2模糊控制查询表的MATLAB实现
模糊控制查询表的MATLAB实现
p de c ies n er s rb i deai h way o tl e t h w t get f z y -c tol qu y a e y he o a u z onr — er tbl b t MATL pr AB ogr amm ig. s n Thi cor l a e to —tbl m a be tr d n h c y so e i t e ompue t wi t f m of tbl W hih t he or h a a e. c ca i n mpr e o gr a l te et y h ope ain e f en ySuc a PL r t al fi o ci c h s C co tol rec. o e n r l ,t wh s me o y s v y il a o e m r i er lt te,nd n—l ras nig an s ral e i ne e o n c alo be e i d. z Ke wOrs: z y onr l y d f z c to qu r a eM AT AB. c to,n—l e e o ig u ey t bl. L PI onr l o i ras nn n
级 保持 为 卜6 一 , 4 一 ,2 一 , , ,, , , ,} ,5 一 ,3 一 , 10 12 3 4 5 6。
输 入 变 量偏 差 e和偏 差 变化 率 e c和输 出变 量 A P A i K 、 T 的
模 糊 语 言 值 均 为 { B, N NM, S, O,S, M, B 。 为 了 编 程 方 N Z P P P }
值 , 为 12, 4 7 即 , 3,… 。
表 1 用 数 字 语 言 值表 示 输 入 变 量 × 1及 x 2的 隶 属度 矢 量 表
利用Matlab进行模糊逻辑和模糊控制的基本原理
利用Matlab进行模糊逻辑和模糊控制的基本原理Matlab是一种强大的数学计算软件,广泛应用于各个领域的工程和科学研究。
在现实生活中,我们经常会遇到一些模糊不清、不确定的情况,而模糊逻辑和模糊控制正是用来处理这些模糊问题的有效工具。
本文将介绍利用Matlab进行模糊逻辑和模糊控制的基本原理,并通过一些具体案例来说明其在实际应用中的价值。
首先,我们需要了解模糊逻辑和模糊控制的基本概念和原理。
模糊逻辑是Lotfi Zadeh教授于1965年提出的一种处理模糊信息的形式化逻辑系统。
与传统的布尔逻辑只有两个取值(真和假)不同,模糊逻辑引入了模糊概念,可以处理多个取值范围内的逻辑判断。
其基本原理是将模糊的语言描述转化为数学上的模糊集合,然后通过模糊运算进行推理和决策。
在Matlab中,可以使用Fuzzy Logic Toolbox工具箱来进行模糊逻辑的建模和模拟。
该工具箱提供了一系列的函数和工具,可以帮助我们创建模糊逻辑系统、定义模糊集合和模糊规则,并进行输入输出的模糊化和去模糊化运算。
一个典型的模糊逻辑系统包括三个主要组成部分:模糊集合、模糊规则和模糊推理。
模糊集合用于描述模糊化的输入和输出变量,可以是三角形、梯形、高斯等形状。
模糊规则定义了模糊逻辑系统的推理过程,通常由一系列的if-then规则组成,如“如果温度较低,则输出加热”,其中“温度较低”和“加热”为模糊集合的标签。
模糊推理根据输入变量的模糊值和模糊规则,计算出输出变量的模糊值。
为了更好地理解模糊逻辑的原理和应用,我们以一个简单的案例来说明。
假设我们需要设计一个自动化灯光控制系统,使得灯光的亮度能够根据环境光线的强弱自动调节。
首先,我们需要收集一些实际的数据来建立模糊逻辑系统。
通过传感器测量到的环境光强度作为输入变量,设定的亮度值作为输出变量。
在Matlab中,可以使用Fuzzy Logic Designer来创建一个模糊逻辑系统。
首先,我们需要定义输入和输出变量,以及它们的模糊集合。
模糊控制的MATLAB实现具体过程(强势吐血推荐)
a=addvar(a,’input’,’service’,[0 10]);
getfis(a,’input’,1) //取得FIS的部分或全部属性
②函数addmf
功能:向模糊推理系统的语言变量添加隶属度函数。
格式:a=addmf(a, varType, varIndex,mfName,mfType, mfParams)
2、存储( .fis文件)
访问
readfis-读 writefis-写
命令函数 1、隶属度函数 ①函数trimf(表示triangular membership function) 功能:建立三角形隶属度函数。 格式:y=trimf(x,[a b c]) 其中:参数x指定变量论域范围,参数a,b和c指定三角形函 数的形状,该函数在b点处取最大值1,a,c点为0。 例:建立三角形隶属度函数并绘制曲线。
min prod (乘积法)
3. 输出的合成计算Aggregation(模糊规则综合采用的方法)
Aggregation
max sum(求和法)
prober (概率法)
prober(a,b)=a+b-ab
4. 逆模糊化计算(Defuzzification)
centroid(重心法)
lom(最大隶属度函数中的取最大值法)
例:showrule(a,1:2,’indexed’) 输出结果:1 1,1(1):1
1 2,2(1):1
6、计算模糊推理输出结果函数evalfis
格式:y=evalfis(U,FIS) 说明:参数U是输入数据,FIS是模糊推理矩阵。U 的每一行是一个特定的输入向量,Y的每一行是一 个特定的输出向量。
模糊控制的Matlab仿真实例
其他例子
模型Shower.mdl―淋浴温度调节模糊控制系统仿真; 模型slcp.mdl―单级小车倒摆模糊控制系统仿真; 模型 slcp1.mdl―变长度倒摆小车模糊控制系统仿
真; 模型 slcpp1.mdl—定长、变长二倒摆模糊控制系
统仿真; 模型slbb.mdl―球棒模糊控制系统仿真; 模型sltbu.mdl―卡车智能模糊控制倒车系统仿真; 模型sltank2.mdl ― 用子系统封装的水箱控制仿
为简单起见,我们直接利用系统里已经编辑好的 模糊推理系统,在它的基础上进行修改。这里我 们采用与tank . fis中输入输出变量模糊集合完 全相同的集合隶属度函数定义,只是对模糊规则 进行一些改动,来学习模糊工具箱与仿真工具的 结合运用。对于这个问题,根据经验和直觉很显 然可以得到如下的模糊度示 波器
冷水阀子系统
这个仿真模型的输出是用示波器来表示的,如 图所示。通过示波器上的图形我们可以清楚地 看到温度和水流量跟踪目标要求的性能。
水温示波器
水流示波器
水温偏差区间模糊划分及隶属度函数
水流量偏差区间模糊划分及隶属度函数
输出对冷水阀控制策略的模糊化分及隶属度函数
选Edit菜单,选择Rules, 弹出一新界面Rule Editor. 在底部的选择框内,选择相应的 IF…AND…THEN 规则,点击Add rule 键,上部 框内将显示相应的规则。本例中用9条左右的规 则,依次加入。如下图所示:
模糊逻辑工具箱仿真结果
模糊规则浏览器用于显示各条模糊控制规则对 应的输入量和输出量的隶属度函数。通过指定 输入量,可以直接的显示所采用的控制规则, 以及通过模糊推理得到相应输出量的全过程, 以便对模糊规则进行修改和优化。
这样的结果与实际情况还是有些不符。通常顾客都是给15%的 小费,只有服务特别好或特别不好的时候才有改变,也就是说, 希望在图形中间部分的响应平坦些,而在两端(服务好或坏) 有凸起或凹陷。这时服务与小费是分段线性的关系。例如,用 下面 MATLAB 语句绘出的下图的情况。
如何利用Matlab进行模糊控制
如何利用Matlab进行模糊控制引言近年来,随着科技的不断发展,模糊控制作为一种重要的控制方法,在各个领域得到了广泛的应用。
而Matlab作为一款功能强大的数学工具软件,对于模糊控制的实现提供了便捷的支持。
本文将介绍如何利用Matlab进行模糊控制,以及其在实际应用中的优势和局限性。
一、模糊控制简介模糊控制是一种基于模糊逻辑的控制方法,它通过将模糊规则应用于控制系统,使其能够对不确定性和模糊信息进行处理。
与传统的精确控制方法相比,模糊控制更适用于处理复杂系统或无法精确建模的系统。
二、Matlab中的模糊控制工具箱Matlab提供了专门的模糊控制工具箱,可以方便地实现模糊控制系统的建模、仿真和优化等操作。
在Matlab的模糊控制工具箱中,主要包括两个核心部分:模糊推理引擎和模糊控制器。
1. 模糊推理引擎模糊推理引擎是模糊控制系统的核心部分,它负责根据输入和模糊规则,对系统进行推理和输出控制量。
在Matlab中,可以使用命令"newfis"来创建一个新的模糊控制系统,然后通过定义输入和输出变量、设定隶属函数和模糊规则等步骤,来构建一个完整的模糊控制系统。
2. 模糊控制器模糊控制器是模糊控制系统的具体实现,它将模糊推理引擎与输入输出之间的映射关系结合起来。
在Matlab中,可以使用命令"newfis"创建一个新的模糊控制系统,然后使用"addInput"和"addOutput"来添加输入和输出变量,最后通过设定隶属函数和模糊规则等步骤,来实现模糊控制器的搭建。
三、模糊控制的实际应用模糊控制在实际应用中有着广泛的应用领域,例如机器人控制、汽车导航、电力系统等。
下面将以一个模拟小车控制的实例来介绍如何利用Matlab进行模糊控制。
假设有一个小车需要根据距离和角度来控制其行驶方向和速度。
首先要定义输入和输出变量,这里我们将距离划分为近、中、远三个模糊集,角度划分为左、中、右三个模糊集,行驶方向划分为左转、直行、右转三个模糊集,行驶速度划分为慢、中、快三个模糊集。
Matlab-的-Fuzzy-工具箱实现模糊控制(rulelist的确定)
引用如何在MATLAB下把模糊推理系统转化为查询表(原创)Matlab 2009-12-26 22:05:01 阅读161 评论0 字号:大中小订阅引用foundy的如何在MATLAB下把模糊推理系统转化为查询表(原创)李会先摘要:该文论述了将MATLAB下调试成功的模糊逻辑转换为查询表的一种技巧,这种技巧不直接使用MATLAB的矩阵计算方法,操作者多数情况下只需点击鼠标就可完成任务,效率比较高,该方法使用MATLAB下的系统测试工具,收集构造查询表所需的数据资料,文中以MATLAB中的水位模糊控制演示模型为例,把该系统的模糊控制推理模块用在其基础上生成的查询表代替后再进行水位控制仿真,控制效果与模糊推理模块在线推理控制是一致的。
关键词:模糊控制;查询表;MATLAB;Simulink; 系统测试Abstract:This article discuss a skill that make a translation from fuzzy logic system to Lookup Table in Matlab,It doesn't use matrix computing, user need only to drag and draw the mouse completing this task,It's a efficiency method which to collect data for Lookup Table construction from a fuzzy controller by SystemTest Toolbox in Matlab,in the article,I will discuss the skill by a demo which is the Water Level Control in Tank in the Fuzzy logic Toolbox,at last,I simulate the Water Control in Tank instead of the Fuzzy Controller with the Lookup Table which I have constructed,the test results is verywell.Keywords: Fuzzy Logic, Matlab,Simulink,Lookup Table,SystemTest1. 引言在MATLAB/Simulink下,构建模糊逻辑系统模型和调试其推理规则都是很方便的[3][4],我们当然不希望在MATLAB下的仿真工作仅仅用于仿真目的,如果实际产品设计能继承仿真的工作成果,将事半功倍。
模糊控制matlab
模糊控制matlab模糊控制是一种基于模糊数学理论的控制方法,它可以有效地处理非线性系统和模糊系统的控制问题。
在模糊控制中,通过将输入、输出和中间变量用模糊集合表示,设计模糊逻辑规则以实现控制目标。
本文将介绍如何用Matlab实现模糊控制,并通过实例讲解其应用和效果。
1. 模糊集合的表示在Matlab中,我们可以使用fuzzy工具箱来构建和操纵模糊系统。
首先,我们需要定义输入和输出的模糊集合。
例如,如果我们要控制一个直线行驶的自动驾驶汽车,可以定义速度和方向作为输入,定义方向盘角度作为输出。
我们可以将速度和方向分别划分为缓慢、中等、快速三个模糊集合,将方向盘角度划分为左转、直行、右转三个模糊集合。
可以使用Matlab的fuzzy工具箱中的fuzzy集合函数实现:slow = fuzzy(fis,'input',[-10 -10 0 20]);gap = fuzzy(fis,'input',[0 20 60 80 100]);fast = fuzzy(fis,'input',[60 80 110 110]);其中,fis为模糊系统对象,输入和输出的模糊集合分别用fuzzy函数定义,分别用输入或输出、模糊集合变量名、模糊集合界限参数表示,如fuzzy(fis,'input',[-10 -10 0 20])表示定义一个输入模糊集合,变量名为slow,其界限参数为[-10 -10 0 20],即表示此模糊集合上下界是[-10,-10]和[0,20]。
2. 设计模糊控制规则在Matlab中,可以使用fuzzy工具箱的ruleviewer函数来设计模糊控制的规则库。
规则库由模糊条件和模糊结论构成,用if-then形式表示。
例如,定义类别均为slow和keep的输入,输出为类别均为left的控制操作的规则如下:rule1 = "if (slow is slow) and (keep is keep) then (left is left);";其中,slow和keep为输入的模糊变量名,left为输出的模糊变量名。
基于MATLAB生成模糊控制规则离线查询表
0 引言模糊控制隶属于智能控制,是一种基于规则的近似推理的非线性智能控制。
如果说,传统的控制方式需要被控对象精确的数学模型,而模糊控制则是以人类智能活动的角度为基础实施控制,因此,在实际中,传统控制方法无能为力的非线性场合,模糊控制却能起到很好的控制作用。
因此,实际应用中,由于系统复杂、很难建立精确数学模型的非线性系统,模糊控制已经成为一种最有效的控制方法。
模糊控制规则表是模糊控制的核心,其描述的是输入的偏差、偏差变化量与控制的输出之间的对应关系,采用手工计算方式,量大且费时;采用在线计算方式,往往又影响系统被控对象的实时控制效果。
因此,在应用模糊控制时,首先针对输入的不同组合,采用离线计算方式算出相应的控制输出量,构成模糊控制规则查询表,实际控制时再将模糊控制规则查询表嵌入在各种控制平台,如单片机、PLC 等,实现离线计算、在线查表,这样,一方面减少了模糊控制的在线运算量,同时又实现了模糊控制的实时控制效果。
实际应用中发现,对模糊控制规则表的生成,在离散论域分档较少的条件下,多采用手工计算,而在离散论域分档较多的条件下,手工计算量太大,用MATLAB 软件编程实现,对MATLAB 软件的编程能力要求又较高,因此,本文以二维温度模糊控制规则查询表的生成为例来说明如何简单有效的利用MATLAB 软件生成模糊控制规则离线查询表。
1 实例分析应用MATLAB2014a 软件说明生成模糊规则离线查询表的过程。
设二维温度模糊控制器[1 2]的输入为温度偏差E 和温度偏差变化率EC,输出为温控器输出电压U。
模糊控制器模型见图1。
2 模糊控制规则离线查询表生成步骤[34 5](1)利用模糊逻辑控制工具箱生成温度模糊推理系统在MATLAB2014a 命令窗口中输入fuzzy 打开模糊控制工具箱,编辑输入输出变量的隶属度函数和模糊控制规则,然后将模糊推理系统保存为mytest.fis。
设温度偏差E、偏差变化率EC 和温控器输出电压U 的模糊论域为[-6 6],三者的语言变量赋值均为{NB,NM,NS,Z,PS,PM,PB},各语言值的隶属函数均采用三角函数,如图2所示,并根据温度模糊控制规则表1逐条添加模糊控制规则,清晰化采用加权平均法。
使用Matlab技术进行模糊控制的基本方法
使用Matlab技术进行模糊控制的基本方法随着科技的不断发展,控制系统越来越广泛地应用于各个领域,帮助我们解决实际问题。
在控制系统中,模糊控制技术因其适应性强、鲁棒性好等特点而备受关注。
而Matlab作为一个强大的计算工具,为我们提供了许多实现模糊控制的功能。
本文将介绍使用Matlab技术进行模糊控制的基本方法。
一、模糊控制的基本理论在介绍使用Matlab进行模糊控制的方法之前,我们先来了解一下模糊控制的基本理论。
模糊控制是一种基于模糊逻辑的控制方法,它模拟人类的思维方式进行控制,通过建立模糊规则库来实现对系统的控制。
在模糊控制中,输入和输出之间的关系由一组模糊规则来描述,这些模糊规则可以通过模糊推理进行计算得到系统的输出。
模糊控制主要有三个基本步骤:模糊化、模糊推理和去模糊化。
模糊化是将输入的实际值通过模糊隶属函数映射成模糊集合。
模糊推理则是根据模糊规则库进行推理计算,得到模糊输出。
最后,去模糊化将模糊输出转换为实际的控制量。
二、使用Matlab进行模糊控制的步骤1. 定义模糊集合和模糊规则库使用Matlab进行模糊控制的第一步是定义模糊集合和模糊规则库。
模糊控制中的模糊集合可以通过Matlab的fuzzymf函数来定义,它可以根据实际问题选择三角形、梯形、高斯函数等不同形状的隶属函数。
模糊规则库则是描述输入和输出之间关系的集合,它由一组模糊规则构成。
在Matlab中,可以使用fuzzylut函数来定义模糊规则库。
这个函数需要指定输入和输出的隶属函数以及规则的后件。
2. 模糊化和模糊推理定义好模糊集合和模糊规则库之后,接下来就是进行模糊化和模糊推理的计算了。
在Matlab中,可以使用fuzzy函数进行模糊化的计算。
这个函数需要输入模糊集合、输入的隶属函数和对应的输入值,然后计算得到模糊输入。
模糊推理可以通过fuzzy函数结合模糊规则库进行计算。
这个函数需要输入模糊规则库、模糊输入和输出的隶属函数,然后计算得到模糊输出。
模糊控制在MATLAB中的实现
模糊控制在MATLAB中的实现模糊控制是一种基于模糊逻辑的控制方法,可以处理输入模糊或模糊输出的问题。
在MATLAB中,模糊控制可以通过Fuzzy Logic Toolbox实现。
Fuzzy Logic Toolbox提供了一套用于设计、模拟和分析模糊逻辑系统的工具。
它允许用户定义模糊集、模糊规则和模糊推理过程,从而实现模糊控制。
在实现模糊控制之前,首先需要确定输入和输出的模糊集以及它们之间的关系。
可以通过定义模糊集合的成员函数来描述输入和输出的模糊集。
常见的成员函数有三角形、梯形、高斯等。
例如,对于一个温度控制系统,可以定义三个模糊集:"冷","舒适"和"热"用于描述温度的状态。
每个模糊集可以具有不同的成员函数。
接下来,需要定义模糊规则,规则用于描述输入和输出之间的关系。
例如,当温度"冷"时,可以设定输出为"加热",当温度"舒适"时,输出为"保持",当温度"热"时,输出为"冷却"。
在MATLAB中,可以使用Fuzzy Logic Toolbox的命令createFIS来创建一个模糊逻辑系统(FIS),并使用addInput和addOutput命令来定义输入和输出的模糊集。
例如,以下代码片段演示了如何创建一个简单的模糊逻辑系统:```MATLABfis = createFIS('fuzzy_system');fis = addInput(fis, [0 100], 'Temperature');fis = addOutput(fis, [0 10], 'Control');fis = addMF(fis, 'input', 1, 'cold', 'trimf', [-10 0 10]);fis = addMF(fis, 'input', 1, 'hot', 'trimf', [40 100 160]);fis = addMF(fis, 'output', 1, 'cool', 'trimf', [-5 0 5]);fis = addMF(fis, 'output', 1, 'maintain', 'trimf', [0 5 10]);fis = addMF(fis, 'output', 1, 'heat', 'trimf', [5 10 15]);ruleList = [1 1 2 3 1;22221;33211];fis = addRule(fis, ruleList);```在定义模糊逻辑系统之后,可以使用evalfis命令对系统进行模糊推理和模糊控制。
使用MATLAB进行模糊控制设计
使用MATLAB进行模糊控制设计导言:模糊控制是一种基于模糊逻辑的自适应控制方法,它使用模糊规则来处理难以准确建模的系统。
MATLAB作为一款功能强大的数学计算软件,在模糊控制设计中发挥着重要的作用。
本文将介绍使用MATLAB进行模糊控制设计的基本原理、步骤以及一些实际的应用案例。
一、模糊控制基本原理1.1 模糊逻辑模糊逻辑是基于模糊集的一种数学逻辑推理方法。
与传统的布尔逻辑不同,模糊逻辑考虑了中间状态的存在,可以用模糊集的隶属度来描述事物之间的模糊关系。
模糊逻辑的基本运算包括模糊与、模糊或、模糊非等。
1.2 模糊控制器的基本结构模糊控制系统由模糊化、模糊推理和去模糊化三个主要部分组成。
模糊化将输入转换为模糊集,模糊推理基于预定义的模糊规则进行逻辑推理,得到输出的模糊集,然后通过去模糊化将模糊结果转换为实际的控制信号。
二、使用MATLAB进行模糊控制设计的步骤2.1 建立模糊逻辑系统在MATLAB中,可以使用fuzzy工具箱来建立模糊逻辑系统。
首先,需要定义输入和输出的模糊集,可以选择三角形、梯形或高斯函数等形状。
然后,定义模糊规则,设置每个输入和输出之间的关系。
最后,确定输入和输出的范围,以便后续模糊控制器的设计和仿真。
2.2 设计模糊控制器在MATLAB中,可以使用fuzzy工具箱中的fuzzy控制器对象来设计模糊控制器。
首先,需要将前一步中建立的模糊逻辑系统与fuzzy控制器对象相关联。
然后,设置输入的变化范围和输出的变化范围。
接下来,可以选择使用模糊控制器设计方法来优化模糊规则和模糊集的参数。
最后,可以进行控制系统的仿真和性能评估。
2.3 优化模糊控制器优化模糊控制器是为了使模糊控制系统能够更好地适应实际环境变化和控制要求。
在MATLAB中,可以使用模糊控制器的仿真结果进行性能评估和参数调整。
可以通过修改模糊规则、模糊集的参数或输入输出的变化范围等方式来优化模糊控制器。
三、模糊控制设计的实际应用案例3.1 模糊温度控制模糊温度控制是一个常见的实际应用案例。
模糊控制在matlab中的实例
模糊控制在matlab中的实例模糊控制是一种基于经验知识的控制方法,与传统的精确控制方法不同,它允许对系统的行为进行模糊描述,并通过一套模糊规则来对系统进行控制。
在实际应用中,模糊控制常常用于处理非线性、复杂和不确定的系统,例如温度控制、汽车制动系统等。
在MATLAB中,可以通过使用Fuzzy Logic Toolbox工具箱来实现模糊控制。
下面以一个简单的温度控制系统为例,来介绍如何在MATLAB中进行模糊控制的实现。
首先,需要定义模糊控制器的输入和输出变量,以及它们的模糊集合。
在温度控制系统中,可以定义温度作为输入变量,定义加热功率作为输出变量。
可以将温度的模糊集合划分为"冷"、"适中"和"热"三个模糊集合,将加热功率的模糊集合划分为"低"、"中"和"高"三个模糊集合。
```temperature = readfis('temperature.fis');temp_input = [-10, 40];temp_output = [0, 100];temperature_inputs = ["冷", "适中", "热"];temperature_outputs = ["低", "中", "高"];```然后,需要定义模糊规则。
模糊规则用于根据输入变量的模糊集合和输出变量的模糊集合之间的关系来确定控制规则。
例如,当温度为"冷"时,加热功率应该为"高"。
可以根据经验知识定义一系列模糊规则。
```rules = ["冷", "高";"适中", "中";"热", "低";];```接下来,需要定义模糊控制器的输入和输出变量值。
如何在MATLAB中进行模糊控制
如何在MATLAB中进行模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过建立模糊规则、模糊集合和模糊推理等步骤,实现对复杂系统的控制。
在MATLAB中,我们可以利用模糊控制工具箱进行模糊控制设计和仿真。
本文将从模糊控制的基本原理、MATLAB中的模糊控制工具箱的使用以及实例应用等方面进行讨论。
一、模糊控制基本原理模糊控制的基本原理是将人类的经验和模糊逻辑理论应用于系统控制中。
它不需要准确的数学模型,而是通过模糊集合、模糊规则和模糊推理等方法来描述和制定控制策略。
下面我们将简要介绍一下模糊控制中的基本概念。
1. 模糊集合模糊集合是一种可以容纳不确定性的集合。
与传统集合论不同,模糊集合中的元素可以部分地、模糊地属于该集合。
在模糊控制中,我们通常使用隶属度函数来描述元素对模糊集合的隶属程度。
2. 模糊规则模糊规则是一种将输入和输出间的关系表示为一组语义规则的方法。
它基于专家的经验和知识,将输入变量的模糊集合与输出变量的模糊集合之间建立映射关系。
模糊规则通常采用IF-THEN的形式表示,例如:“IF 温度冷 AND 湿度高 THEN 空调制冷”。
3. 模糊推理模糊推理是基于模糊规则进行推理和决策的过程。
它通过对模糊集合的隶属度进行运算,计算出输出变量的模糊集合。
常用的推理方法有模糊关联、模糊交集和模糊合取等。
二、MATLAB中的模糊控制工具箱MATLAB提供了一套完整的模糊控制工具箱,包括模糊集合的创建、模糊规则的定义、模糊推理和模糊控制系统的仿真等功能。
下面我们将逐步介绍这些功能的使用方法。
1. 模糊集合的创建在MATLAB中,我们可以使用fuzzymf函数来创建模糊集合的隶属度函数。
该函数可以根据用户指定的类型和参数生成不同形状的隶属度函数。
常用的隶属度函数有三角型函数、梯形函数和高斯型函数等。
2. 模糊规则的定义在MATLAB中,我们可以使用addrule函数来定义模糊规则。
该函数将用户指定的输入变量、模糊集合和输出变量、模糊集合之间的关系转化为模糊规则,并添加到模糊推理系统中。
模糊控制在matlab中的实例
模糊控制在matlab中的实例以下是一个简单的模糊控制实例,使用Matlab进行实现:假设有一辆小车,需要通过模糊控制来控制它的速度。
1. 首先,我们需要定义输入(error)和输出(delta),并且规定它们的范围:```inputRange = [-2 2];outputRange = [-1 1];```其中,inputRange表示error的范围为-2到2,outputRange表示delta的范围为-1到1。
2. 接下来,我们需要定义模糊变量:```error = fisvar("input", "error", "range", inputRange); delta = fisvar("output", "delta", "range", outputRange); ```这里我们定义了两个模糊变量:输入变量error和输出变量delta。
3. 然后,我们需要用隶属函数来描述模糊变量:```errorFuncs = [fisGaussmf(error, -1, 0.5) % NBfisGaussmf(error, 0, 0.5) % ZOfisGaussmf(error, 1, 0.5) % PB];deltaFuncs = [fisGaussmf(delta, -1, 0.25) % NBfisGaussmf(delta, 0, 0.25) % ZOfisGaussmf(delta, 1, 0.25) % PB];```在这个例子中,我们使用了高斯隶属函数来描述模糊变量。
NB 表示“negative big”(负大),ZO表示“zero”(零),PB表示“positive big”(正大)。
4. 接下来,我们需要定义规则:```ruleList = [1 1 1 3 % NB -> PB2 1 1 2 % ZO -> NB3 1 1 1 % PB -> ZO];```这个规则表达式的意思是:如果error是NB,则delta是PB;如果error是ZO,则delta是NB;如果error是PB,则delta是ZO。
如何进行模糊控制的Matlab实现
如何进行模糊控制的Matlab实现模糊控制是一种基于模糊逻辑的控制方法,它能够在复杂的环境下进行精确的控制。
在现实世界中,很多问题存在不确定性和模糊性,传统的控制方法很难解决这些问题。
而模糊控制通过建立模糊规则来模拟人的思维过程,能够灵活地应对这些问题。
Matlab是一种功能强大的科学计算软件,它提供了丰富的工具箱和函数,可以帮助我们快速实现模糊控制算法。
本文将介绍如何使用Matlab进行模糊控制的实现,并结合一个实际案例进行说明。
首先,我们需要了解模糊控制的基本原理。
模糊控制是基于模糊逻辑进行推理和决策的一种方法。
它将输入和输出的模糊集合表示为隶属度函数,并通过模糊规则对模糊输入进行推理,得到模糊输出。
最后,将模糊输出通过去模糊化方法转换为具体的控制量。
在Matlab中,可以使用Fuzzy Logic Toolbox工具箱来实现模糊控制。
首先,需要定义输入和输出的模糊集合。
可以使用trimf函数来定义三角形隶属度函数,也可以使用gaussmf函数来定义高斯隶属度函数。
然后,需要定义模糊规则。
可以使用fuzarith函数来定义规则的操作,如AND、OR、NOT等。
最后,使用evalfis 函数对输入进行推理,得到模糊输出。
接下来,我们以温度控制为例,介绍如何使用Matlab进行模糊控制的实现。
假设我们要设计一个模糊控制器来控制一个房间的温度,使其尽可能接近一个设定的目标温度。
首先,定义输入的模糊集合和隶属度函数。
假设输入是当前的温度,模糊集合包括"冷"、"舒适"和"热"三个隶属度函数。
可以使用trimf函数来定义这些隶属度函数。
然后,定义输出的模糊集合和隶属度函数。
假设输出是空调的功率,模糊集合包括"低"、"中"和"高"三个隶属度函数。
同样,可以使用trimf函数来定义这些隶属度函数。
模糊控制的Matlab仿真实例
THANK YOU
中心平均值去模糊化
去模糊化过程
04
Matlab仿真实例
输入输出变量定义
根据被控对象的特性,定义模糊控制系统的输入输出变量,如温度、湿度、压力等。
模糊化函数设计
为每个输入输出变量设计对应的模糊化函数,将实际值映射到模糊集合上。
模糊规则制定
根据专家知识和实际经验,制定模糊控制规则,如“如果温度过高,则调整冷却阀”。
输入输出关系
基于模糊逻辑运算和模糊集合的性质,建立输入和输出之间的映射关系。
推理规则
基于专家知识和经验,制定一系列的推理规则,用于指导模糊推理过程。
推理方法
常用的模糊推理方法包括最大值推理、最小值推理和中心平均值推理等。
模糊推理系统
02
Matlab模糊逻辑工具箱简介
模糊逻辑工具箱的功能
为了将模糊输出转换为实际输出,工具箱提供了多种去模糊化方法,如最大值去模糊化、最小值去模糊化和中心平均值去模糊化等。
性能指标选择
根据所选性能指标,采用合适的方法对模糊控制系统的性能进行评估,如极差分析法、方差分析法等。
性能评估方法
将模糊控制系统的性能与其他控制方法进行比较,如PID控制、神经网络控制等,以验证其优越性。
性能比较
01
02
03
模糊控制系统的性能评估
05
结论与展望
模糊控制对模型误差和参数变化具有较强的鲁棒性,能够适应不确定性和非线性系统。
输出模糊化
将模糊集合的输出映射到实际输出量上,同样采用隶属函数进行模糊化处理。
模糊化过程
模糊控制查询表的MATLAB实现
模糊控制查询表的MATLAB实现
叶高文
【期刊名称】《工业控制计算机》
【年(卷),期】2010(023)011
【摘要】通过建立一个工业自动化控制中经常使用的模糊PI控制器模型,详细论述了运用MATLAB语言编写模糊控制查询表的方法,该控制表可以表格形式存放于计算机,从而大大提高了如PLC等内存小的工业控制器的运行效率,也可实现在线推理控制.
【总页数】3页(P64-66)
【作者】叶高文
【作者单位】厦门海洋职业技术学院,福建,厦门,361012
【正文语种】中文
【相关文献】
1.利用DCS常规功能模块搭建模糊控制查询表 [J], 张文波
2.基于查询表的一维比例积分模糊控制器的实现 [J], 韩亚军;黄贻培;梁雪峰;
3.动态查询表模糊控制器的开发与应用 [J], 刘光磊;江彤;阳春华;吴同茂
4.基于查询表的一维比例积分模糊控制器的实现 [J], 韩亚军;黄贻培;梁雪峰
5.基于MATLAB生成模糊控制规则离线查询表 [J], 刘淑荣;金波
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制查询表的MATLAB 实现叶高文(厦门海洋职业技术学院,福建厦门361012)MATLAB realization of Fuzzy Control Query Table在运用模糊控制技术进行工业控制时,为了减少在线计算量,节省内存,提高PLC 等控制器的运行效率,通常根据隶属度函数和模糊控制规则表离线计算对应的模糊控制表,并将该表置于PLC 等控制器中,供实时控制时使用。
在实时控制过程中,根据模糊量化后的偏差值e 和偏差变化率ec 直接查询控制表以获得模糊控制输出量,再转换为精确输出控制量。
在实际的控制过程中由于微分作用的效果不是很明显,故很多实际情况中只采用PI 控制。
本文论述的对象是常用PLC 的模糊PI 控制。
不是PLC 的系统,可将积分时间转换为积分系数。
1模糊PI 控制模型说明本文提供一个实际工业控制的模糊查询表的MATLAB 实现过程,模糊PI 模型如图1。
图1模糊PI 控制器模型如图1,模糊控制器的输入量采用实际被控制量与给定量的偏差e 和偏差变化率ec ,参数整定机构采用增量型调整原理,输出为比例系数增量ΔK P 和积分时间增量ΔTi ,再经式K P =K P0+ΔK P 和式T I =T I0+ΔTi 计算得到PI 控制器的比例系数KP 和积分时间值TI 。
2模型输入输出模糊控制规则表2.1定义输入输出变量的隶属度矢量表一般情况下,输入量偏差e 和偏差变化率△e 以及输出变量ΔKP 和ΔTi 的离散论域都设定为13个量化等级邀-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6妖。
为方便MATLAB 编程,对相关的变量选择进行一些改变。
原先的输入变量偏差e 和偏差变化率ec 的量化等级邀-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6妖改写为邀1,2,3,4,5,6,7,8,9,10,11,12,13妖。
而输出变量ΔKP 和ΔTi 得量化等级保持为邀-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6妖。
输入变量偏差e 和偏差变化率ec 和输出变量ΔKP 、ΔTi 的模糊语言值均为邀NB ,NM ,NS ,ZO ,PS ,PM ,PB妖。
为了编程方便,将语言值用数字表示为邀1,2,3,4,5,6,7妖,与模糊语言值相对应,比如:模糊语言值NB 的模糊数字值为1,其他类似。
根据以上的规定,产生用数字语言值表示输入变量x1及x2的隶属度矢量表,见表1所示。
其中,变量x1表示模糊控制器的偏差输入e ,变量x2表示模糊控制器的偏差输入ec ;f1(i )、f2(j )表示第一输入x1和第二输入x2的隶属度,而i 、j 表示语言变量数字值,即为1,2,3,4…7。
表1用数字语言值表示输入变量x1及x2的隶属度矢量表2.2模糊控制规则表该控制系统为一实际工业控制模型,其用数字语言值表示的比例系数增量ΔKP 和积分时间ΔTI 模糊控制规则表如表2和表3所示。
表2用数字语言值表示的ΔKP 模糊控制规则摘要通过建立一个工业自动化控制中经常使用的模糊PI 控制器模型,详细论述了运用MATLAB 语言编写模糊控制查询表的方法,该控制表可以表格形式存放于计算机,从而大大提高了如PLC 等内存小的工业控制器的运行效率,也可实现在线推理控制。
关键词:模糊控制查询表,MATLAB ,PI 控制,在线推理AbstractThrough the establishmengt ofFuzzy-PI controller model which is applied in the industrial automation control,This pa-per describes in detail the way how to get a fuzzy -control-query table by the MATLAB programming.This cotrol-table may be stored in the compute with the form of a table,Which can improe greatly the operational efficiency,Such as PLC controller,etc.whose memory is very little,and on-line reasoning can also be realized.Keywords :fuzzy control query table,MATLAB,PI control,on-linereasoning模糊控制查询表的MATLAB 实现64《工业控制计算机》2010年第23卷第11期表3用数字语言值表示的ΔTI模糊控制规则3MATLAB程序实现通过MATLAB编程,也可以用其它语言编程,使该实现方法既可以作为在线推理的算法,也可以把控制表先做出来,存在计算机中,通过在线查询得到输出控制量,本文以后者为例。
3.1程序流程图用MATLAB编写程序流程图,如图2。
图2程序流程图以上程序流程图2说明:x1和x2为第一输入偏差e和第二输入变差变化ec;COG是重心法反模糊化方法;S[i,j]=w觹h[i,j]/2是输出隶属函数的面积,输出隶属函数采用取小操作,用高h削顶。
w为三角形输出隶属函数的底宽;f1(i)、f2(j)表示第一输入x1和第二输入x2的隶属度;i、j为语言变量数字值。
3.2MATLAB程序依据程序流程图,ΔKP在线查询表编写如下:%程序初始化,输入偏差e和偏差变化率隶ec属函数表A、B,控制规则表R:A=[10.500000000000;00.510.5000000000;0000.510.50000000;000000.510.500000;00000000.510.5000;0000000000.510.50;000000000000.51];B=[10.500000000000;00.510.5000000000;0000.510.50000000;000000.510.500000;00000000.510.5000;0000000000.510.50;000000000000.51];R=[7776543;7765432;7654321;5544455;1234567;2345677;3456777];%模糊控制器输出初始化,输出模糊集合中心值向量cen。
三角形隶属函数底宽w=4%num为重心法反模糊化公式的分子,den为分母,u0模糊控制器输出值:u0=zeros(13);cen=[-6-4-20246];w=4;num=0; den=0;%采样输入偏差e和偏差变化率ec的值m、nm=input('m=');n=input('n=');%运算初始化,f1、f2为输入值的隶属函数,a、b为输入语言值,k输出语言值,%c为输出隶属函数中心点的值,s为蕴含模糊集合隶属函数下的面积;s1=s觹c;%h为规则前件隶属度,h=min(f1,f2)f1=[0000000];a=[0000000];f2=[0000000];b=[0000000];k=zeros(7);c=zeros(7);s=zeros(7);s1=zeros(7);h=zeros(7);%循环计算上述各量for i=1:7for j=1:7if A(i,m)>0f1(i)=A(i,m);a(i)=i;endif B(j,n)>0f2(j)=B(j,n);b(j)=j;endif a(i)觹b(j)>0k(i,j)=R(a(i),b(j));c(i,j)=cen(k(i,j));h(i,j)=min(f1(i),f2(j));s(i,j)=1/2觹w觹h(i,j);s1(i,j)=s(i,j)觹c(i,j);endendend%COG反模糊化,计算num及denfor i=1:7for j=1:7num=num+s1(i,j);den=den+s(i,j);endendu0=num/den%模糊控制器输出依据程序流程图,ΔTI离线查询表编写如下:%程序初始化,输入偏差e和偏差变化率隶ec属函数表A、B,控制规则表R:A=[10.500000000000;00.510.5000000000;0000.510.50000000;000000.510.500000;00000000.510.5000;0000000000.510.50;65000000000000.51];B=[10.500000000000;00.510.5000000000;0000.510.50000000;000000.510.500000;00000000.510.5000;0000000000.510.50;000000000000.51];R=[7776654;7766543;7665432;1124211;2345667;3456677;4566777];%模糊控制器输出初始化,输出模糊集合中心值向量cen。
三角形隶属函数底宽w=4%num为重心法反模糊化公式的分子,den为分母,u0模糊控制器输出值u0=zeros(13);cen=[-6-4-20246];w=4;num=0; den=0;%采样输入偏差e和偏差变化率ec的值m、nm=input('m=');n=input('n=');%运算初始化,f1、f2为输入值的隶属函数,a、b为输入语言值,k输出语言值,%c为输出隶属函数中心点的值,s为蕴含模糊集合隶属函数下的面积;s1=s觹c;%h为规则前件隶属度,h=min(f1,f2)f1=[0000000];a=[0000000];f2=[0000000];b=[0000000];k=zeros(7);c=zeros(7);s=zeros(7);s1=zeros(7);h=zeros(7);%循环计算上述各量for i=1:7for j=1:7if A(i,m)>0f1(i)=A(i,m);a(i)=i;endif B(j,n)>0f2(j)=B(j,n);b(j)=j;endif a(i)觹b(j)>0k(i,j)=R(a(i),b(j));c(i,j)=cen(k(i,j));h(i,j)=min(f1(i),f2(j));s(i,j)=1/2觹w觹h(i,j);s1(i,j)=s(i,j)觹c(i,j);endendend%COG反模糊化,计算num及denfor i=1:7for j=1:7num=num+s1(i,j);den=den+s(i,j);endend%模糊控制器输出u0=num/den4输出变量ΔKP和ΔTi的在线查询表通过MATLAB的程序,可得到在线控制表表4和表5:表4ΔKP在线查询表表5ΔTi在线查询表通过对偏差E和偏差变化EC的判定,得出输出控制,再乘以量化因子即可转换为精确输出控制量。