数字信号处理基础08级 PPT课件

合集下载

数字信号处理 教案PPT课件

数字信号处理 教案PPT课件
10
2、单位阶跃序列u(n)
u(n) 10
n0 n0
11
(n)与u(n)的关系?
(n)u(n)u(n1)
n
u(n)(m) 或u(n)(nk)
m
k0
12
3. 矩形序列RN(n)
1 0nN1 RN(n)0 其它 n
13
矩形序列与单位阶跃列 序的关系:
R N (n)u(n)u(nN ) 矩形序列与单位序列的 关系:
3
数字信号处理的应用
通信 语音 图像、图形 医疗 军事 ……
4
第1章 时域离散信号和时域离散系统
掌握常见时域离散信号的表示及运算。 掌握时域离散系统的线性、时不变性、因
果性及稳定性的含义及判别方法。 掌握采样定理。
5
1.1 引 言
信号的定义: 载有信息的,随时间变化的物理量或
绪论
数字信号处理的对象是数字信号. 数字信号处理是采用数值计算的方法完成
对信号的处理.1整Fra bibliotek概述概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
数字信号处理的特点
灵活性 高精度和高稳定性 便于大规模集成 可以实现模拟系统无法实现的诸多功能
刻的序列值逐项对应相加和相乘。
19
20
2. 移位
移位序列x(n-n0) ,当n0>0时, 称为x(n)的
延时序列;当n0<0时,称为x(n)的超前序列。 例3 已知x(n)波形,画出x(n-2)及x(n+2)波形图。
21

数字信号处理基础-ppt课件信号分析与处理

数字信号处理基础-ppt课件信号分析与处理
3.a digital signal is said to lie in the time domain, its spectrum,which describes in frequency content,lies in the frequency domain.
4.filtering modified the spectrum of a signal by eliminating one or more frequency elements from it.
5.digital signal processing has many applications, including speech recognition,music and voice synthesis,image processing,cellular phones,modems,and audio and video compression.
2020/4/13
返回
第2章 模数转换和数模转换
2.1 简单的DSP系统(A Simple DSP System) 2.2 采样(Sampling) 2.3 量化(Quantization) 2.4 模数转换(Analog-to-Digital Conversion) 2.5 数模转换(Digital-to-Analog Conversion) 小结 (Chapter Summary)
2020/4/13
1.5 语音、音乐、图像及其他 1.5 SPEECH,MUSIC,IMAGES,AND MORE
DSP在许多领域都有惊人的应用,并且应用的数量与日俱增。
1)利用数字语音信号(speech signals)中的信息可以识别连续语 音中的大量词汇。
2)DSP在音乐和其他声音处理方面有着重要的作用。

数字信号处理ppt课件

数字信号处理ppt课件
23
三.自相关函数与 自协方差函数的性质
24
性质1 :相关函数与协方差函数的关系
Cxx m rxx m mx 2
Cxy m rxy m m*xmy
当 mx 0
Cxx m rxx m Cxy m rxy m
25
性质2:均方值、方差与相关函数和协方差函数
rxx
0
E
xn
2
Cxx 0 rxx 0 mx 2
五、功率谱密度
44
维纳——辛钦定理
1. 复频域
rxx
(m)
1
2
j
c Sxx (z)zm1dz,
Sxx
(z)
m
rxx
(m)z
m
C (Rx , Rx )
45
2. 频域
{ rxx(m)
1
2
Pxx (e j )e jm d
2
Pxx (e j ) rxx (m)e jm
m
46
3.性质
实平稳随机信号 rxx m rxx m
rxx m E x x n1 n1m
x1x2 p x1 , x2 ; m dx1dx2
18
自协方差函数
Cxx (m) E (xn1 mx )*(xn2 mx ) E (xn1 mx )*(xn1m mx )
rxx m mx 2
19
对于均值为零的随机过程 rxx m Cxx m
①偶函数
Pxx e j Pxx e j
②实函数
Pxx e j Pxx e j
③极点互为倒数出现
Sxx
z
Sxx
1 z
47
④功率谱在单位圆上的积分等于平均功率
E
x2

08第八讲 离散傅里叶级数(DFS)

08第八讲 离散傅里叶级数(DFS)

~ ~( n ) = IDFS [ X ( k )] = 1 x N
j nk 1 ~ N ∑ X ( k )e = N k =0
N −1
~ − X ( k )WN nk ∑
k =0
N −1
DFS[·]表示离散傅里叶级数正变换,IDFS[·]表示离散 傅里叶级数反变换。 只要知道周期序列一个周期的内容,其他的内容也都知道 了。 所以,这种无限长序列实际上只有一个周期中的N个序列 值有信息。 因而周期序列和有限长序列有着本质的联系。
~ (n 设) 和 ~2 (n ) 皆是周期为N的周期序列,们各自的DFS分 x x1
别为:
~ X 1 (k ) = DFS [ ~1 ( n )] x ~ X 2 ( k ) = DFS [ ~2 ( n )] x
第3章 离散傅里叶变换
2.3.1 线性
~ ~ ~ ( n ) + b~ ( n )] = aX ( k ) + bX ( k ) DFS [ax1 x2 1 2
~ X ( k ) = ∑ ~ ( n )e x
n =0
N −1
−j
2π kn N
~( n ) = 1 x N
~ ∑ X ( k )e
k =0
N −1
j
2π kn N
第3章 离散傅里叶变换
使用 WN = e
−j
2π N
表示为: 表示为

N −1 N −1 − j nk ~ nk X ( k ) = DFS [ ~( n )] = ∑ ~( n )e N = ∑ ~( n )WN x x x n =0 n =0 2π
第3章离散傅里叶变换第八讲离散傅里叶级数dfs31引言32周期序列的离散傅里叶级数dfs33离散傅里叶级数dfs的性质第3章离散傅里叶变换xat??txptoottpxnton点xpnon点ntnabcdxaj?1?0o?0?xpjk??ok???xej???1txejk??s?oo??n点?st时域频域连续非周期非周期连续连续周期非周期离散离散非周期周期连续离散周期周期离散31傅里叶变换的几种可能形式第3章离散傅里叶变换表表31四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期非周期和离散离散和非周期周期和连续散和周期周期和离散一个域的离散对应另一个域的周期延拓一个域的连续必定对应另一个域的非周期第3章离散傅里叶变换31引言数字计算机只能计算有限长离散序列序列的傅里叶变换和z变换

《数字信号处理原理》PPT课件

《数字信号处理原理》PPT课件

•Digital signal and image filtering
•Cochlear implants
•Seismic analysis
•Antilock brakes
•Text recognition
•Signal and image compression
•Speech recognition
•Encryption
•Satellite image analysis
•Motor control
•Digital mapping
•Remote medical monitoring
•Cellular telephones
•Smart appliances
•Digital cameras
•Home security
Upper Saddle River, New Jersey 07458
All rights reserved.
FIGURE 1-4 Four frames from high-speed video sequence. “ Vision Research, Inc., Wayne, NJ., USA.
Joyce Van de Vegte Fundamentals of Digital Signal Processing
ppt课件
11
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Joyce Van de Vegte Fundamentals of Digital Signal Processing

《数字信号处理基础》课件

《数字信号处理基础》课件

信号压缩等。
Z变换
Z变换的定义
Z变换是一种将离散时间信号转换为复数域信号的方法,通过将离 散时间信号转换为复数域中的函数,可以更好地分析信号的特性。
Z变换的性质
Z变换具有线性、时移、频域平移、复共轭等性质,这些性质在信 号处理中有着广泛的应用。
Z变换的应用
Z变换在信号处理中有着广泛的应用,如离散控制系统分析、数字滤 波器设计等。
自适应滤波器应用场景
广泛应用于噪声消除、回声消除、信 号预测等领域。
05 数字信号处理应用
音频处理
音频压缩
通过降低音频数据的冗余度,实 现音频文件的压缩,便于存储和
传输。
音频增强
利用数字信号处理技术,改善音频 质量,如降低噪音、增强语音等。
音频分析
对音频信号进行特征提取和分类, 用于语音识别、音乐信息检索等领 域。
IIR滤波器应用场景
广泛应用于语音处理、图像处理等领 域。
FIR滤波器设计
FIR滤波器定义
FIR滤波器特点
FIR滤波器,即有限冲激响应滤波器,是一 种离散时间滤波器,其冲激响应有限长。
FIR滤波器具有线性相位、设计灵活、计算 量大等特性。
FIR滤波器设计方法
FIR滤波器应用场景
通过窗函数法、频率采样法等进行设计, 常用的设计方法有汉明窗法、凯泽窗法等 。
课程目标
掌握数字信号处理的基本概念、原理和方法。
学会使用数字信号处理软件进行信号处理和分析 。
了解数字信号处理在通信、图像处理、音频处理 等领域的应用。
02 基础知识
信号与系统
信号定义与分类
信号是信息传输的载体,可以是离散 的或连续的,也可以是时间的函数。 信号分类包括周期信号、非周期信号 、确定信号、随机信号等。

《数字信号处理》课件

《数字信号处理》课件

05
数字信号处理中的窗函 数
窗函数概述
窗函数定义
窗函数是一种在一定时间 范围内取值的函数,其取 值范围通常在0到1之间。
窗函数作用
在数字信号处理中,窗函 数常被用于截取信号的某 一部分,以便于分析信号 的局部特性。
窗函数特点
窗函数具有紧支撑性,即 其取值范围有限,且在时 间轴上覆盖整个分析区间 。
离散信号与系统
离散信号的定义与表示
离散信号是时间或空间上取值离散的信号,通常用序列表示。
离散系统的定义与分类
离散系统是指系统中的状态变量或输出变量在离散时间点上变化的 系统,分类包括线性时不变系统和线性时变系统等。
离散系统的描述方法
离散系统可以用差分方程、状态方程、传递函数等数学模型进行描 述。
Z变换与离散时间傅里叶变换(DTFT)
1 2 3
Z变换的定义与性质
Z变换是离散信号的一种数学处理方法,通过对 序列进行数学变换,可以分析信号的频域特性。
DTFT的定义与性质
DTFT是离散时间信号的频域表示,通过DTFT可 以分析信号的频域特性,了解信号在不同频率下 的表现。
Z变换与DTFT的关系
Z变换和DTFT在某些情况下可以相互转换,它们 在分析离散信号的频域特性方面具有重要作用。
窗函数的类型与性质
矩形窗
矩形窗在时间轴上均匀取值,频域表现为 sinc函数。
汉宁窗
汉宁窗在时间轴上呈锯齿波形状,频域表现 为双曲线函数。
高斯窗
高斯窗在时间轴上呈高斯分布,频域表现为 高斯函数。
海明窗
海明窗在时间轴上呈三角波形状,频域表现 为三角函数。
窗函数在数字信号处理中的应用
信号截断
通过使用窗函数对信号进行截 断,可以分析信号的局部特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档