高分子第6章 开环聚合(全)
高分子化学 第6章 配位聚合
(4)配位聚合引发剂与单体
①引发剂和单体类型
Ziegler-Natta引发剂
-烯烃 有规立构聚合
二烯烃 有规立构聚合
环烯烃 -烯丙基镍型引发剂:专供丁二烯的顺、反1,4聚合 极性单体 烷基锂引发剂(均相) 有规立构聚合 二烯烃 茂金属引发剂(所有乙烯基单体)
②引发剂的相态和单体的极性
非均相引发剂,立构规整化能力强
δ +CH
Mt CH2 δ -
R
过渡金属阳离 子Mt +对烯烃 双键 碳原子的 亲电进攻
插入反应包括两个同时进行的化学过程。
单体的插入反应有两种可能的途径:
一级插入
δδ+
CH CH2 R
Mt
+
CH CH2 R
δδ+
CH CH2 CH CH2 R R
Mt
不带取代基的一端带负电荷,与过渡金属相连 接,称为一级插入。
全同1,2 、间同1,2、顺式1,4-聚丁二烯和反式 1,4-聚丁二烯。
n CH CH CH 2 CH 2 4 3 2 1
1,2加成 3,4加成
[ CH2 CH ]n CH CH2 (R)
丁二烯的1,2或3,4加成有全同和间同二种立构规整聚合物。
[ CH2 CH2 ]n C C H H
顺式1,4-聚丁二烯-1,3
最初的Ziegler-Natta引发剂由两组分构成。 主引发剂 是周期表中Ⅳ~Ⅷ过渡金属化合物。
1955年意大利的Natta改进了Ziegler引发剂。用TiCl3和烷 基金属化合物组成的配位引发剂使丙烯聚合,结果得到高相 对分子质量、高结晶度、耐热150℃的聚丙烯,并于1957年 实现了工业化。 Natta还用这些引发剂使乙烯聚合,所得到的PE无支链、 结晶度也很高, 这种PE、PP具有高的立构规整度。 Ziegler-Natta引发剂的出现使高分子科学和高分子工 业的发展有了重大突破,从而在高分子科学中开创了一 个新的研究领域----配位聚合。 Ziegler和Natta两位学者也于1963年同时获得诺贝尔 化学奖。
高分子科学-第6章 阴阳离子聚合详解
(iii)有机金属化合物:
ቤተ መጻሕፍቲ ባይዱ
有机金属化合物是最常用的阴离子聚合引发剂。多为 碱金属的有机金属化合物(如丁基锂),Ca和Ba的有机金 属化合物也具引发活性,但不常用。
BuLi + H2C CH X
Bu CH2 CH Li+ X
有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 活性次序: RK>RNa>Rli>RMg>RAl (iv)格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 的单体聚合。
3
离子聚合的特点
单体选择性高;
聚合条件苛刻;
聚合速率快,需在低温下进行;
反应介质对聚合有很大影响。
聚合机理和动力学研究不够成熟
一些重要的聚合物,如丁基橡胶、异戊橡胶、聚甲 醛、聚氯醚等只能通过离子聚合得到。
4
离子聚合的应用:
理论上,有较强的控制大分子链结构的能力, 通过离子聚合可获得“活性聚合物”,可以有目 的的分子设计,合成具有预想结构和性能的聚合 物;
以KNH2 -液氨体系为例:
自由阴离子方式引 发聚合反应
形成单阴离子
14
(ii)醇盐、酚盐:
醇(酚)盐一般先让金属与醇(酚)反应制得醇(酚) 盐,然后再加入聚合体系引发聚合反应。如:
2 Na + 2 CH3OH → 2 CH3ONa + H2
CH3O-Na+ + H2C CH X H3CO CH2 CH Na+ X
第六章
离子聚合
1
6.1 引言
第六章离子聚合
第六章离子聚合一、名称解释1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。
2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。
3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。
4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。
5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主引发剂是Ⅳ~Ⅷ族过渡金属化合物。
共引发剂是Ⅰ~Ⅲ族的金属有机化合物。
6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。
具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。
配位聚合又有络合引发聚合或插入聚合之称。
7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。
定向聚合等同于立构规整聚合。
二、选择题1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B )A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO22. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B )A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C )A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C )A 阴离子本身比较稳定B 阴离子无双基终止而是单基终止C 从活性链上脱出负氢离子困难D 活化能低,在低温下聚合5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A )A 阴离子聚合B 阳离子聚合C 自由基聚合D自由基共聚合6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D)A. BuLiB. AIBNC. AlCl3+H2OD. 萘+钠7. 制备分子量分别较窄的聚苯乙烯,应该选择(B)A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应8. 按阴离子聚合反应活性最大的单体是(A)A α-氰基丙烯酸乙酯B 乙烯C 甲基丙烯酸甲酯D乙酸乙烯酯9. 高密度聚乙烯与低密度聚乙烯的合成方法不同,若要合成高密度聚乙烯所采用的引发剂是( B )A. BuLiB. TiCl4-AlR3C. BF3+H2OD. BPO10. Ziegler-Natta引发剂引发丙烯聚合时,为了控制聚丙烯的分子量,最有效的办法是(D)A 增加引发剂的用量B适当降低反应温度C适当增加反应压力D加入适量氢气11. 合成顺丁橡胶所用的引发剂为(D)A BPOB BuLiC Na + 萘D TiI+AlEt312. 鉴定聚丙烯等规度所用的试剂是(D)A 正庚烷B正己烷C 正辛烷D沸腾的正庚烷13. 能采用阳离子、阴离子与自由基聚合的单体是(B)A、MMAB、StC、异丁烯D、丙烯腈14. 在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B)A配位阴离子聚合;B阴离子活性聚合;C自由基共聚合15 阳离子聚合最主要的链终止方式是(B)A向反离子转移;B向单体转移;C自发终止16能引发丙烯酸负离子聚合的引发剂是(A)A丁基锂B三氯化铝C过氧化氢17 取代苯乙烯进行阳离子聚合反应时,活性最大的单体是(A)A对甲氧基苯乙烯B对甲基苯乙烯C对氯苯乙烯D间氯苯乙烯18 在具有强溶剂化中进行阴离子聚合反应时,聚合速率随反离子的体积增大而(B)A增加B下降C不变D无规律变化19 用强碱引发己内酰胺进行阴离子聚合反应时存在诱导期,消除的方法是(C)A加入过量的引发剂B适当提高温度C加入少量乙酸酐D适当加压20 为了得到立构规整的1.4-聚丁二烯,1,3 –丁二烯可采用( D)聚合。
《高分子化学》习题与答案
1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。
4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。
5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。
(2)碳链聚合物,杂链聚合物。
(3)塑料,橡胶,化学纤维,功能高分子。
6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3(2) -[- CH2- CH-]-n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶(5) 顺丁橡胶(6) 聚丙烯腈 (7) 涤纶(8) 尼龙6,10 (9) 聚碳酸酯(10) 聚氨酯9. 写出下列单体形成聚合物的反应式。
指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。
10. 写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。
高分子化学-11(开环聚合)
+
C 2 C 2 H H O AH H O C H
p r o p a t
H
C 2
a n d
C 2 H
C 2 T H
H O C H H ( O C H
2 C 2 F +O H - A-
2 C 2 O+ H - A- C 2 H T H F + 2 C 2 ) 2 O AH
H
a 反应性环醚叫引发促进剂 g i o
⊕
⊕
三、环酰胺的开环聚合
环酰胺(内酰胺)的聚合反应可用碱、酸和水来引发。 环酰胺(内酰胺)的聚合反应可用碱、酸和水来引发。
n O 1. 水解聚合反应 ( C 2 ) m N H ] [ 2 ) m C O
n
C N (1) 己内酰胺水解成氨基酸 ( 5 H H C H 2 O H 2 C CH N O ( O ( H 2 + C C ) H H (2) 氨基酸本身逐步缩聚
( C H O C
2
C M )
5
C ( C H O C
+
H B
+
-
2
)
5
N - M+
+
1 2 H
2
( C H
C O )
2
5
2
)
5
N H
-
( M
O
C H
C
2
)
5
N M+ B
O C
-
+
H
+
+
第二步: 第二步:
C H
(
O C )
2
5
N M
N H C H (
潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】
第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。
进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。
异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。
进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。
(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。
氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。
2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。
表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。
(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。
(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。
阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。
3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。
a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。
开 环 聚 合
H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
17
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
O C (CH2)5 NH - + + B M
碱金属衍生物
O C (CH2)5 (I) N- M + + BH
22
O C (CH2)5 (I) N - M+ +
O C (CH2)5 NH ý Â
O C (CH2)5 N H C (CH2)5 N M+
O
存在“诱导期”
( II )
二聚体胺负离子(Ⅱ)
1、 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O O O O
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
环氧丙烷用适当的引发剂还可制得光学活性聚合物。
11
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等; 作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。
开环聚合
R
CH2CH2O
n
O Na + ROH
-
+
R
CH2CH2O
n
+ RO-Na+ OH
交换反应生成的醇盐可继续引发聚合反应。 交换反应生成的醇盐可继续引发聚合反应。从形 式上看,交换反应与链转移反应相似, 式上看,交换反应与链转移反应相似,但与链转移 反应不同, 反应不同,交换反应生成的端羟基聚合物并不是 的聚合物,而只是休眠种, “死”的聚合物,而只是休眠种,可和增长链之间 发生类似的交换反应再引发聚合反应: 发生类似的交换反应再引发聚合反应:
③ 聚合反应条件
反应类型 开环聚合 因素 活化能 高 低 加成反应
反应分子数 单分子
双分子
升高聚合反应温度有利于提高开环反应速率; 升高聚合反应温度有利于提高开环反应速率;降 低聚合体系中的单体浓度有利于开环聚合反应的 进行。 进行。
第四节 阳离子开环聚合
1、四氢呋喃的阳离子开环聚合 、
在所有的温度下, 在所有的温度下,四氢呋喃的聚合都是平衡反 聚合通过氧正离子进行。以质子酸为引发剂, 应。聚合通过氧正离子进行。以质子酸为引发剂, 聚合过程如下: 聚合过程如下:
4、开环聚合反应机理 、
开环聚合反应机理较为复杂。大多数环状单体开 开环聚合反应机理较为复杂。 环聚合机理与离子聚合机理类似,根据单体种类、 环聚合机理与离子聚合机理类似,根据单体种类、 引发剂种类及增长活性中心电荷的不同, 引发剂种类及增长活性中心电荷的不同,可分为阴 离子开环聚合、阳离子开环聚合及配位聚合。 离子开环聚合、阳离子开环聚合及配位聚合。除分 析聚合反应的动力学特性外, 析聚合反应的动力学特性外,还通过实验测定出的 产物聚合度与反应时间的变化关系来确定开环聚合 反应机理。 反应机理。
配位聚合和开环聚合-总结
分子量2000-聚乙二醇
聚丙二醇
O
三元环醚
阴离子开环
非离子型表面活性剂:疏水端-亲水端
H3C CH OH KOH, 130-150
H H3C C
CH2 OH CH3 CH CH2
H2C
起始剂
O
12-丙二醇
OC3H6
OH n
OC3H6 OH n
环氧丙烷+环氧乙烷
O
共聚
H H3C C
聚醚型表面活性剂: H2C
Et
Al
CH2
Et
CH3 双金属活性种
Cl Cl Ti
Cl
Et
Al
CH2
Et
CH CH3
C2H5
Cl
Cl
Cl Ti CH2
CH2 CH CH3
CH3
Et Al
Et 烯烃配位
Cl
Cl
Et
Cl Cl
Cl Ti
CH2
Al CH2 CH3
Cl Ti
CH
CH3 极化的单体插入Al-C键
Al
CH2
Et
CH CH3
天然橡胶:98%
第八章
开环聚合 Ring-opening polymerization
开环聚合
• 离子开环 • 阳离子开环-聚甲醛 • 阴离子开环-环氧乙烷 • 无机、半无机高分子-聚硅氧烷
离子开环
O 环氧化合物
NH O 内酰胺
O O 内酯
小部分是逐步聚合机理
开环聚合
阳离子活性种
大部分是离子聚合(连锁机理)
• 第三组分 给电子试剂含N、P、O、S的化合物
• 载体
(CH3)2N 3P=O (C4H9)2O
北化高分子材料6.开环聚合-教学与复习
05
开环聚合的挑战与展望
开环聚合的挑战
聚合机理的复杂性
开环聚合涉及复杂的化学反应过程,需要深入理解聚合机理,以便更 好地控制聚合反应。
与传统的缩聚和加成 聚合不同,开环聚合 过程中没有小分子副 产物生成。
开环聚合的类型
01
02
03
均裂开环聚合
通过均裂环状化合物的键 来生成两个自由基,进而 引发聚合。
异裂开环聚合
通过异裂环状化合物的键 来生成一个正离子或负离 子,进而引发聚环状化合物的键打开并 生成线性聚合物。
影响因素
阳离子开环聚合反应受温度、溶剂、压力、引发剂等因素影响,其中引 发剂是关键因素,能够控制聚合反应的活性和稳定性。
配位聚合
定义
配位聚合是一种通过过渡金属催化剂催化烯烃单体进行配 位插入方式生成定向聚合物的过程。
反应机理
配位聚合反应机理涉及配位和插入两个步骤,首先是过渡 金属催化剂与烯烃单体进行配位,形成π-络合物,然后单 体插入到络合物中,实现开环聚合。
定义
阴离子开环聚合是一种通过阴离子活性聚合方式将环状阳离子聚合物或闭环单体开环聚合 生成线型聚合物的过程。
反应机理
阴离子开环聚合反应机理涉及电子转移和活性中心的形成,首先是电子从阳离子单体转移 到阴离子引发剂上,形成负离子活性中心,然后该活性中心与单体加成,实现开环聚合。
影响因素
阴离子开环聚合反应受温度、溶剂、压力、引发剂等因素影响,其中引发剂是关键因素, 能够控制聚合反应的活性和稳定性。
开环易位(歧化)聚合-ROMP
高分子化学进展
三、开环易位(歧化)聚合
开环聚合:
环状单体开环相互连接形成线型聚合物的过程,称为开环 聚合。开环聚合为链式聚合反应,包括链引发、链增长和链终 止等基元反应。但开环聚合反应与乙烯基单体的链式聚合反应 有所区别,其链增长反应速率常数与许多逐步聚合反应的速率 常数相似,而比通常乙烯基单体的链式聚合反应低数个数量级。
他亲自走出讲台,邀请身边的 皇家科学院教授和两位女工作 人员一起在会场中央为大家表 演烯烃复分解反应的含义。最 初两位男士是一对舞伴,两位 女士是一对舞伴,在“加催化 剂”的喊声中,他们交叉换位 ,转换为两对男女舞伴,在场 记者随即发出了笑声。
烯烃复分解反应最初应用在石油工业中,以SHOP法的产物α-烯烃为原料, 高温高压下生产高级烯烃。传统的反应催化剂如WCl6-EtOH-EtAlCl2,由 金属卤化物与烷化剂反应制取。 烯烃复分解反应是个循环反应,过程为:首先金属卡宾配合物与烯烃反应, 生成含金属杂环丁烷环系的中间体。该中间体分解,得到一个新的烯烃和 新的卡宾配合物。接着后者继续发生反应,又得到原卡宾配合物。
开环易位聚合的单体是环烯烃,如果是开环烯烃, 生成什么产物?
瑞典皇家科学院2005年10月5日宣布,将2005年诺贝尔化 学奖授予法国化学家伊夫·肖万(Yves Chauvin)、美国化学家 罗伯特·格拉布(Robert H. Grubbs)和理查德·施罗克(Richard R. Schrock),以表彰他们在烯烃复分解反应研究领域作出的贡 献。在宣布仪式上,诺贝尔化学奖评委会主席佩尔·阿尔伯 格将烯烃复分解反应描述为“交换舞伴的舞蹈”。
金属卡宾
高活性,聚合反应控制能力强,可进行活性聚合
(3)可能存在的链转移:
高分子化学课件-开环聚合
聚碳酸亚丙酯的开环聚合是通过丙二酸和环氧乙烷的反应实现的。在催化剂的作用下,丙二酸和环氧 乙烷发生开环聚合反应,形成聚碳酸亚丙酯。聚碳酸亚丙酯具有优异的耐热性能、阻隔性能和加工性 能,广泛应用于食品包装、电子器件等领域。
聚己内酯的开环聚合
总结词
聚己内酯的开环聚合是一种高效、可控 的聚合方法,可制备出高分子量聚合物 。
能源消耗,实现聚合过程的可持续发展。
循环利用
02
通过循环利用聚合物材料,降低生产成本和资源消耗,同时减
少对环境的污染。
生物降解性
03
研究和发展具有生物降解性的聚合物材料,使其在完成使用寿
命后能够自然降解,减少对环境的长期影响。
05 开环聚合的实例分析
聚乳酸的开环聚合
总结词
聚乳酸的开环聚合是一种环保、可持续的聚合方法,具有广泛的应用前景。
03
02
配位聚合
配位聚合是一种通过过渡金属催化剂将烯烃单体聚合的 方法,具有高活性、高定向性和高立构规整性的特点, 是开环聚合领域的研究热点。
活性聚合技术
活性聚合技术能够实现聚合过程中链自由基的稳定,从 而控制聚合物的分子量和分子量分布,提高聚合物的性 能。
聚合产物的性能改进
功能化聚合物
共聚物
通过在聚合物分子链上引入特定的功 能基团,可以获得具有特殊性能的功 能化聚合物,如导电、发光、磁性等 功能。
合成聚醚类高分子材料
通过开环聚合反应,将环状单体转化为聚醚类高分子材料, 如聚四氟乙烯、聚乙二醇等。这些高分子材料具有优异的耐 化学腐蚀性和生物相容性,广泛应用于制药、电子和化工等 领域。
合成功能性高分子材料
合成导电高分子材料
通过开环聚合反应,将环状单体转化为导电高分子材料,如聚吡咯、聚苯胺等 。这些高分子材料具有良好的导电性能和稳定性,广泛应用于电子器件、传感 器和电池等领域。
第6章 高分子化学— 开环聚合(全)
起始剂浓度
环氧化合物开环聚合过程中,由于起始剂的酸性、引发 环氧化合物开环聚合过程中,由于起始剂的酸性、 剂的活性不同,引发、增长、交换反应的相对速率不同; 剂的活性不同,引发、增长、交换反应的相对速率不同;使 聚合物的分子量、分子量分布各不相同,情况十分复杂。 聚合物的分子量、分子量分布各不相同,情况十分复杂。
14
(3)向单体链转移 )
环氧丙烷阴离子聚合,存在着向单体链转移, 环氧丙烷阴离子聚合,存在着向单体链转移,结果使聚合物分子 量降低。 量降低。
转移反应首先 夺取与环相连 的甲基上的H, 的甲基上的 , 生成单阴离子: 生成单阴离子:
单阴离子
单阴离子迅速 开环, 开环,生成烯 丙基醚阴离子: 丙基醚阴离子:
9
1——自由基聚合 2——阴离子聚合 3——逐步聚合
聚合物分子量和转化率之间的关系 是区别链式和逐步聚合的主要标志。 。
开环聚合反应的聚合上限温度较低,聚合过 程中常有 聚合-解聚 平衡,使过程复杂化。 以工业上几种重要的开环聚合为例进行说明
[ 环氧乙烷、环氧丙烷、三聚甲醛、3,3‘-二(氯亚甲基)环丁醚、已内酰胺 ] 环醚、内酰胺、 环醚、内酰胺、环缩醛
2
如:直链烷烃中CH2的燃烧热=659.0 kJ/mol。 环丙烷中CH2的燃烧热=697.6 kJ/mol。 则:环丙烷中每一个亚甲基的张力=697.6-659.0=38.6 kJ/mol。 所以,环丙烷的张力能=38.6×3=115.8 kJ/mol 。
高分子化学-开环聚合6
如溶剂和反离子的影响,由离子对和自由离子活性种来增长,单体 只能加到活性种上,活性链之间不能起增长反应等。 大部分离子开环聚合属于连锁聚合机理的范畴,但有些往往带有逐 步的性质,可由分子量随时间的变化作出判断。
如不考虑凝胶效应,自由基聚合物的分子量几乎与聚合时间或转化率无 关,即先后形成的聚合物分子量相近; 阴离子活性聚合物分子量随聚合时间或转化率不断增加,几乎成线性关 系; 而逐步聚合物在大部分聚合时间内或< 90 %~95 %转化率都保持低分 子量,直至转化率(反应程度)很高(>98%)以后,才能获得高分子量。
5.6.3
பைடு நூலகம்
三元环醚的阴离子开环聚合
环氧乙烷(EO)、环氧丙烷(PO):是开环聚合中最常用。 环氧丁烷:也可用作共单体, 环氧氯丙烷:是合成环氧树脂的原料。
CH2—CH2 \ / O CH2—CH—CH3 \/ O CH2—CH—C2H5 \/ O CH2—CH—CH2Cl \/ O
环氧烷烃属于三元环,
R—X—H + n EO —→ R—X-(-EO-)-n H 起始剂中的R为疏水基,X为连接元素,H为活性氢。
如OP-10:辛基酚作起始剂,环氧乙烷链节数10,
[C8H17C6H4O(EO)10H] , 其 中 辛 基 苯 基 (C8H17C6H4—) 是 疏 水基。
改变疏水基 R、连接元素X、环氧烷烃种类及其聚合度 n四变量,可 衍生出成千上万种聚醚产品。
表5-20 聚醚型非离子表面活性剂
环氧乙烷加成物 n EO含量/%(质量) HLB
起始剂
烷基酚R-C6H4OH(C=8~9) 脂肪醇ROH(C=12~18)
开环聚合
这是一个平衡反应,必须真空除去副产物BH, 使平衡向右移动。然后,内酰胺阴离子与单体 反应而开环,生成活泼的胺阴离子(II)。
(2)内酰胺阴离子活性种(I)与另一己内酰胺单 体分子反应,形成活泼的胺阴离子活性种(II):
O C (H2C)5 (I) N M HN O C (CH2)5
慢
O C (H2C)5 N C O (CH2)5 (II) (反应2) H N M
8.4环醚的阳离子开环聚合 (3、4、5元环)
8.4 环醚的阳离子开环聚合机理
有些环醚阳离子开环聚合具有活性聚合的特性,如活 性种寿命长,分子量分布窄,引发比增长速率快,所 谓快引发慢增长。但往往伴有链转移和解聚反应,使 分子量分布变宽;也有终止反应。结合四、五元环醚 阳离子开环聚合,介绍各基元反应的特征。 (1)链引发与活化 有许多种阳离子引发剂可使四、 五元环醚开环聚合。 ①质子酸和Lewis酸。如浓硫酸、三氟乙酸、氟磺酸、 三氟甲基磺酸等强质子酸(H+A-),以及BF3、PF5、 SnCl4、SbCl5等Lewis酸,都可用来引发环醚开环聚合。 • Lewis酸与微量共引发剂(如水、醇等)形成络合物, 而后转变成离子对(B+A-),提供质子或阳离子。有些 Lewis酸自身也能形成离子对。
M O N C (CH2)5 NH
(反应4)
(反应4)
增长反应首先是活性较高的N—酰化内酰胺与内 酰胺阴离子反应,使N—酰化内酰胺开环。
O C (CH2)3 N M O C (CH2)3 N O C (CH2)5 + O C (CH2)5 N O C (CH2)5 NH2
( III )
M N O C (CH2)5
胺阴离子(II)无共轭作用,较活泼,很快夺取 另一单体己内酰胺分子上的一个质子,生成二聚 体( III ),同时再生内酰胺阴离子(I)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 醇与增长链之间发生交换反应:
聚醚相对酸性较弱
Na+
酸性相对较强
交换反应的结果,总使反应向生成酸性较弱的产物方向移动,与无 机化学中,平衡总是向生成弱电解质方向移动类似。
• 交换反应的存在,使产物分子量降低
12
Na+ 起始剂分子通过交换反应与增长链发生链转移反应。 因为每个醇分子对增长链数目的贡献可视为同于一个引发 剂分子,每个起始剂分子相当于一个起始种。 聚合度:
3
4)聚合自由焓G
G= H — TS
- T S > 0
(始态) 环单体
线型聚合物(末态)
G
过程无序性减少
S < 0,所以 - TS > 0。
Hale Waihona Puke G < 0 开环聚合才能进行,要求聚合热 ( - H)足够大,即H足够负。
根据上述分析,不同大小环的热力学稳定性次序为: 3,4 < 8 ~11 < < 5,7 < 12以上,6。 实际上较少遇到9元以上的环,所以环烷烃在热力学上容易开环 程度为:
张力能以内能的形式贮存在环内的。开环聚合时,环 张力消失,这部分内能以聚合热的形式释放。实测聚合热 ( -H)与环张力能计算值相近。
•
聚合热( -H)越大,环越不稳定,越易开环聚合。
2
3)环的张力有两类: 一类是键角变形所引起的角张力;另一类是氢或取代 基间斥力所造成的构象张力。
a、三、四元环偏离正常键角很大,碳键变形程度大;主要由角张力 引起的环张力很大;聚合热值也大,而不稳定。
1
如:直链烷烃中CH2的燃烧热=659.0 kJ/mol。
环丙烷中CH2的燃烧热=697.6 kJ/mol。 则:环丙烷中每一个亚甲基的张力=697.6-659.0=38.6 kJ/mol。 所以,环丙烷的张力能=38.6×3=115.8 kJ/mol 。
•
环张力能越大,环越不稳定,越易开环聚合。
3、取代基对开环聚合的影响
对于所有的环,取代基的存在对聚合都带来不利影响——取代基 使开环聚合难以进行。
原 因:线型聚合物中取代基间的相互作用大于环状单体中的相互作用, 使线型聚合物内能增加,聚合过程聚合热( -H)变小。
G= H - TS 变正些, 所以难以开环。
5
例如,对于环烷烃:
c. 1,1-二甲基取代
Na、RO- 、 OH-—阴离子聚合引发剂;
H+ 、BF3等—阳离子型引发剂;
H2O等—分子型引发剂,只能引发很活泼的单体。
M* —引发后生成的活性种。
7
开环聚合的机理既可以是连锁的(包括阳离子聚合阴
离子聚合),也可以是逐步的。开环聚合动力学方程可 用类似于连锁聚合或逐步聚合的方程表达。 区别开环聚合是链式聚合机理还 是逐步聚合机理可依据两个方面: a、实验得到描述聚合过程的动力学方程。 b、聚合物分子量和转化率之间的关系。 ——区别链式和逐步聚合的主要标志。
1. 环烷烃稳定性和热力学分析 (1)判断环稳定性的几个热力学概念 1)碳键的变形程度: 按正面体结构,C—C—C正常键角为109 0 28‘,环烷烃 键角与正常键角差值的一半定义为碳键的变形程度(单位 为度)。
•
碳键的变形程度越大,环越不稳定,越易开环聚合。
如,环丙烷,键角为60o,
碳键的变形程度为 1/2( 109 0 28‘- 600)=240 44“ 2)环的张力能(kJ/mol) 环张力能:等于每一个亚甲基的张力乘以环中亚甲基数 (环的元数)。 环烷烃中每一个亚甲基(CH2)的张力,用环烷烃中 的亚甲基的燃烧热和直链烷烃中的差值来表征。
起始剂浓度
环氧化合物开环聚合过程中,由于起始剂的酸性、引发 剂的活性不同,引发、增长、交换反应的相对速率不同;使 聚合物的分子量、分子量分布各不相同,情况十分复杂。
b. 单甲基取代 a. 无取代
N为环元数
,250C
又如:四氢呋喃可聚合;2—甲基四氢呋喃却不能聚合。
6
6.2 开环聚合机理和动力学
环状单体可利用离子聚合引发剂或中性分子,引发开环聚合。 R—Z + C M*
[CH3ONa]
阴离子聚合机理
Z—环状单体中的杂原子或进攻点; C—离子型引发剂,包括:
10
环氧乙烷阴离子聚合的聚合速率和聚合度表达式 也与阴离子聚合相似:
B、聚合速率: (Rp= kp [M-] [M])
C、聚合度:
n=1
=
[M] [C]0
引发剂浓度 活性端基浓度
t 时刻进入聚合物的单体浓度
完全反应时[M]t=0
11
(2)交换反应:
醇盐和氢氧化物引发聚合反应时,需要有水或醇以溶解引发剂形 成一个均相体系——水或醇称为起始剂。 当含有质子性物质如水或醇存在时,环氧化物的聚合反应常伴随 着交换反应。
3,4 > 8 > 7,5
4
2、杂环化合物的稳定性
杂环化合物中杂原子提供了引发剂进行亲核或亲电进攻的位置, 因此在动力学上比环烷烃更有利于开环聚合。 环烷烃开环的难易程度与环中原子数有关的结论,并不完全适用于 杂环化合物。 比如:五元环醚( 四氢呋喃) G= - 可以聚合 五元环酯( —丁氧内酯)G= + 不能聚合 六元的环酰胺(已内酰胺)能够聚合。
8
1——自由基聚合 2——阴离子聚合
3——逐步聚合
聚合物分子量和转化率之间的关系 是区别链式和逐步聚合的主要标志。
开环聚合反应的聚合上限温度较低,聚合过 程中常有 聚合-解聚 平衡,使过程复杂化。 以工业上几种重要的开环聚合为例进行说明
[ 环氧乙烷、环氧丙烷、三聚甲醛、3,3‘-二(氯亚甲基)环丁醚、已内酰胺 ] 环醚、内酰胺、环缩醛
9
6.2.1 环 醚
1. 阴离子聚合机理 (1)以三元环醚——环氧乙烷为例说明:
-
a、引发:
+
[CH3ONa] -
常用引发剂为醇盐(甲氧基钠——NaOCH3)
b、增长:
+
c、无终止:
环氧乙烷阴离子聚合具有无终止的特性,生成活的聚合物。 环氧乙烷聚合后,加入环氧丙烷生成嵌段共聚物——是聚醚型表面活 性剂系列的重要品种。 人为地加入终止剂(如酚类物质)可使链终止。