochemically in food systems. FunctionalityProteins or subunits Property or its differenceb -ConglycininTransparent, soft, but rather elastic gel.Glycinin Turbid, hard, and not so fragile gel.Gel formationA 2B 1a subunit A 2 polypeptide relates to gelhardness.A 3B 4 subnunitA 3 polypeptide relates to gel hardness.A 5A 4B 3 subunit A 5A 4B 3 subunit relates to the easinessof gel formation.Soybean storage b -Conglycinin ϽGlycininThermal stability proteinsb -Conglycinin a Ͻa ’Ͻb subunitsSoybean storage b -Conglycinin ϾGlycininEmulsification proteinb -Conglycinin Subunitsa мa ’ӷb Source: Utsumi et al. (1997).12D. F UKUSHIMAdues buried inside a molecule are exposed on the surface. The exposed -SH or hydrophobic residues combine the protein mole-cules through -SH, -SS- interchange reaction or hydrophobic bonding, respectively. In this case, it is very important that these active residues are present at an accessible location of the mole-cules each other. Table 7 shows the numbers of -SH and -SS-groups in each subunit. The larger numbers of -SH groups and their topology in glycinin make glycinin gel much harder and more turbid in comparison with b -conglycinin gel, whereas the higher hydrophobicity and more easily unfolded structure in b -conglycinin make its emulcifying ability much stronger than that of glycinin (Utsumi et al., 1997).In order to improve these functional properties, it is necessary to know about the theoretical relations between the functional properties and the three-dimensional structures of the molecules.The research on the three-dimensional structures of soybean stor-age proteins started 35 years ago. We investigated the three-dimensional structures of b -conglycinin and glycinin molecules through optical rotatory dispersion (ORD), circular dichroism (CD), infrared absorption spectra, ultra-violet difference spectra,deutration studies, etc. (Fukushima; 1965, 1967, and 1968).However, these methods are the indirect ones for the measure-ment of three-dimensional structures. For a direct and complete analysis of three-dimensional structures, soybean proteins must be crystallized, followed by a X-ray crystallographic analysis.The complete amino acid sequence of molecular subunits of soy-bean storage proteins has been determined in early 1980s through the sequence analysis of full-length cDNA and a genom-ic clone (see the review of Fukushima, 1988, 1991a, and 1991b).For a long time, however, the X-ray analysis of soybean proteins have not been carried out, because the molecular heterogeneities in both b -conglycinin and glycinin obstructed their crystalliza-tion. Utsumi’s group has overcome these difficulties by using a special soybean variety, of which b -conglycinin molecules or glycinin molecules are composed of the same kinds of subunits [b homotrimer (3b ) in b -conglycinin and A 3B 4 homohexamer (6A 3B 4) in glycinin]. Thus, they have succeeded in the crystalliza-tion of both b homotrimer b -conglycinin and A 3B 4 homohexam-er glycinin (see Fig. 3) and in the subsequent X-ray crystal-lographic analysis of the three-dimensional structures of their molecules (Maruyama et al.,1999; Adachi et al., 1999). The schematic diagrams of the polypeptides are shown in Fig. 4 and 5 (Fukushima, 2000b). The success of the complete analysis of the three-dimensional structures should be mentioned to be epoch-making in knowing the mechanisms of the functionalities of soybean proteins, because most of the properties of proteins are ascribed to the conformation of the molecular surface in the three-dimensional structures of the molecules. Furthermore, theTable 7.Number of cysteine and cystine in each subunit of b -conglycinin and glycinin.SubunitCysteine (-SH)Cystine (-SS-)a ’10b -Conglycinin a10b 00A 1a B 1b 23A 2B 1a23Glycinin A 1b B 223A 3B 422A 5A 4B 322Source: Utsumi et al. (1997).(A) (B)Fig. 3.The crystals of b -conglycinin b homotrimer (A) and glycinin A 3B 4homohexamer (B) (By the courtesy of Dr. S. Utsumi).Fig. 4.Three-dimensional molecular structures of b -conglycinin b homo-trimer (By the courtesy of Dr. S. Utsumi).Fig. 5.Three-dimensional molecular structures of glycinin A 3B 4 homo-hexamer (By the courtesy of Dr. S. Utsumi).Table 8.Contents of secondary structures contained in soybean storage proteins molecules.b -Conglycinin Glycinin X-ray a )CD b )X-ray a )CD b )a -Helix 10585b -Structure 33353635Disordered structure 57605660a )Values obtained by X-ray crystallographic method. b )Values obtained by circular dichroism method.Recent Progress in Research and Technology on Soybeans13elucidation of the detailed three-dimensional structures enables us the theoretical modifications of the molecules, leading into the improvement of soybean protein properties through the protein engineering. Table 8 shows the comparison between the X-ray data of Utsumi’s group (Fukushima, 2000b) and our ORC and CD data (Fukushima; 1965, 1967, and 1968; Koshiyama &Fukushima, 1973) on the per cent of the secondary structures. It is very interesting that the results of X-ray analysis are in good accordance with the results by our indirect CD method around 30 years ago.4. Quality Improvement of Soy Food ProductsOff-flavors and allergenic proteins in soybeans The most difficult problem limiting the expanded use of soy protein prod-ucts in the Western countries is strong off-flavors associated with these products. There are two types of off-flavors. One is grassy and beany flavors and the other is bitter, astringent, and chalky flavors. The grassy-beany flavors are developed through the action of the three kinds of lipoxygenases 1, 2, and 3 present at soybeans. The bitter, astringent, and chalky flavors are caused by saponins and isoflavones (Okubo et al., 1992). The off-flavors of isoflavones are enhanced by the hydrolysis into their aglycones through the action of three kinds of b -glucosidases A, B, and C in soybeans (Matsuura & Obata, 1993). Thus, both lipoxigenases and b -glucosidases contained in soybeans play an important role in the production or enhancement of the off-flavors. Moreover,the lipid hydroperoxides produced by lipoxygenases oxidize the free -SH groups of soybean proteins, resulting into the decrease of their gel-forming ability (Fukushima, 1994). For a long time, a variety of attempts to remove or mask these off-flavors have been done through the operation during processing. However, it was impossible to remove or mask the off-flavors to a satisfactory extent by these methods.Another unbeneficial substance other than off-flavors in soy-beans is allergenic proteins. The major allergenic proteins in soy-beans are shown in Table 9 (Ogawa et al., 1991). It is noticeable that the two of the three subunits of b -conglycinin have allergen-ic proteins. It is impossible to remove all of these major allergens through usual treatments or processing.Genetic improvement of soybeans In the last two decades,the various soybean mutant genes which control the production of enzymes, allergenic proteins, storage proteins, etc. have been identified in the world soybean germplasm. Using these mutants,the commercially available soybean cultivars without having undesirable substances or with the beneficially modified compo-sition of storage proteins have been bred. As an example, there is the cultivar “Kunitz” [Illinois Agricultural Experiment Station (AES)] lacking Kunitz’s soybean trypsin inhibitor (Bernard et al.1991) or the cultivar “Ichihime” (Kyushu AES) lacking all of the lipoxygenases 1, 2, and 3 (Nishiba et al., 1995). The develop-ment of lipoxygenase-free cultivar will be beneficial for the pro-duction of non-traditional soy products, since Western people are very sensitive for beany flavors. However, the soybean cultivars lacking the b -glucosidases have not been developed yet, which are the enzymes enhancing the off-flavors by changing the isofla-vones into their aglycones.There was some progress on the removal of allergenic proteins recently. The cultivar with a high ratio of glycinin to b -conglyci-nin was developed by the group of Tohoku National AES, named Tohoku 124. This cultivar lacks the two major allergenic proteins of 28K and a subunit, while it still possesses allergenic proteins of 30K and b -subunit (Samoto, 1996). Fortunately, the 30K pro-tein can be removed easily by centrifugation, which is bound to IgE antibodies most strongly and frequently. Another group of Kyushu National AES found the wild soybean line, named QT 2,which lacks all of b -conglycinin (Hajika et al., 1998). This line grows normally and produces successive generations, indicating the possibility to breed the soybean varieties, of which storage proteins are mainly composed of glycinin without containing any b -conglycinin. Using this QT 2 line, they obtained the line lacking all the subunits of b -conglycinin by back-crossing with Fukuyu-taka. This line contains only glycinin as storage proteins and that it lacks the three major allergenic proteins of 28K, a , and b sub-units (Takahashi et al., 2000). This had so good field perfor-mance as Fukuyutaka in the on-campus experiment and was named Kyu-kei 305. Kyu-kei 305 should be mentioned to be the variety with the least quantities of allergens so far. Besides these,Table 10.Hardness of tofu gel made from soybeans with different ratio of both 11S/7S proteins and glycinin subunit compositions.Breeding lineGlycinin subunit11S/7S in soy milkBreaking stress of tofu gelGroup IA 5A 4B 3A 3B 4Enrei (control)+–+58/429,891EnB 2-111+++66/349,989EnB 2-110++–62/388,955EnB 2-101+–+57/4310,171EnB 2-100+––45/557,162EnB 2-011–+–52/486,791EnB 2-010–+–33/674,835EnB 2-001––+25/755,381EnB 2-000–––12/883,002Crops: Enrei (control), 380 kg; and others, 384–441 Kg/10 a. Protein content of seeds: Enrei (control), 42%; and others, 39.3–40.7%. Source: Yagasaki et al.(1999).Table 9.Major allergenic proteins in soybeans b ).Protein assignmentMolecular wt. (k Da)Frequency a ) (%)Gly m Bd30 k 3065.2Gly m Bd28 k 2823.2a subunit of 6823.2b -conglycinin b subunit of 4510.1b -conglycinin a )Detection frequency among 69 soybean-sensitive patients with atopic der-matitis. b )Source: Ogawa et al. (1991).。
大豆加工研究新进展
大豆加工研究新进展近年来,随着我国经济的飞速发展,我国大豆的消费需求也在急剧增加。
至2003年我国大豆消费突破3000万吨,进口大豆连续两年超过2000万吨。
消费量占世界大豆消费量的17%(2000年)。
进口大豆在消费中的比例达到58%。
在大豆消费结构中进口大豆的78%用于榨油,而食用大豆几乎是国产大豆,约占总消费的27%,主要用于传统豆制品和豆奶粉、大豆蛋白等新型豆制品的生产。
原料的品质对大豆加工工艺和产品的质量十分重要。
本报告结合国际研究情况和自己的研究小组近期取得的研究成果,介绍了大豆的原料特性与加工需求,尤其是阐述了大豆的蛋白质亚基在加工产品品质中所起的作用。
并指出我国的大豆品种中有丰富的亚基变异,在试验中通过2000多样本的筛选得到了一批缺失或亚基含量水平低的品种。
并报告了β亚基缺失能促进豆奶中蛋白粒子的形成性、对凝固剂的敏感性和增强蛋白质凝胶性。
大豆蛋白是新型的豆制品,用途越来越广泛。
围绕大豆蛋白的用途开发,本报告介绍了大豆蛋白的改性技术和提取、分离技术研究的新进展。
结合大豆蛋白组成和功能性的关系,报告了大豆蛋白的组分分离技术。
大豆蛋白经酶水解后的衍生物—肽具有多种生理活性。
近年来成为大豆加工研究开发的热点。
在明确了大豆肽易吸收性、耐疲劳、增强免疫和抗氧化等活性和苦味去除等技术后,大豆肽应用开发日趋成熟。
本报告介绍了具有鳌合金属离子促进矿物质吸收的肽、具有抑制致病菌黏附作用的大豆糖肽,还有能够使食品增香提味的肽。
结合大豆原料的蛋白组成,该方面的研究有可能成为大豆蛋白的应用新领域,也为专用大豆品种的育种目标提出了新的要求。
关键词:大豆加工进展。
大豆加工 调研报告范文
大豆加工调研报告范文调研报告:大豆加工一、背景介绍大豆是我国重要的农产品之一,也是全球最重要的粮食作物之一。
大豆加工是将大豆转化为食品和饲料的过程,具有重要的经济意义。
本次调研旨在了解大豆加工的发展情况及存在的问题。
二、调研方法本次调研采用了问卷调查和实地访谈相结合的方法。
问卷调查覆盖了大豆加工企业、农户以及相关产业链上下游的各个环节。
实地访谈主要针对大豆加工企业的负责人和技术人员,了解了他们对大豆加工的看法和遇到的问题。
三、调研结果1. 大豆加工企业发展状况根据问卷调查的结果显示,大多数大豆加工企业在近几年都取得了良好的发展。
他们的产品线不断拓展,市场份额逐渐扩大。
同时,大豆加工企业也面临着一些挑战,例如原材料的价格波动和环保要求的提升等。
2. 大豆加工产品的品质与安全通过实地访谈了解到,大豆加工企业在产品品质和安全方面非常重视。
他们采用的先进技术和设备确保了产品的质量和安全性。
同时,大豆加工企业也纷纷推出了一系列低盐、低糖、无添加的健康产品,以满足消费者的需求。
3. 大豆加工产业的发展趋势调查结果显示,大豆加工产业正面临着区域布局不均衡、更新换代速度较慢等问题。
同时,随着消费者对健康食品需求的增加,大豆加工企业将面临更大的市场机遇。
因此,加快产业转型升级,提高产品附加值和竞争力势在必行。
四、建议1. 政府支持:政府应加大对大豆加工产业的政策支持和财政扶持,创造良好的发展环境。
2. 加强科技创新:加大对大豆加工技术研发的投入,提高企业的自主创新能力,推动产业的技术进步。
3. 推进合作发展:大豆加工企业之间应加强合作,形成联盟,共同研发新产品、新技术,提升整个产业的竞争力。
4. 增强品牌建设:加大品牌建设力度,通过品牌塑造提高产品知名度和市场份额。
五、结论大豆加工是我国农业产业的重要组成部分,发展潜力巨大。
当前,大豆加工产业正处于转型升级的关键期,政府、企业和消费者都应加强合作,推动大豆加工产业的健康发展。
黄豆加工产业发展趋势
黄豆加工产业发展趋势黄豆是世界上最重要的油料作物之一,也是我国的重要经济作物之一。
随着人们对健康、营养、绿色食品的需求增加,黄豆加工产业得到了迅猛的发展。
本文将从黄豆加工的背景、发展现状以及未来趋势等几个方面进行分析。
一、黄豆加工的背景1. 黄豆的营养价值黄豆含有丰富的优质蛋白质、不饱和脂肪酸、膳食纤维、维生素和矿物质等营养成分,在保护心脑血管健康、抗氧化、抗肿瘤等方面具有重要作用。
因此,黄豆制品在人们的日常饮食中占据了重要地位。
2. 工业用途的需求黄豆不仅可作为食品原料,还可用于工业生产中的植物油、动物饲料、大豆蛋白、大豆酱等产品的加工。
随着工业化和城市化进程的加快,工业对黄豆的需求也在不断增长。
二、黄豆加工产业的发展现状1. 加工工艺的改进黄豆加工产业经过长时间的发展和技术改进,加工工艺日益完善。
从传统的加工方式到现代化的机械化加工,不仅提高了加工效率,还保持了黄豆制品的营养价值和口感。
2. 产品种类的多样化黄豆加工产业不仅仅局限于豆浆、豆腐等传统产品,还涉及到豆腐干、豆皮、豆渣、豆腐脑等多种品种。
这种多样化的产品满足了人们对不同口味和食物形态的需求。
3. 加工企业的规模化发展随着加工工艺的改进和市场需求的增加,黄豆加工企业逐渐向规模化和集约化的方向发展。
大型的加工企业可以更好地利用现代化的生产设备和科学管理,提高产能,降低成本,更好地满足市场需求。
4. 加工技术的创新在黄豆加工产业中,国内外的科研机构和企业不断开展创新研究,推动了黄豆加工技术的进步。
例如,利用生物工程技术改善黄豆蛋白质的功能性和生理活性,提高产品的质量和附加值;通过超声波、微波等先进技术处理黄豆,提高加工效率和产品的品质。
5. 市场竞争的加剧随着黄豆加工产业的快速发展,市场竞争也日益激烈。
优质的原料、高效的生产工艺、创新的产品和品牌营销,都成为企业在市场竞争中脱颖而出的关键因素。
三、黄豆加工产业的发展趋势1. 高附加值产品的开发随着人们对健康、营养和功能性食品的需求增加,黄豆加工产业将越来越多地开发高附加值产品。
大豆加工研究进展
THANKS.
大豆加工研究的解决方案
• 深入研究大豆中生物活性成分的分子结构和性质:通过深入研究大豆中异黄酮、皂角苷等生物活性成分的分子 结构和性质,揭示其在加工过程中的变化规律,为大豆加工工艺的优化提供理论依据。
• 开发新型大豆加工技术和设备:针对大豆加工过程中存在的问题,开发新型的大豆加工技术和设备,提高加工效率和产品质量。 • 加强大豆加工副产物的综合利用研究:开展大豆加工副产物的综合利用研究,开发出多种高附加值产品,提高资源利用率。 • 推广绿色大豆加工技术:积极推广绿色大豆加工技术,减少环境污染,实现大豆加工产业的可持续发展。
3
生物质能
大豆饼粕可以用于生产生物质能,如生物质燃料、 生物质热能等,具有环保和可持续性。
大豆油粕的利用
食品添加剂
生物塑料
大豆油粕中含有丰富的植物性蛋白质 和矿物质,可以作为食品添加剂添加 到食品中,提高食品的营养价值。
大豆油粕可以用于生产生物塑料,替 代传统的石化塑料,减少对环境的污 染。
化妆品原料
大豆浓缩蛋白技术
醇沉法
利用乙醇将大豆中的可溶性物质分离 出来的方法,具有工艺简单、成本低 廉的优点,但可能会对大豆蛋白的活 性造成影响。
酸沉法
利用酸性物质将大豆中的蛋白质分离 出来的方法,具有工艺简单、成本低 廉的优点,但可能会对大豆蛋白的活 性造成影响。
大豆组织蛋白技术
挤压膨化法
利用高温高压将大豆组织进行膨化的方法,具有口感好、组织结构紧密的优点, 但可能会对大豆的营养成分造成一定损失。
大豆加工产品的营养与功能性平衡
如何在大豆加工产品中保持营养价值和功能性,以满足不同消费人群 的需求,是一个亟待解决的问题。
大豆加工副产物的综合利用
大豆加工业行业发展研究
大豆加工业行业发展研究首先,大豆加工业的发展带动了大豆种植业的发展。
随着大豆加工业的不断壮大,对大豆的需求量也在不断增加。
为了满足市场需求,农民开始大面积种植大豆,增加了农民的收入并改善了农村经济状况。
同时,大豆的高蛋白质和高营养价值也使得大豆成为了农民们的首选作物。
其次,大豆加工业的发展促进了食品加工业的发展。
大豆加工业是饮食行业的重要组成部分,为人们提供了丰富多样的大豆制品。
豆腐、豆浆、豆干、豆皮等大豆制品成为了人们餐桌上不可或缺的食品。
与此同时,大豆加工业的发展也促进了大豆食品加工技术的不断创新和提升。
再次,大豆加工业的发展还推动了农产品精深加工产业的发展。
大豆是农产品精深加工的重点对象之一,通过大豆加工,可以生产出大豆蛋白粉、大豆油、大豆食品添加剂等一系列有附加值的产品,带动了农产品深加工行业的发展。
这不仅提高了农产品的附加值,还促进了相关产业的协同发展。
最后,大豆加工业的发展还有助于资源和环境的保护。
大豆加工业主要利用大豆作为原料进行加工,相比于其他行业,其对环境的影响更小。
另外,在大豆加工的过程中,还能提取出大豆油、大豆蛋白粉等副产品,充分利用资源,减少浪费。
大豆加工业的发展不仅刺激了经济增长,还具有可持续发展的特点。
然而,目前大豆加工业还面临一些挑战。
首先,大豆加工业的市场竞争激烈,企业需要不断提高产品质量和品牌影响力,以在市场中脱颖而出。
其次,大豆加工业还存在一些技术难题,如高效提取大豆蛋白质的技术研发、大豆蛋白质的功能性改性等,需要加强科研投入,提高技术水平。
此外,大豆加工业还需不断创新,推出符合消费者需求的新产品。
综上所述,大豆加工业是一个具有巨大发展潜力和广阔市场前景的行业。
随着人们对健康生活的追求和大豆制品的日益普及,大豆加工业将会得到进一步的发展。
同时,政府和企业应密切合作,加大对大豆加工业的支持和投入,进一步促进大豆加工业的发展,实现经济、社会和环境的可持续发展。
新型大豆食品的加工技术研究
新型大豆食品的加工技术研究新型大豆食品的加工技术研究摘要:大豆有着极高的食用价值,被认为是最健康的食品之一,大豆食品的加工前景一片光明。
本文就从大豆的成分及实用价值进行深入分析,对大豆在新技术下制作的大豆油脂、大豆蛋白豆奶粉、大豆咖啡等新型大豆食品的加工技术方面进行分析研究。
关键词:大豆食品;加工;技术近年来,随着生活水平的提高,人们对健康越来越重视,对饮食越来越挑剔,对食物的营养保健作用越来越关注。
大豆之所以成为人们推崇的健康食品之一,首先是因为大豆富含丰富的蛋白质,在所有的植物性食物中,只有大豆蛋白可以和肉类、鱼类及蛋类等动物性食物中的蛋白质相媲美,在某些程度上能作为牛奶的替代品。
其次是大豆中的脂肪以不饱和脂肪酸为主,其中富含的卵磷脂还有助于血管壁上的胆固醇代谢,预防血管硬化;因为大豆中50%的都是蛋白质,不含淀粉,所以也是糖尿病患者的最佳食品。
此外大豆卵磷脂还具有防止肝脏内积存过多脂肪的作用,从而预防脂肪肝。
大豆还富含钙质,经常食用能保证人体钙质的补充和吸收。
大豆的食用方式简单而多样。
通过技术手段能对大豆进行深加工,可以将大豆加工成豆浆、豆腐、豆腐皮、豆干、腐竹、豆芽,发酵后可以制成豆豉、豆汁、酱油、豆瓣酱及各种腐乳等食品,这些在生产方式上属于传统豆制品。
随着知识的进步,技术的更新,大豆制品的制作和食用方式方法又有了新的突破,出现了新兴大豆制品行业。
新兴大豆制品主要包括大豆油脂、大豆蛋白、豆奶粉等。
1大豆油脂大豆是我国的重要油料作物之一。
大豆中脂肪含量高,并且富含不饱和脂肪酸,较动物脂肪有低饱和脂肪酸的特点,是人们食用油脂的优质来源。
大豆油脂的提炼过程主要包括脱胶、脱酸、脱色、脱臭和脱蜡等技术过程。
首先是对大豆进行脱胶,脱胶的主要目的就是脱去大豆毛油中的磷脂、蛋白质及其分解产物、粘液质及糖类等胶溶性杂质。
第二步是脱酸工艺,主要目的就是脱去毛油中的FFA,通过技术手段消除毛油的刺激性气味,防止油脂水解。
大豆加工最新研究进展
大豆加工最新研究进展
江连洲
教授
国家大豆工程技术研究中心
东北农业大学食品学院
二零零七年九月 中国.四川
报 告 内 容
一、新技术开发研究的必要性 二、相关领域国内外技术现状和发展趋势 三、新技术在大豆加工中的应用实例及进展 四、展望及发展趋势
一、新技术开发研究的必要性
综合利用大豆资源,为大豆深度开发利用 开辟新的途径
主要研究了
过渡态调控的醇 变性大豆蛋白质 改性技术研发
凝胶型、乳化型、 分散型大豆浓缩 蛋白制备技术研 制
3. 大豆蛋白酶法水解、分离与 富集技术的研究
主要研究了
大豆蛋白 浓度、温度、 PH控制 调制 水解程度监控 酶水解 功能性评价 功能大 豆蛋白 结构分析 动态膜选择 性分离 分子量分布 水解物表征监控 功能性监控
尿酶活性:呈阴性。
恒温冷 却 冷却模头
高加水 量
干粉喂 料 混配原料 水
5
4
3
2
1
组合螺 杆
进水、进料 料水混合 推进、输送
冷却 纤维化稳定 TSP定型
“熔融体”形成 蛋白质变性 纤维化形成
混合 揉捏 形成均匀面团
关键技术及生产工艺示意图
6. 大豆蛋白质分子结构与功能特性关系研究
明确了亚基空间结构和相互作用对大豆分离蛋白功能 特性的影响规律
复式萃取 器的研制
低温豆粕 糖蜜 精制
主要研究了
大豆浓缩蛋白酒精浸出生产连续工艺的研发
大豆浓缩蛋白生产过程中连续萃取关键设备的研制 大豆浓缩蛋白生产过程中挤压脱溶关键设备的研制
复式萃取器
• 同等处理量的情况下自身占地面积较 小,节省了厂房的占地面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
最新大豆加工最新研究进展
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功ห้องสมุดไป่ตู้方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。