超声波测距仪硬件电路的设计
超声波测距电子电路设计详解
超声波测距电子电路设计详解在自主行走机器人系统中,机器人要实现在未知和不确定环境下行走,必须实时采集环境信息,以实现避障和导航,这必须依靠能实现感知环境信息的传感器系统来实现。
视觉、红外、激光、超声波等传感器都在行走机器人中得到广泛应用。
由于超声波测距方法设备简单、价格便宜、体积小、设计简单、易于做到实时控制,并且在测量距离、测量精度等方面能达到工业实用的要求,因此得到了广泛的应用。
本文所介绍的机器人采用三方超声波测距系统,该系统可为机器人识别其运动的前方、左方和右方环境而提供关于运动距离的信息。
超声波测距原理超声波发生器内部由两个压电片和一个共振板组成。
当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两极间未加外电压,当共振板接收到超声波时,就成为超声波接收器。
超声波测距一般有两种方法:①取输出脉冲的平均电压值,该电压与距离成正比,测量电压即可测量距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,根据被测距离s=vt?2来得到测量距离,由于超声波速度v与温度有关,所以如果温度变化比较大,应通过温度补偿的方法加以校正。
本测量系统采用第二种方法,由于测量精度要求不是特别高,所以可以认为温度基本不变。
本系统以PIC16F877单片机为核心,通过软件编程实现其对外围电路的实时控制,并提供给外围电路所需的信号,包括频率振动信号、数据处理信号等,从而简化了外围电路,且移植性好。
系统硬件电路方框图见图1。
图1 系统硬件电路方框图由于本系统只需要清楚机器人前方、左方、右方是否有障碍物,并不需要知道障碍物与机器人的具体距离,因此不需要显示电路,只需要设定一距离阀值,使障碍物与机器人的距离达到某一值时,单片机控制机器人电机停转,这可通过软件编程实现。
超声波发射电路超声波发射电路以PIC16F877为核心,当单片机上电时,单片机从RA0口产生40kHz的超声波信号,但是此时该信号无法通过与非门进入放大电路使超声波发射头发射超声波,只有闭合开关S1时,从RA1口发射出一门控信号,该信号的频率为4kHz,同时启动单片机内部的定时器TMR1,开始计数。
超声波测距系统的设计
超声波测距系统的设计引言:一、硬件设计:1.选择传感器:超声波传感器是测距系统的核心部件,通常采用脉冲法进行测量。
在选择传感器时,应考虑工作频率、测量范围、精度和稳定性等参数,并根据实际需求进行选择。
2.驱动电路设计:超声波传感器需要高频信号进行激励,设计驱动电路时需要根据传感器的工作要求来设计合适的电路,保证信号稳定且能够满足传感器的工作需求。
3.接收电路设计:超声波传感器产生的脉冲回波需要经过接收电路进行信号放大和滤波处理,设计接收电路时需要考虑信号放大的增益、滤波器的截止频率以及抗干扰能力等因素。
4.控制板设计:控制板是超声波测距系统中的核心控制器,负责控制测距过程、数据处理以及通信等功能。
在设计控制板时,应根据系统的要求选择合适的微控制器或单片机,并设计合理的电路布局和电源电路。
二、软件编程:1.驱动程序开发:根据传感器的规格书和数据手册,编写相应的驱动程序,实现对超声波传感器的激励和接收。
2.距离计算算法开发:通过测量超声波的往返时间来计算距离,根据声速和时间的关系进行距离计算,并根据实际情况对计算结果进行修正。
3.数据处理和显示:根据实际需求,对测量得到的距离进行处理,并将结果显示在合适的显示设备上,如LCD屏幕或计算机等。
4.数据通信:如果需要将测量结果传输至其他设备或系统,则需要编写相应的数据通信程序,实现数据的传输和接收。
三、系统测试与优化:1.测试传感器性能:测试测距系统的稳定性、精度和灵敏度等性能指标,根据测试结果对系统参数进行优化和调整。
2.系统校准:超声波测距系统可能受到环境温度、湿度和声速等因素的影响,需要进行校准以提高测量精度。
3.系统集成与实际应用:将超声波测距系统与实际应用场景进行集成,进行实际测试和验证。
总结:超声波测距系统的设计包括硬件设计和软件编程两个方面,其中硬件设计主要包括传感器选择、驱动电路设计和接收电路设计等;软件编程主要包括驱动程序开发、距离计算算法开发、数据处理和显示以及数据通信等。
超声波测距电路设计设计
超声波测距电路设计摘要随着单片机技术的发展,各种控制系统都趋向于自动化。
以单片机为核心的控制系统体积小、功能强、价格低,因而在众多领域得到广泛应用,并显示出广阔前景。
论文介绍了一种运用单片机和CX20106A组成的超声波测距系统。
本设计主要以STC89C51作为控制核心,包括键盘输入模块,超声波发射模块,超声波接收模块(CX20106A),数码管显示模块,报警模块。
主要实现超声波测距并显示功能,依据实际的测量精度要求还可以添加温度补偿电路。
本系统成本低廉,功能实用。
硬件系统具有良好的性能,且由于构成系统的器件应用普遍,便于维护。
因此,本设计具有较强的性价比及实用性。
关键词:STC89C51;CX20106A ;超声波发射模块;超声波接收模块;LED显示电路AbstractAlong with the monolithic integrated circuit technology development, each kind of control system all tends to the automation. By the monolithic integrated circuit for the core control system volume small, the function strong, the price is low, thus obtains the widespread application in the multitudinous domain, and demonstrates the broad prospect.This design is based mainly on STC89C51 chip core ultrasonic range finder, and a ultrasonic processing module CX20106A, CD4069 composed of ultrasonic transmitter, digital display devices such as composition, including the SCM system, ultrasonic transmitter and ultrasonic receiver circuit, MCU Resetcircuit, LED display circuit.Ultrasonic Distance and direction to achieve the main functionality.Based on the actual measurement accuracy can also add temperature compensation circuit.The system cost, functional and practical.Hardware system has good performance, and constitute a system of device applications as universal, easy maintenance.Therefore, this design has a strong cost-effective and practical.Keywords:stc89c51 ;CX20106A ; ultrasonic emission of ultrasonic receiver ; LED display circuit;目录摘要 (I)Abstract .................................................................................................. I I 目录........................................................................................................ I II 1绪论 (1)1.1 课题意义 (1)1.2 单片机发展历史 (1)2超声波测距仪系统的硬件和软件的功能分析 (3)2.1 超声波测距的设计原理论证 (3)2.1.1 超声波测距仪的设计思路 (3)2.1.2超声波测距原理 (3)2.1.3超声波测距仪原理框图 (4)2.2 电超声波测距仪系统的软件方案论证 (5)3超声波测距仪系统的硬件设计 (6)3.1 STC89C51简介 (6)3.2 数码管显示的设计 (12)3.2.1 八位7段数码管工作原理 (12)3.3 超声波发射电路模块设计 (13)3.4 超声波接收电路模块设计 (14)3.4.1超声波接收电路设计原理 (14)3.4.2 CX20106A (15)4超声波测距系统的软件设计 (17)4.1程序的总体设计 (17)4.1.1 主程序设计 (17)4.2 40KHZ 脉冲的产生与超声波发射 (18)4.3 显示子程序和蜂鸣报警子程序设计 (20)5超声波测距仪调试与测试 (21)5.1调试 (21)5.1.1硬件调试 (21)5.1.2软件调试 (23)结论 (25)结束语 (26)致谢 (27)参考文献 (28)附录I——程序源码 (29)附录II——电路原理图 (48)1绪论1.1 课题意义随着科学技术的快速发展,超声波在测距仪中的应用越来越广。
超声测距设计与制作
达到超声波测距器设计要求。 制作工艺符合要求,有相应的工艺文件。
谢谢!
超声波测距 原理
利用超声波在空气中的传播速度为已知,测 量声波在发射后遇到障碍物反射回来的时间, 根据发射和接收的时间差计算出发射点到障 碍物的实际距离。 测距的公式表示为:L=C×T
式中L为测量的距离长度; C为超声波在空气中的传播速度; T为测量距离传播的时间差(T为发射到接收时 间数值的一半)
超声波测距 框图
超声波测距硬件电路
稳压电路:将交流电变压、整流、滤波,用集成稳 压块LM7812、LM7912、LM7805输出+5V、+ 12V、-12V供单片机、运算放大器、555芯片等电路 使用。 加减键功能: 超声波发射电路:运用555振荡产生振荡信号,经 过非门控制40KHz脉冲波形,通过超声波发射器发射 出去。 超声波接受电路:运用超声波传感器接收反射回来 的信号,通过LM358比较、放大后,将信号输入单片 机。 LED显示:将接收到的超声波信号,输入单片机, 程序处理,计算出反射物的距离,并用数码管显示距 离设置。
超声波测距 软件流程
超声波测距 调试
测试结果:
LED显示距离:30cm,实际距离35cm; LED显示距离:60cm,实际距离38cm; LED显示距离:90cm,实际距离99cm; LED显示距离:120cm,实际距离129cm;
测试结果表明:超声波测距器可以工作,测试结果有误差, 但在允许范围。
超声波测距电子电路设计详解
超声波测距电子电路设计详解在自主行走机器人系统中,机器人要实现在未知和不确定环境下行走,必须实时采集环境信息,以实现避障和导航,这必须依靠能实现感知环境信息的传感器系统来实现。
视觉、红外、激光、超声波等传感器都在行走机器人中得到广泛应用。
由于超声波测距方法设备简单、价格便宜、体积小、设计简单、易于做到实时控制,并且在测量距离、测量精度等方面能达到工业实用的要求,因此得到了广泛的应用。
本文所介绍的机器人采用三方超声波测距系统,该系统可为机器人识别其运动的前方、左方和右方环境而提供关于运动距离的信息。
超声波测距原理超声波发生器内部由两个压电片和一个共振板组成。
当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两极间未加外电压,当共振板接收到超声波时,就成为超声波接收器。
超声波测距一般有两种方法:①取输出脉冲的平均电压值,该电压与距离成正比,测量电压即可测量距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,根据被测距离s=vt?2来得到测量距离,由于超声波速度v与温度有关,所以如果温度变化比较大,应通过温度补偿的方法加以校正。
本测量系统采用第二种方法,由于测量精度要求不是特别高,所以可以认为温度基本不变。
本系统以PIC16F877单片机为核心,通过软件编程实现其对外围电路的实时控制,并提供给外围电路所需的信号,包括频率振动信号、数据处理信号等,从而简化了外围电路,且移植性好。
系统硬件电路方框图见图1。
图1 系统硬件电路方框图由于本系统只需要清楚机器人前方、左方、右方是否有障碍物,并不需要知道障碍物与机器人的具体距离,因此不需要显示电路,只需要设定一距离阀值,使障碍物与机器人的距离达到某一值时,单片机控制机器人电机停转,这可通过软件编程实现。
超声波发射电路超声波发射电路以PIC16F877为核心,当单片机上电时,单片机从RA0口产生40kHz的超声波信号,但是此时该信号无法通过与非门进入放大电路使超声波发射头发射超声波,只有闭合开关S1时,从RA1口发射出一门控信号,该信号的频率为4kHz,同时启动单片机内部的定时器TMR1,开始计数。
超声波测距系统的电路设计
的用电负荷资料,还是通用型办公楼,设计人员 路布局趋于合理等方面采取措施。另一方面,应 轻载自动转换节电器能提高电动机在轻载负荷
充分听取业主方的意见,在计算负荷时考虑设 采用必要的无功功率补偿设备,进一步提高企 时的功率因数和效率,从而达到节电的目的。
备同时率因素,对于设备的负载率重视不够。其 业的功率因数。在供电线路中采用电力电容器
信号,单片机响应外部中断请求,执行外部中断服务子
程序,读取时间差,计算距离。其部分源程序如下:
WORK: PUSH ACC PUSH PSW PUSH B MOV PSW,#18H MOV R3,45H MOV R2,44H MOV R1,00D MOV R0,17D LCALL MUL2BY2 MOV R3,#03H MOV R2,0E8H LCALL DIV4BY2 LCALL DIV4BY2 MOV 40H,R4 MOV A,40H JNZ JJ0 MOV 40H,#0AH
提高 0.41%,按近年来产量计算,估计每年可
偏差较大。负荷估测与调查时,被征求意见的部
2.4 提高供电线路功率因数。一般 110kV 节约电能 1 亿 kWh,节约了电动机运行电费支
门往往偏高估计今后的用电负荷。再加上有一 电力工程供电线路功率因数普遍偏低,据调查, 出。对正在运行的电动机,如负载经常低于
平衡情况多;线路连接接触不良多;私拉乱接电 点。
超声波测距系统设计
超声波测距系统设计一、设计原理超声波测距原理基于声波的传播速度和时间的关系。
声波在空气中传播的速度约为343m/s。
当声波发射到目标物体上后,部分声波会被目标物体反射回来。
通过测量声波从发射到接收的时间差,再乘以声速即可计算出目标物体与传感器的距离。
二、硬件设计1.超声波发射器:超声波发射器是实现超声波测距的关键部件,它负责产生超声波脉冲并将其发射出去。
常用的超声波发射器是压电传感器,它具有快速响应、高灵敏度等特点。
2.超声波接收器:超声波接收器用于接收从目标物体反射回来的超声波,并将其转化为电信号。
同样,压电传感器也可以用作超声波接收器。
3.控制电路:控制电路负责控制超声波发射器和接收器的工作。
例如,它可以通过控制超声波发射器的工作时间来产生超声波脉冲。
同时,控制电路还需要接收超声波接收器输出的电信号,并通过计时器来测量声波从发射到接收的时间差。
4.显示屏:显示屏用于显示测距结果,通过显示屏可以直观地观察到目标物体与传感器的距离。
三、软件设计1.信号处理:在接收到超声波接收器输出的电信号后,需要对信号进行处理。
通常情况下,控制电路会将接收到的信号由模拟信号转换为数字信号。
然后,可以使用特定的算法对数字信号进行处理,例如滤波、峰值检测等,以获取稳定的距离数据。
2.距离计算:根据声波从发射到接收的时间差和声速,可以计算出目标物体与传感器的距离。
计算公式为:距离=速度×时间差。
3.结果显示:最后,将计算得到的距离结果显示在屏幕上,用户可以直接观察到距离结果。
四、总结超声波测距系统是一种简单、实用的测距技术。
通过合理的硬件设计和严密的软件设计,可以实现可靠、准确的测距功能。
同时,超声波测距系统还具有成本低、测量范围广等优点,被广泛应用于自动控制、车辆定位和智能机器人等领域。
《超声波测距仪电路设计》
《超声波测距仪电路设计》超声波测距仪电路设计超声波测距仪是一种常见的测距装置,它利用超声波的传播特性来测量目标物体与测距仪之间的距离。
其基本原理是利用超声波的发射和接收来计算目标物体与设备之间的距离。
超声波测距仪的电路设计包括发射电路和接收电路两部分。
1.发射电路设计超声波测距仪的发射电路主要包括发射器、脉冲发生电路和驱动电路。
发射器是将电能转换为声能的装置,一般采用压电陶瓷材料。
脉冲发生电路是用来产生发送的超声波脉冲信号的电路,常用的是555定时器芯片,通过设置合适的频率和占空比,可以实现超声波脉冲的产生。
驱动电路主要是将脉冲信号放大,并提供足够的电流和电压来驱动发射器。
2.接收电路设计超声波测距仪的接收电路主要包括接收器、放大电路和信号处理电路。
接收器是将接收到的声波信号转换为电信号的装置,常用的是压电陶瓷材料。
放大电路主要是将接收到的微弱信号放大到合适的电平,以便后续的信号处理。
信号处理电路包括滤波器和放大器,滤波器用于滤除杂散信号,放大器用于放大清晰的接收信号。
3.其他设计考虑除了发射电路和接收电路,还需要考虑一些其他设计因素。
第一,为了减小测量误差,需要加入合适的校准电路来对测量系统进行校准。
第二,为了方便使用,可以加入显示电路,将测量结果以数字或者模拟形式显示出来。
第三,为了提高抗干扰能力,可以加入滤波器和抗干扰电路来滤除干扰信号。
总之,超声波测距仪电路设计需要考虑发射电路、接收电路以及其他设计因素,合理配置各个部分的电路参数,并利用合适的元器件和电路拓扑结构,以提高测距仪的精度和稳定性。
在实际设计中,还需要考虑功耗、成本和尺寸等因素,以满足具体应用的要求。
超声波测距系统电路制作与调试
超声波测距系统电路制作与调试
1
任务描述
2
实训设备与器件
3
电路制作与调试
4
问题思考
1任务描述
工作任务: 基于超声波发射板和接收板制作超声波 测距系统电路。
任务要求: 按照工作任务设计并制作与调试电路,要 求各部分波形进行测试。
实训设备与器件
实训设备与器件: 超声波发射板 超声波接收板 单片机控制单元 直流稳压电源 数字万用表 示波器
ห้องสมุดไป่ตู้发射电路
驱动电路
超声波发射头
选频放大
超声波接收头
执行单元
显示
控制部分
电源部分
接收电路
电源部分
3 电路制作与调试
(2)将直流稳压电源输出+9V电源接到发射电 路板和接收电路板上。 (3)用示波器观察记录发射板信号波形 (4)用示波器观察记录接收板信号波形
4
问题思考
图中的“CONTORL”信号有何作用?
3 电路制作与调试
(1)按图示进行电路连接
+9V GND
发射头
f =40kHz
振荡 电路
驱动 电路
超声波发射电路
直流稳压电源
T 隔离挡板
示波器 探头
outpu t 波形
变换
+9V GND
选频 放大
接收头
R 超声波接收电路
超声波测距系统的总体设计方案
键盘控制
输
中央
振荡电路
出
控制
报
处理
警
单元
波形变换
THE END
超声波测距电路制作
超声波测距电路制作超声波测距电路制作超声波测距仪制作本超声波测距仪通过测量超声波发射到反射回来的时间差来测量与被测物体的距离。
可以测量0.35-10m的距离。
一、电路原理1 超声波发射电路由两块555集成电路组成。
IC1(555)组成超声波脉冲信号发生器,工作周期计算公式如下,实际电路中由于元器件等误差,会有一些差别。
条件: RA =9.1MΩ、RB=150KΩ、C=0.01μFTL = 0.69 x RB x C= 0.69 x 150 x 103 x 0.01 x 10-6 = 1 msecTH = 0.69 x (RA RB) x C= 0.69 x 9250 x 103 x 0.01 x 10-6 = 64 msecIC2组成超声波载波信号发生器。
由IC1输出的脉冲信号控制,输出1ms频率40kHz,占空比50%的脉冲,停止64ms。
计算公式如下:条件: RA =1.5KΩ、RB=15KΩ、C=1000pFTL = 0.69 x RB x C= 0.69 x 15 x 103 x 1000 x 10-12 = 10μsecTH = 0.69 x (RA RB) x C= 0.69 x 16.5 x 103 x 1000 x 10-12 = 11μsecf = 1/(TL TH)= 1/((10.35 11.39) x 10-6) = 46.0 KHzIC3(CD4069)组成超声波发射头驱动电路。
2 超声波接收电路超声波接收头和IC4组成超声波信号的检测和放大。
反射回来的超声波信号经IC4的2级放大1000倍(60dB),第1级放大100倍(40dB),第2级放大10倍(20dB)。
由于一般的运算放大器需要正、负对称电源,而该装置电源用的是单电源(9V)供电,为保证其可靠工作,这里用R10和R11进行分压,这时在IC4的同相端有4.5V的中点电压,这样可以保证放大的交流信号的质量,不至于产生信号失真。
超声波测距仪的设计方案
超声波测距仪的设计方案简介超声波测距仪是一种常见的测距设备,它利用超声波的传播特性来实现对距离的测量。
本文将介绍超声波测距仪的设计方案,包括硬件设计和软件设计。
硬件设计超声波传感器超声波传感器是超声波测距仪的核心部件,它能够发射超声波并接收回波。
常用的超声波传感器有两种,一种是单通道超声波传感器,一种是多通道超声波传感器。
控制电路超声波传感器和微控制器之间需要通过控制电路进行连接。
控制电路主要包括电压转换电路、信号放大电路和滤波电路,它们的作用是将超声波传感器输出的模拟信号转换为微控制器能够识别的数字信号。
显示装置为了方便用户查看测距结果,超声波测距仪通常会配备一个显示装置。
显示装置可以是液晶显示屏、数码管等,通过显示装置可以直观地显示测距结果。
电源模块超声波测距仪需要一个可靠的电源供电。
电源模块可以采用锂电池、干电池或者充电电池等供电方式。
软件设计初始化配置超声波测距仪启动时需要对各个模块进行初始化配置。
这包括设置超声波传感器的工作频率和增益,设置控制电路的参数,以及初始化显示装置等。
超声波测距算法超声波测距算法是超声波测距仪的核心算法,它主要用于计算超声波传感器发射的超声波到接收回波之间的时间差,从而得到距离。
常用的超声波测距算法有三角函数法、脉冲回波法和相位差法等。
其中,三角函数法是最简单的算法,适用于测量距离较短的情况;脉冲回波法和相位差法适用于测量距离较长的情况,但需要更为复杂的计算。
距离显示软件设计中还需要考虑如何将测得的距离值进行显示。
可以通过数码管、液晶显示屏或者计算机界面等方式进行显示。
报警功能超声波测距仪还可以增加报警功能,当检测到距离超过设定的阈值时,触发报警,提示用户该区域存在障碍物。
总结超声波测距仪的设计方案主要包括硬件设计和软件设计两部分。
硬件设计包括超声波传感器、控制电路、显示装置和电源模块的设计。
软件设计包括初始化配置、超声波测距算法、距离显示和报警功能等。
通过合理设计和优化算法,可以实现一个精准、稳定的超声波测距仪。
基于51单片机超声波测距仪设计
基于51单片机超声波测距仪设计超声波测距仪是一种应用较为广泛的测量设备,可以用于测量物体与超声波传感器之间的距离。
本文将基于51单片机设计一个简单的超声波测距仪,并介绍其原理、硬件电路和程序设计。
一、原理介绍:超声波测距仪的工作原理是利用超声波传感器发射超声波,并接收其反射回来的波,通过计算发射和接收之间的时间差,从而确定物体与传感器之间的距离。
超声波的传播速度在空气中近似为331.4m/s,根据速度与时间关系,可以通过测量时间来计算距离。
二、硬件电路设计:1.超声波模块:选用一个常见的超声波模块,包括超声波发射器和接收器。
2.51单片机:使用51单片机作为控制器,负责控制超声波模块和处理测距数据。
3.LCD显示屏:连接一个LCD显示屏,用于显示测距结果。
4.连接电路:将超声波发射器和接收器分别连接到单片机的引脚,将LCD显示屏连接到单片机的相应引脚。
三、程序设计:1.初始化:包括初始化单片机的GPIO引脚、定时器以及其他必要的设置。
2.发送信号:发射一个超声波信号,通过超声波模块的引脚控制。
此时,启动定时器开始计时。
3.接收信号:当接收到超声波的反射信号时,停止定时器,记录计时的时间差。
根据超声波传播速度,可以计算出距离。
4.显示结果:将测得的距离数据显示在LCD显示屏上。
四、实现效果:通过以上设计,可以实现一个简单的超声波测距仪。
在实际应用中,可以根据需求扩展功能,例如增加报警功能、计算速度等。
总结:本文基于51单片机设计了一个超声波测距仪,包括硬件电路设计和程序设计。
通过该设备可以实现对物体与超声波传感器之间的距离进行测量,并将结果显示在LCD显示屏上。
该设计只是一个基本的框架,可以根据需要进行进一步的改进和优化。
超声波测距仪的硬件电路图
超声波测距仪的硬件电路图
AT89C2051通过外部引脚P1.6输出脉冲宽度为250μs,载波为40kHz的10个脉冲的脉冲群,以推挽形式加到变压器的初级,经升压变换推动超声波换能器发射出去。
在发射的同时,P1.7输出一个高电平启动,给电容C4充电。
发射结束时高电平翻转为低电平,C4开始对R2、R3组成的分压器放电并输出到比较器的负端。
超声波接收换能器将接收到的障碍物反射的超声波送到放大器进行放大,这是一个高增益、低噪声放大器,在对放大后的信号进行检波后将检测回波送到比较器的正输入端。
发射时P1.7输出的电平可以抑制比较器的翻转,这样就可以抑制发射器发射的超声波直接辐射到接收器而导致错误检测。
毕业设计超声波测距仪设计
毕业设计超声波测距仪设计(以下内容仅供参考)一、设计要求1.设计一款超声波测距仪,最大测量距离为5米。
2.能够实现实时测量距离。
3.具有屏幕显示测距结果。
4.能够通过按键控制实现最大距离设置。
二、设计方案1.硬件设计2.软件设计1.硬件设计超声波测距仪主要由以下部分组成:1)Arduino UNO开发板Arduino UNO开发板是一款开源的硬件平台,基于ATmega328P单片机。
可以通过编写软件来控制它,从而实现各种功能。
在该设计中,我们使用Arduino UNO作为超声波测距仪的主控板。
2)超声波传感器超声波传感器是超声波测距仪的核心部分。
它通过发射和接收超声波,来测量被测物体和传感器间的距离。
在该设计中,我们使用HC-SR04超声波传感器。
3)1602液晶显示屏1602液晶显示屏是用于在超声波测距仪中显示测距结果的显示设备。
4)按键按键用于设置最大距离。
5)发光二极管发光二极管用于指示测量状态。
2.软件设计超声波测距仪的软件设计主要包括以下三个部分:1)超声波测距的程序设计该部分主要负责调用超声波传感器进行距离测量,并返回测量结果。
2)LCD1602数字显示的程序设计该部分主要负责在1602液晶显示屏上显示测量结果。
3)设置最大距离的程序设计该部分主要负责通过按键设置最大距离。
三、系统实现1.硬件实现超声波传感器通过引脚连接到Arduino UNO的第8、9、10、11号IO口(分别为Trig、Echo、Vcc、GND),1602液晶显示屏通过引脚连接到Arduino UNO的第12、13、6、7、5、4号IO口(分别为RS、EN、D4、D5、D6、D7),按键通过引脚连接到Arduino UNO的第3号IO口,发光二极管通过引脚连接到Arduino UNO的第2号IO口。
2.软件实现1)超声波测距程序设计:首先定义Trig、Echo两个引脚,然后定义pulseIn函数,这个函数的作用是等待Echo引脚输出一个高电平,然后返回Echo引脚的高电平持续时间(us)。
超声波测距系统的设计
超声波测距系统的设计引言:超声波测距系统是一种常见的距离测量技术,利用超声波在空气中传播时的特性进行测量。
相对于光学传感器,超声波测距系统具有较低的成本、较小的体积和更大的测量范围。
因此,在工业自动化、机器人导航和智能设备等领域具有广阔的应用前景。
本文将介绍超声波测距系统的设计原理、硬件配置和软件实现,以及一些常见的应用案例。
一、设计原理:超声波测距系统的设计基于声音在空气中的传播速度,即声速。
根据超声波经过物体并反射回来所花费的时间,可以计算出物体与传感器之间的距离。
一般来说,超声波传感器由发射器和接收器组成。
发射器发出超声波脉冲,然后接收器接收到反射回来的超声波信号。
通过计算发射和接收的时间差,可以得到物体与传感器的距离。
由于超声波的传播速度与环境条件有关,如温度、湿度等,所以在进行距离计算时需要进行修正。
二、硬件配置:选择合适的超声波传感器是设计中的第一步。
一般来说,超声波传感器的频率越高,测量精度越高,但测量距离也越短。
因此,在选择传感器时需要根据具体应用需求进行权衡。
另外,传感器的外观尺寸和接口类型也需要考虑,以便与其他硬件设备进行连接。
控制电路主要由单片机和时钟模块组成。
单片机负责接收超声波信号,并通过定时器记录接收到信号的时间点。
时钟模块用于计时,以确定超声波传播的时间差。
显示电路可以选择LCD显示屏或数码管等设备。
显示电路的设计取决于测量结果的格式和精度要求。
一般来说,LCD显示屏具有更好的显示效果,但成本较高,而数码管则相对便宜但显示效果较差。
根据具体应用需求选择合适的显示电路。
三、软件实现:距离计算部分根据接收到信号的时间差和声速进行计算。
由于超声波的传播速度与环境条件有关,所以需要根据实际环境和传感器的特性进行修正。
通常可以通过校准来确定修正系数,并将其应用于距离计算公式中。
除了基本的测距功能,超声波测距系统还可以提供其他功能,如障碍物检测、移动物体跟踪等。
这些功能的实现主要依靠信号处理和算法设计。
超声波测距仪硬件电路的设计
第三章超声波测距仪硬件电路的设计3.1 超声波测距仪硬件电路硬件电路可分为单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。
3.1.1 单片机系统及显示电路本系统采用AT89S52来实现对超声波传感器的控制。
单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。
超声波测距的硬件示意图如图3所示:单片机采用89S52或其兼容系列。
采用12MHz高精度的晶振,已获得较稳定的时钟频率,减少测量误差。
单片机用P1.0端口输出超声波换能器所需的40KHz的方波信号,利用外中断0口检测超声波接收电路输出的返回信号。
3.1.2 显示的输出显示的种类很多,从液晶显示、发光二极管显示到CRT显示器等,都可以与微机连接。
其中单片机应用系统最常用的显示是发光二极管数码显示器(简称LED显示器)。
液晶显示器简LCD。
LED显示器价廉,配置灵活,与单片接口方便,LCD可显示图形,但接口较复杂成本也较高。
该电路使用7段LED构成字型“8”,另外还有一个发光二极管显示符号及小数点。
这种显示器分共阳极和共阴极两种。
这里采用共阳极LED显示块的发光二极管阳极共接,如下图3-1所示,当某个发光二极管的阴极为低电平时,该发光二极管亮。
它的管脚配置如下图3-2所示。
VCC图3-1图3-2实际上要显示各种数字和字符,只需在各段二极管的阴极上加不同的电平,就可以得到不同的代码。
这些用来控制LED显示的不同电平代码称为字段码(也称段选码)。
如下表为七段LED的段选码。
表3-1 七段LED的段选码显示字符共阳极段选码dp gfedcba 显示字符共阳极段选码dp gfedcbaC0HA 88H1F9HB 83H2A4HC C6H3B0HD A1H499HE 86H592HF 8EH682HP 8CH7F8Hy 91H880H8. 00H990H“灭” FFH本系统显示电路采用简单实用的4位共阳LED数码管,位码用PNP三极管8550驱动。
基于超声波模块的测距电路设计
基于超声波模块的测距电路设计基于超声波模块的测距电路设计超声波测距是近年来广泛应用的一种测量方式,其工作原理是利用超音波在空气中传播的速度来测量物体的距离。
本文针对基于超声波模块的测距电路设计进行探讨。
1. 原理及组成超声波测距的核心是超声波模块,其由发射器和接收器两部分构成。
发射器发送超声波脉冲,接收器接收回波,并计算出所测物体与超声波模块的距离。
2. 设计流程a. 确定所需探测距离和精度首先需要明确要测量的物体距离及其所需的精度,根据实际需求选择合适的超声波传感器。
b. 选择超声波模块根据探测距离和精度要求,选择频率和探测距离合适的超声波模块。
c. 选取适当的微控制器选择适当的微控制器来控制超声波模块的发射和接收,进行数据处理和显示。
d. 电路设计电路设计包括超声波模块驱动电路和数据处理电路两部分。
超声波模块驱动电路主要是为超声波模块提供所需的电压和电流,并确保超声波信号的稳定性。
数据处理电路则是为接收到的回波进行信号处理,计算物体与超声波模块的距离并进行显示。
3. 电路设计要点a. 超声波测距的工作频率通常在40kHz左右,因此驱动电路需要提供稳定的频率信号。
b. 超声波模块的工作电压为5V,在编写驱动程序时需要注意保护电路,避免电压过高造成损坏。
c. 选择合适的采样率和数据处理算法,确保测量的精度和稳定性。
4. 结论基于超声波模块的测距电路设计需要根据实际需求确定探测距离和精度,并选择合适的超声波模块和微控制器来实现。
电路设计过程中需要注意超声波模块的驱动电路和数据处理电路,确保测量的稳定性和精度。
超声波测距模块的设计
超声波测距模块的设计超声波测距模块是一种基于超声波原理的测距模块,可以用于测量距离或者检测物体的存在。
设计超声波测距模块,需要进行硬件设计和软件设计两部分。
硬件设计:超声波测距模块的硬件设计包括电路原理图设计、电路布局设计和PCB设计。
1.电路原理图设计超声波测距模块的电路原理图主要包括以下几个部分:a. 超声波发生电路超声波发生电路的主要作用是产生超声波信号,其元件包括一个555计时器和驱动脉冲发生器。
b. 超声波接收电路超声波接收电路主要用于检测返回的超声波信号并将其转换为电信号,其元件包括压电传感器、放大器和低通滤波器。
c. 控制电路控制电路主要用于控制超声波发射和接收的时间,其元件包括单片机、时钟电路和驱动芯片。
2.电路布局设计电路布局设计需要考虑电路元件的布置和布线方式,以保证电路的稳定性和可靠性。
一般来说,放置超声波接收器和发生器的距离要尽可能的短,并且在布局时应尽量避免电路元件之间的干扰。
3.PCB设计PCB设计是将电路原理图转换为实际产品的过程,需要将所有元件按照电路布局设计好的方式布置在PCB板上,并进行良好的布线,以保证电路的稳定性和可靠性。
软件设计:软件设计主要包括单片机程序的编写和调试。
1.单片机程序编写超声波测距模块的单片机程序主要负责控制超声波的发射和接收、计算测量距离等功能。
具体流程如下:a. 发送起始脉冲:单片机设定超声波发生电路发送起始脉冲。
b. 接收回波信号:单片机接收到返回的超声波信号,并将其转换为数字信号。
c. 计算距离:单片机根据超声波行走时间和声速计算测量距离。
d. 输出距离数据:单片机将测量距离数据输出到显示模块进行显示。
2.调试调试主要是对硬件和软件进行测试和调整以确保其正常工作。
在调试过程中,需要逐步测试各个部分的工作状态,并根据测试结果对电路和程序进行相应的调整和优化。
需要注意的是,超声波测距模块在设计和制作过程中,需要对传感器的灵敏度、发射频率、接收灵敏度等参数进行合理选择和设置,以保证测量精度和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OE=0;
TMOD=0x12;
TH0=0x216;
TL0=0x216;
TH1=(65536-500)/256;
TL1=(65536-500)%256;
TR1=1;
TR0=1;
ET0=1;
ET1=1;
EA=1;
ST=1;
ST=0;
while(1)
{
if(K1==0)
{
delay10ms();
dispbuf[0]=10;
dispbuf[1]=10;
dispbuf[2]=0;
dispbuf[3]=0;
if((yw==1)&&(wd==0))
{
dispbuf[++i]=temp1;
}
else if((yw==0)&&(wd==1))
{while(temp/10)
{
dispbuf[i]=temp/10;
unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x39};
unsigned char dispbuf[8]={10,10,10,10,10,10,0,0};
CY1, CY2
2
74HC245
U2
1
4007
D1, D2, D3, D4
4
89S52
U3
1
0.36数码管
DS1
1
CD4069/74LS04
U4
1
360Ω
R5, R6, R7, R8, R9, R10, R11, R12,
8
CX20106A
U5
1
10K排阻
PR1
1
11.0592M
Y1
1
8550
Q1, Q2, Q3, Q4, Q5
{
cnta++;
if(cnta==800)
{
cnta=0;
alarmflag=~alarmflag;
}
if(alarmflag==1)
{
SPK=~SPK;
}
}
else if((shuig==0) && (shuid==1))
{
cntb++;
if(cntb==400)
{
cntb=0;
alarmflag=~alarmflag;
sbit M1=P3^6;
sbit M2=P3^7;
sbit SPK=P2^6;
sbit LA=P3^3;
sbit LB=P3^2;
sbit LC=P2^7;
sbit K1=P2^4;
sbitK2=P2^5;
bit wd;
bit yw;
bit shuid;
bit shuig;
unsigned int cnta;
else if((LC==0) && (LB==1))
{
delay10ms();
if((LC==0) && (LB==1))
{
M1=0;
M2=0;
temp1=12;
shuig=0;
shuid=0;
LB=0;
}
}
else if((LB==0) && (LA==1))
{
delay10ms();
if((LB==0) && (LA==1))
1
4.7
R13
1
104
C3, C4
2
220K
R14
1
224
C5, C10
2
22K
R151223C6 Nhomakorabea1
4.7K
R18
1
330P
C7
1
按键
RST, S1, S2, S3, S4
5
3.3UF
C8
1
蜂鸣器
SP1
1
1UF
C9
1
超声波接收管
R
1
47UF
C11
1
超声波发射管
T
1
10uF
C12
1
LM7805
U1
1
30p
unsigned int cntb;
bit alarmflag;
void delay10ms(void)
{
unsigned char i,j;
for(i=20;i>0;i--)
for(j=248;j>0;j--);
}
void main(void)
{
M1=0;
M2=0;
yw=1;
wd=0;
SPK=0;
if(K1==0)
{
yw=1;
wd=0;
}
}
else if(K2==0)
{
delay10ms();
if(K2==0)
{
wd=1;
yw=0;
}
}
else if(LC==1)
{
delay10ms();
if(LC==1)
{
M1=0;
M2=1;
temp1=13;
shuid=0;
shuig=1;
LB=0;
}
}
unsigned char dispcount;
unsigned char getdata;
unsigned int temp;
unsigned int temp1;
unsigned char i;
sbit ST=P3^0;
sbit OE=P3^1;
sbit EOC=P3^4;
sbit CLK=P3^5;
超声波测距仪
轮机系楼宇071周钰泉2007212117
实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。
实验设备及器材:电烙铁,锡线,电路元件
以下为元件清单:
参数
名称代号
数量
参数
名称代号
数量
470U
C1
1
1K
R1, R2, R3, R4, R16, R17
6
100u
C2
temp=temp%10;
}
dispbuf[++i]=temp;
}
ST=1;
ST=0;
}
P0=dispcode[dispbuf[dispcount]];
P2=dispbitcode[dispcount];
dispcount++;
if(dispcount==8)
{
dispcount=0;
}
if((shuig==1) && (shuid==0))
{
CLK=~CLK;
}
void t1(void) interrupt 3 using 0
{
TH1=(65536-500)/256;
TL1=(65536-500)%256;
if(EOC==1)
{
OE=1;
getdata=P1;
OE=0;
temp=getdata*25;
temp=temp/64;
i=2;
5
DC电源插座
P1
1
下载头
JTAG1
PCB电路板
1
实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试
超声波测距程序:
#include <AT89X52.H>
unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30,0x30,0x30};
{
M1=1;
M2=0;
temp1=11;
shuig=0;
shuid=0;
LB=0;
}
}
else if (LA==0)
{
delay10ms();
if(LA==0)
{
M1=1;
M2=0;
temp1=0;
shuid=1;
shuig=0;
LB=0;
}
}
}
}
void t0(void) interrupt 1 using 0