第七章_图论

合集下载

第七章 图论

第七章  图论

第七章图论1设P={u,v,w,x,y},画出图G={P,L},其中(1)L={uv,ux,uw,vy,xy};(2)L={uv,vw,wx,wy,xy},并指出各个点的度。

解对应于(1)的图如图7—1所示。

其中各点的度为:d G(u)=3, d G(x)=2, d G(y)=2, d G(v)=2, d G (w)=1.对应于(2)的图如7—2所示。

各点的度为:d G (u)=1, d G (x)=2, d G (y)=2, d G (v)=2, d G (w)=3。

U V UVXY XYWW图7—12 设图G有5个点,4条边,在同构的意义下,画出图G的所有可能形式。

解图7—3是图G的所有可能形式。

图7—2 图7--33 图G=(P ,L )如图7—4所示,试画出G 的三个不同支撑子图。

图7--4解 图7—5(a ),(b),(c)就是图G 的三个支撑子图。

(a ) (b) (c)图7--54 是否可以画一个图,使各点的度与下面给出的序列一致,如可能,画出一个符合条件的(a) (b) (c) (d)(e) (f) (g)图,如不可能,说明原因。

(1)3,3,3,3,3,3; (2)3,4,7,7,7,7; (3)1,2,3,4,5,5;解 (1)可以,如图7—6所示:图7—6(2)不可能。

在六个顶点中,奇数度点为5个,与定理2相矛盾。

(3)不可能。

考虑两个度为5的顶点,设其为u 和v ,因为只有6个顶点,因此u 和v 除自身之外的个顶点皆相连。

而除u ,v 之外的4个顶点中的每一个都至少是两条边的端点,即这4个顶点的度都至少是非,这与其中某一个顶点的度为1矛盾。

5 设G 是有限图,M ,A 分别是G 的关联矩阵和相邻矩阵,证明:M*M / 和A 2 的对角线上的元素恰好是G 中所有点的度。

证 设L (G ),P (G )的元素分别为n,m. 令B= M*M / ,由矩阵的乘法定义知b ii=∑=nj 1a ij * a /ji i=1,2,3---------m因为M / 是M 的转置矩阵,所以 a ij= a /ji ,,又因为a ij 非0即1,所以a ij 2 = a ij 故得b ii=∑=nj 1a ij * a /ji=∑=nj 1a ij 2=∑=nj 1a ij即b ii 等于M 的第I 行中所有1的个数,也就是b ii 等于M 的第I 行所对应的点的度。

第七章 图论

第七章  图论

12
7.1 图及相关概念
7.1.5 子图
Graphs
图论
定义7-1.8 给定图G1=<V1,E1>和G2=<V2,E2> , (1)若V1V2 ,E1E2 ,则称G1为G2的子图。 (2)若V1=V2 ,E1E2 ,则称G1为G2的生成子图。
上图中G1和G2都是G的子图,
但只有G2是G的生成子图。
chapter7
18
7.1 图及相关概念
7.1.6 图的同构
Graphs
图论
【例4】 设G1,G2,G3,G4均是4阶3条边的无向简单图,则
它们之间至少有几个是同构的? 解:由下图可知,4阶3条边非同构的无向简单图共有3个, 因此G1,G2,G3,G4中至少有2个是同构的。
4/16/2014 5:10 PM
4/16/2014 5:10 PM chapter7 10
7.1 图及相关概念
7.1.3 完全图
Graphs
图论
【例2】证明在 n(n≥2 )个人的团体中,总有两个人在 此团体中恰好有相同个数的朋友。 分析 :以结点代表人,二人若是朋友,则在结点间连上一 证明:用反证法。 条边,这样可得无向简单图G,每个人的朋友数即该结点 设 G 中各顶点的度数均不相同,则度数列为 0 , 1 , 2 , …, 的度数,于是问题转化为: n 阶无向简单图 G中必有两个 n-1 ,说明图中有孤立顶点,与有 n-1 度顶点相矛盾(因 顶点的度数相同。 为是简单图),所以必有两个顶点的度数相同。
vV1
deg(v) deg(v) deg(v) 2 | E |
vV2 vV
由于 deg( v) 是偶数之和,必为偶数,
vV1

第7章--图论

第7章--图论
图 7 ― 5 图G以及其真子图G 1和生成子图G2
第7章 图论
定义 7.1 ― 13 如果图G中的一个子图是通过删去 图G的结点集V的一个子集V1的所有结点及与其关联的 所有边得到的, 则将该子图记为G-V1。
如图7 ― 5中, G1=G-{4}。 定义 7.1 ― 14 如果图G中的一个子图是通过删去 图G的边集E的一个子集E1的所有边, 而不删去它们的 端点而得到的, 则将该子图记为G-E1。 如图7 ― 5中, G2=G-{(2, 4)}。
第7章 图论
如例1中的图, 结点集V={a, b, c, d}, 边集 E={e1, e2, e3, e4, e5}, 其中 e1=(a, b), e2=(a, c), e3=(a, d), e4=(b, c), e5=(c, d)。
d与a、 d与c是邻接的, 但d与b不邻接, 边e3与e5是邻 接的。
定义中的结点对可以是有序的, 也可以是无序的。 我们将结点 u、 v 的无序结点对记为(u, v), 有序 结点的边e与结点u、 v的无序结 点对(u, v)相对应, 则称e为无向边, 记为 e=(u, v)。 这时称e与两个结点u和v互相关联, u、 v称为该边的两个端点。 这时也称u与v是邻接的, 否则 称为不邻接的。 关联于同一结点的两条边称为邻接边。
第7章 图论
7.1.4 子图 在研究和描述图的性质时, 子图的概念占有重要
地位。 定义 7.1 ― 12 设有图G=(V, E)和图
G′=(V′, E′)。 (1) 若V′ V, E′ E, 则称G′是G的子图。 (2) 若G′是G的子图, 且E′≠E, 则称G′是G的真子
图。
第7章 图论
(3) 若V′=V, E′ E , 则称G′是G的生成子图。 图 7 ― 5给出了图G以及它的真子图G1和生成子图G2。

离散数学 第七章 图论

离散数学 第七章 图论
10
每一条边都是有向边 的图称有向图。
G′=<V′,E′>=<{v1′,v2′,v3′, v4′,v5′},{<v1′,v2′>,<v2′, v3′>,<v3′,v4′>,<v2′,v4′>}>
如果在图中一些边是有向 边,另一些边是无向边, 则称这个图是混合图。
G″=<V″,E″>=<{ v1″,v2″,v3″,
v4″,},{( v1″,v4″),(v2″,v4″),<v1″,
v3″>,<v3″,v4″>}>
11
在一个图中,若两个节点由一条有向 边或一条无向边相关联,则这两个节点 称为邻接点。
在一个图中不与任何节点相邻接的节 点,称为孤立节点。仅由孤立节点组成 的图称为零图,仅由一个孤立节点组成 的图称为平凡图。
证明 在Kn中,任意两点间都有边相连, n 个结点 中任取两点的组合数为:
Cn2

1 2
n(n
1)
故Kn的边数为 |E| = n(n-1)/2 。
21
注意:
如果在Kn中,对每条边任意确定一个方 向,就称该图为 n 个结点的有向完全图。 显然,它的边数也为 n(n-1)/2 。
给定任意一个含有 n 个结点的图 G ,总 可以把它补成一个具有同样结点的完全 图,方法是把那些没有联上的边添加上 去。
且E E ,V V ,则称 G 为 G 的子图。
例:如图 7-1.7 中 (b) 和 (c) 都是 (a) 的子图。
24
如果 G 的子图包含 G 的所有结点,则 称该子图为 G 的生成子图。 如图 7-1.8 中 (b) 和 (c) 都是 (a) 的生成子图。

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

第七章 图论

第七章  图论

Graphs/图论
三、子图和补图
定义 无向简单图G=<V,E>中,若每一对结点间都有 边相连,则称该图为完全图。有n个结点的无向完全 图,记作Kn。 图10:
K 4图
Graphs/图论
定理 4 证明:
n个节点的无向完全图Kn的边数为:(1/2)*n*(n-1)。
在Kn中,任意两点间都有边相连,n个结点中任取两 点的组合数为:cn = (1/2)*n*(n-1) 故Kn的边数为: |E| =(1/2)*n*(n-1)。 (证毕)
推论:在一个具有n个结点图中,若从结点u到结点v存在 一条路,则必存在一条从u到v而边数小于n的通路。 删去所有结点s到结点s 的那些边,即得通路。
Graphs/图论
二、无向图的连通性
定义 在无向图G中,结点u和结点v之间若存在一条路, 则称结点u和结点v是连通的。
连通性是结点集合上的一种等价关系。
证明: 设:V1 :图G中度数为奇数的结点集。 V2:图G中度数为偶数的结点集。 由定理1可知
vv 1
deg( v ) deg( v ) deg( v ) 2 | E |
vv 2 vV
因为
vv 2
deg( v) 为偶数。 deg(v) 和2|E|均为偶数,所以 v v1
b
b
Graphs/图论
四、图的同构
定义 设图G=<V,E> 及G’=<V’,E’>,如果存在一一对 应的映射g:V → V’且e=(vi ,vj)(或<vi ,vj>)是G的一条 边,当且仅当e’=(g(vi ) ,g(vj))(或 <g(vi ) ,g(vj)>是G’的 一条边,则称G与G’同构,记作G ~ -G’ 。

第七章 图论

第七章  图论
i1
本讲稿第十三页,共九十一页
§7.1 图的基本概念
例:若图G有n个顶点,(n+1)条边,则G中至少 有一个结点的度数≥3。
证明:设G中有n个结点分别为v1,v2,…,vn,则由握手
定理:
n
degvi)(2e2(n1)
i1
而结点的平均度数=
2(n1)212
n
n
∴结点中至少有一个顶点的度数≥3
本讲稿第十四页,共九十一页
▪ 若G’ G,且G’ ≠G(即V’V或E’ E),则称G’是G的真子图;
▪ 若V’=V,E’E,则称G’是G的生成子图(支 撑子图)。
本讲稿第二十三页,共九十一页
§7.1 图的基本概念
2.子图和图的同构:
例:G图如下:G的真子图:
生成子图:
说明: (1)G也是G的生成子图; (2)G’=〈V,〉也是G的生成子图。
(3)路径长度:若两个结点之间有一条路经P,则路 径|P|=P中边的条数。 例:给出有向图G,求起始于1,终止于3的路径
本讲稿第三十二页,共九十一页
§7.2 路与回路
下面介绍一些专有名词:
(1)穿程全部结点的路径:经过图中所有结点的路径。 (2)简单路径:在有向图中经过边一次且仅一次的路径。
(3)基本路径:在)从一个结点到某一结点的路径,(若有的话)不 一定是唯一的; (2)路径的表示方法:
(a)边的序列表示法: 设G=<V,E>为一有向图, ,则路径可以表示
成:(<v1,v2>,<v2,v3>,….<vk-1,vk>)vi V
本讲稿第三十一页,共九十一页
§7.2 路与回路
(b)结点序列表示法: (v1,v2vk)

图论课件第七章图的着色

图论课件第七章图的着色
总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。

第七章图论

第七章图论

• 现实世界中许多关系是由图形来形象而直观地描绘出来,
人们常用点表示事物, 用点之间是否有连线表示事物之间
是否有某种关系, 于是点以及点之间的若干条连线就构成 了图。 • 当研究的对象能够被抽象为离散的元素集合和集合上的二 元关系时, 用关系图进行表示和处理是很方便。
• 图论研究的图是不同于几何图形、机械图形的另一种数学
图论
实例
a a
7.1 图的基本概念
e1 b e3
e2
f
e6 e5 e e7
f
e6 e5 e7 d (2) e b
e1 e3 c (3)
f
e5 e7 d e
c e4 d (1)
•(1),(2),(3)是(1)的子图, (2),(3)是真子图. •(1),(3)是(1)的生成子图.
第七章
图论
7.1 图的基本概念
图论是近年来发展迅速而又应用广泛的一门新兴 学科。它最早起源于一些数学游戏的难题研究,如 1736 年欧拉(L.Euler) 所解决的哥尼斯堡(Konigsberg) 七桥问题,以及在民间广泛流传的一些游戏难题,如迷 宫问题,匿门博奕问题,棋盘上马的行走路线问题等。 这些古老的难题,当时吸引了很多学者的注意,在这些 问题研究的基础上又继续提出了著名的四色猜想,汉密 尔顿(环游世界)数学难题。
第七章
图论
7.1 图的基本概念
7.1.1 图的基本类型
邻接边:关联于同一结点的两条边。 自回路或环:关联于同一结点的一条边。
(vi = vj,方向无意义)
平行边:连接于同一对结点间的多条边(无向图)。 简单图:不含平行边和环(自回路)的图。
同始点、同终点的多条边(有向图)。(<a,b>与<b,a>不同结点对)

第七章图论

第七章图论

以上三个条件并 不是两图同构的 充分条件,如:
a
b
c
d
e
(a)
a'
c'
b'
e'
d'
(b)
第七章 图论
图的基本概念 路与回路 图的矩阵表示 欧拉图与哈密尔顿图
7-2 路与回路
1、路的基本概念:
路: 图G=<V, E>,设 v0, v1, …, vn∊V, e1, e2, …, en∊E, 其中
ei是关联于结点vi-1, vi的边,交替序列设 v0 e1 v1 e2 … en vn称为
若 连 通 图 G中 某 两 个 结 点 都 通 过 v, 则 删 去 v 得 到 子 图 G , 在 G 中 这 两个结点必定不连通,故v是图G的割点。
7-2 路与回路
deg(v)为偶数 vV1
|V1|为偶数
定理: 有向图中所有结点的入度之和等于所有结点的出度之和
7-1 图的基本概念
(5)多重图:含有平行边的图
简单图:不含有平行边和环的图
完全图:每一对结点之间都有边关联的简单图
有向完全图:完全图中每条边任意确定一个方向所得的图
a
e
b
d
f
h
c
g
定理: n个结点的无向(有向)完全图Kn的边数为n(n-1)/2
证明: 在完全图中,每个结点的度数应为n-1,则n个结点的
度数之和为n(n-1),因此|E|=n(n-1)/2
7-1 图的基本概念
(6)子图:
G V , E , 有 G ' V ', E ' , 且 E ' E , V ' V ,

《图论》第7章-回路矩阵与割集矩阵

《图论》第7章-回路矩阵与割集矩阵

1 aj 在si 中且方向一致
sij = -1 aj 在si 中且方向相反 0 其他

若S1、S2、… 、Sk 包含了中所有割集,称S为G的完全割
集矩阵,记为 Se 。
[基本割集矩阵] 由G的所有基本割集构成的割集矩阵成为G的基
本割集矩阵,记为 Sf 。
19
7.3 割集矩阵
[定理7-3-1] 有向连通图 G=(V, A),n =|V|,m =|A|,则其任意基
故 B11+ B12 C12T=0
即 B11= -B12 C12T 故 Bk =( -B12 C12T , B12) = B12 ( -C12T , I )
而 r(Bk ) = n-1,故 r(B12 ) = n-1,即 | B12 | 0
由[定理3-2-5]知此时B12各列对应的弧构成G的一棵树。 也即 C12各列对应的弧构成G的一棵树。 8
16
7.2 割集
[定理7-2-3] 设T是连通图G的一棵生成树,e 是T的一条弦,C 是由 e 确定的 T+e 中的基本回路。则 e 包含在由C中除 e 外的每条边确定的基本割集中,而不在其他的基本割集中。 [证明] ① 设 bC且 be,S是 b 确定的基本割集。由[定理7-2-2] C和S除了b外应该还有一条公共边。S 除了b以外其它边都 是T的余树边,而C中只有 e 是T的余树边,所以此公共边 只能是e,也即e包含在S中。② 若e被包含在一个由T的树 枝 h 确定的基本割集 S 中,由[定理7-2-2] C和 S 除了e 外 应该还有一条公共边。 C 除了e以外其它边都是T的树枝, 而S中只有 h 是T的树枝,所以此公共边只能是 h,也即 h 理7-2-4] 设T是连通图G的一棵生成树,b 是T的一条树枝,S 是由 b 确定的G的基本割集。则 b 包含在由S中除 b 外的每

离散数学--第7章 图论-2(路与连通)

离散数学--第7章 图论-2(路与连通)
u1 v4 v1 v4 v3 u4 v2 u4 u3 G2 v3 u u13 v1 u2 v2 u2
15
连通图可以看成是只有一个连通分支的图,即 w(G ) 1 。
返回 结束
7.2.2 图的连通性
4、有向图的连通
强连通—— G 中任一对顶点都互相可达 (双向) 连通 单向连通—— G 中任一对顶点至少一 向可达

10
(vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的路。
证明思路:多于n-1条边的路中必有重复出现的结点,反 复删去夹在两个重复结点之间的边之后,剩余的边数不会 超过n-1条边。
v n 在一个 阶图中,若从顶点 i 到 v j 存在 推论:
通路(vi v j ) ,则从 vi 到 v j 存在长度小于等于
返回 结束
7.2.2 图的连通性
7.2.2 图的j 存在路,称 有向图中,从 vi 到 v j 存在路,称 (注意方向) 2、短程线,距离。 短程线——连通或可达的两点间长度最短的 路。 距离——短程线的长度,
12
vi 到 v j 是 连通的(双向)。 vi 可达 v j 。
1 v1e1v2e5v5e7v6 2 v1e1v2e2v3e3v4e4v2e5v5e7v6
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路
简单通路
复杂通路
返回 结束
7.2.1 路
例1、(2)
7
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
7.2 路与连通
内容:图的通路,回路,连通性。 重点:

第七章 图论

第七章 图论

• 对于有向图 G中的任意结点 u,v 和w,结点间的距离有以下 的性质: ① du,v≥0 ② du,u=0 ③ du,v+dv,w≥du,w • 注:一般来说, du,v不一定等于dv,u • 定义D=max du,v为图的直径 • 关于有向图两个结点间的距离可以很容易的推广到无向图 中
【例】如右图所示是一个图,其中 v1e1v2e3v3e4v2e3v3e7v5是一条从v1到v5的路 v1e1v2e3v3e4v2e5v4e8v5是一条从v1到v5的迹 v1e1v2e3v3e7v5是一条从v1到v5的通路 v3e3v2e5v4e8v5e6v2e4v3是一个回路 v3e3v2e5v4e8v5e7v3是一个圈
• 定义 7-1.9 设图 G=V,E 与图 G′=V′,E′ ,如果存 在一一对应的映射g: vi→vi′且e=(vi,vj)是G的一条 边当且仅当e′=(vi′,vj′)是G′的一条边,则称G与G′同 构,记为G≌G′.
• 通俗的讲两个图同构当且仅当两个图的结点和边存在着一 一对应,且保持关联关系
• 如果一对结点间的边多于一条,则称这些边为平行边
• 定义 7-1.4 含有平行边的任何一个图称为多重图
• 不含平行边和环的图称为简单图
• 定义 7-1.5 简单图G=<V,E>中, 若每一对结点都有 边相连,则称该图为完全图。
• n个结点的无向完全图记为Kn
• 定理7-1.4 • 定义7-1.6 给定一个图G,由G中所有结点和所有 能使G成为完全图的添加边组成的图,称为图G的 相对于完全图的补图,简称为G的补图,记为 G 。
1 n个结点的无向完全图Kn的边数为2 n(n 1)
• 定义7-1.7 设图G=<V,E>, 如果有图G′=<V′,E′>, 且 E′ E, V′ V, 则称G′为G的子图

离散数学-第七章-图论

离散数学-第七章-图论

5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1



v2


4/24/2020 2:55 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
中的所有边,称为删除E´ 。
(2)设vV,用G-v表示从G中去掉v及所关联的 一切边,称为删除结点v;又设V´ V,用G-V´ 表示从G中删除V´中所有结点,称为删除V´ 。
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。

任意一个连通无向图的任两个不同结
七 点都存在一条通路。



4/24/2020 2:55 PM
38

非连通图G可分为几个不相连通的子图,
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。


4/24/2020 2:55 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章


4/24/2020 2:55 PM
底特律
芝加哥
纽约 华盛顿
4

散 设A、B是两个集合,称


A&B={{a,b}|aA, bB}

《离散数学》第七章_图论-第3-4节

《离散数学》第七章_图论-第3-4节

图的可达性矩阵计算方法 (3) 无向图的可达性矩阵称为连通矩阵,也是对称的。 Warshall算法
例7-3.3 求右图中图G中的可达性矩 阵。 分析:先计算图的邻接矩阵A布尔乘法的的2、 v1
3、4、5次幂,然后做布尔加即可。
解:
v4
v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
图的可达性矩阵计算方法(2)
由邻接矩阵A求可达性矩阵P的另一方法: 将邻接矩阵A看作是布尔矩阵,矩阵的乘法运算和加 法运算中,元素之间的加法与乘法采用布尔运算 布尔乘:只有1∧1=1 布尔加:只有0∨0=0 计算过程: 1.由A,计算A2,A3,…,An。 2.计算P=A ∨ A2 ∨ … ∨ An P便是所要求的可达性矩阵。
v4
v3
v2
G中从结点v2到结点v3长度 为2通路数目为0,G中长 度为2的路(含回路)总数 为8,其中6条为回路。 G中从结点v2到结点v3长度 为3的通路数目为2, G中 长度为3的路(含回路)总

图的邻接矩阵的 应用 (2)计算结点vi与vj之间的距离。
中不为0的最小的L即为d<vi,vj>。
(一)有向图的可达性矩阵
可达性矩阵表明了图中任意两个结点间是否至少存在一条 路以及在任何结点上是否存在回路。
定义7-3.2 设简单有向图G=(V,E),其中V={v1, v2,…,vn },n阶方阵P=(pij)nn ,称为图G的可达 性矩阵,其中第i行j列的元素
p ij =
1 1 1 1 P v3 1 1 v4 0 0 v5 0 0 v1 v2 1 1 1 1 1 1
0 1 A(G)= 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0

离散数学_第7章 图论 -1-2图的基本概念、路和回路

离散数学_第7章 图论 -1-2图的基本概念、路和回路

第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非连通图的边连通度为 0

平凡图G, (G)=0



第七章 图论
与称为G的相对于完全图的补图,简称为G的补图,记作
工G` 若图G≌G,则称G为
程 自补图


第七章 图论
信 定义7-1.5

简单图G=<V,E>中,若每个结点均与其余结点相连,则称G为完全图。
有n个结点的完全图称为n阶完全图,记作Kn(n≥1) 。



如:

。。






。。

K3 考虑: Kn的边数为???
信 7-2 路与回路
息 定义7-2.1 设图G=<V,E>,G中结点与边的交替序列

=vi0ej1vi1ej2 … ejkvik
学 称点v,i0r为=0v,i1k ,到…的路,.k其中. :vviri-01,,vviikr分为别ej是r的的端始点和
与 终点. 中边的条数称为它的长度。
工 若vi0=vik ,则称该路为回路。 程 若中所有边各异,则称 为迹。
K6

定理7-1.4 Kn的边数为Cn2=n(n-1)/2。
第七章 图论
信 定义7-1.7
息 设G=<V,E>, G`=<V`,E`>为两个图(同时为无向图或有向图),若V` V且 E` E,则称G`为G的子图, G为G`的母图,记作G`G。
科 若V` V或E` E,则称G`为G的真子图。
d
d
d

e1
科 a e6
e4
c
e4
ca
e4
c
学 与
e2
e5
b
e3
e5
b
e3
b e2
e5 e3

(1)
(2)
(3)

母图
子图
同时也是(1)的生
真子图

成子图
子图 真子图 生成子图

第七章 图论
信 定义7-1.9

设G1=<V1,E1>, G2=<V2,E2>为两个无(有)向图,若存在一一对应的映射f: V1→V2,对于 vi,vj ∈V1,



注意:

完全图Kn的点连通度为 n-1 非连通图的点连通度为 0
程 存在割点的连通图其连通度为1


第七章 图论
信 设G为无向连通图,称
(G)=min{|E`||E`为G的边割集}
息 为G的边连通度。
边通度(G)是为了产生一个不连通图需要删去的边的最少数目。


注意:

完全图Kn的边连通度为 n-1
第七章 图论
信 定义7-1.2
息 在图G=<V,E>中与结点v关联的边数,称为该结点
的度数,记作deg(v)。
科 另记
⊿(G) = max{deg(v)| v∈V(G) }

(G) = min{deg(v)| v∈V(G) }
分别为G的最大度和最小度。





第七章 图论
信 定理7-1.1——握手定理
若V` = V,则称G`为G的生成子图。
学 定义7-1.8

设G`=<V`,E`>是图G=<V,E>的子图,若存在另外一个图G``=<V``,E``>使
得E``= E- E`,且V``中仅含有E``的边所关联的结点,则称G``是子图G`相对于G
工 的补图。



第七章 图论
信 如:判断下列各图的母子关系。
若所得图是简单图,则称d是可简单图化的。
科 如:考察下列整数列哪些可图化或可简单图化呢?

与 (1) (0,5,3,1,2,7,6,7,5,0,1) 不可图化
工 (2) (1,6,8,8,8)
不可图化
程 (3) (3,4,5,6)
可图化
(4) (3,2,1,2)

可简单图化

如何判断一个整数序列可图化或可简单图化呢?
补充
第七章 图论
信 定理7-3

设非负整数列d=(d1, d2, …, dn), 则d是可图化的当且仅当
n

di 0(mod 2)
i 1

即各结点度数之和为偶数或

奇数度结点数为偶数。
工 定理
设G为任意n阶无向简单图,则⊿(G)≤n-1.

学 这两个定理可用来判断整数序列是否可图化或可 简单图化。

设G为任意图,V={v1,v2,…,vn},|E|=m,则
n

deg(vi) =2m 即个结点度数之和等于边数的2倍。
i 1

与 证明: G中每条边(包括环)均提供2个端点,故在
工 计算各结点度数的和时,每条边均提供2度, 程 m条边共提供2m度。


补充
第七章 图论
信 零星定义2

对于给定的非负整数列d=(d1, d2, …, dn),若存在以V={v1,v2,…,vn}为结点 集的n阶无向图G使得d(vi)=di ,则称d是可图化的。
程 根据定义, 则

(1) |V(G1)|= |V(G2)|。 (2) |E(G2)|= |E(G2)|。

(3) 度序列相同。 但这仅仅是G1≌G2的必要条件。
第七章 图论
信 例:判断两组图是否同构?











1-a





。。



2-a
。 1-b
。。


。。
2-b
第七章 图论
科 (vi,vj)∈E1 (<vi,vj>∈E1 )(f(vi),f(vj))∈E2 (<f(vi),f(vj)>∈E2 )
并且(vi,vj)(<vi,vj>)与(f(vi),f(vj))(<f(vi),f(vj)>)重数相同,则称G1与 学 是G2同构的,记作G1≌G2 。

工 如何判断两个图是否同构呢? 答案:迄今为止还没有有效的算法。

补充
第七章 图论
信 例:考察下列整数列哪些可图化或可简单图化呢?
(1) (5,5,4,4,2,3)
息 (2) (5,4,3,2,2)
(3) (3,3,3,1)
科 (4) (4,4,3,3,2,2)
(5) (d1, d2, …, dn), d1>d2>…>dn≥1且 为偶数。 n

di
i 1
学 若中所有结点各异,则称 为通路。若

vi0=vik ,则称 为圈。
将长度为奇数的圈称为奇圈,将长度为偶数的圈称为偶圈。
第七章 图论
信 设G为无向连通图且为非完全图,则称
k(G)=min{|V`||V`为G的点割集}
息 为G的点ቤተ መጻሕፍቲ ባይዱ通度,简称连通度。
连通度k(G)是为了产生一个不连通图需要删去的点的最少数目。


。。
。。





。。
(4)-1


。。
(4)-2
定义7-1.4 关联一对结点的无向边如果多于1条,则称这些
信边为平行边,平行边的条数称为重数。
息 含平行边的图称为多重图,既不含平行边也不含环的图 称为简单图。

定义7-1.6
学给定一个图G,有G中所有结点和所有能使G成为完全图的添加边组成的图,
相关文档
最新文档