逆变电源设计报告a.(DOC)

合集下载

一种基于单片机控制的逆变电源电路设计

一种基于单片机控制的逆变电源电路设计

一种基于单片机控制的逆变电源电路设计摘要:本文主要介绍一种以单片机为核心控制器,能够输出交流电压的逆变电源系统,并且实现了对频率的改变,为用电器的不同电压需求提供了方便。

关键词:SCT,逆变,电源Abstract: This paper introduces a single-chip microcomputer as the core controller, to the output voltage of the inverter power supply system, and the realization of frequency change, providing convenience for different voltage requirements for electrical equipment.Keywords: SCT, inverter, power supply一、系统总体方案设计本系统是以STC12C5A60S2单片机作为主控制芯片而实现的逆变电源,驱动元件使用的是IR2110,,单片机产生SPWM波的方法是采用等面积法,采用此方法可以实现正弦波的输出,频率可以调节是通过对程序的控制来实现的,进而最终可以设计出直流到交流的逆变过程。

1.1、脉宽调制器(SPWM)用STC12C5A60S单片机,此单片机为新一代的51单片机,它的flash为64k,具有两路的PWM输出,脉宽可以通过软件的方式来调节,优点是:不仅具有较高的精度,而且具有不复杂,价格不高的外围电路。

1.2、SPWM控制方案有两种SPWM控制的方案:单极性与双极性调制法。

在单极性法中生成的SPWM信号有正、负和0三种电平,在双极性法中生成的却仅有正、负两种电平。

通过对比二者产生的SPWM波可以得知:当二者的载波比相同时,双极性SPWM所生成的波中所含谐波量较单极性的要大;而且在正弦逆变电源控制当中,双极性SPWM波控制不够简单。

三相四桥臂逆变电源的设计毕业设计

三相四桥臂逆变电源的设计毕业设计

浦江学院2015 届毕业设计(论文)题目:三相四桥臂逆变电源的设计专业:电气工程及其自动化班级:浦电气1105姓名:张杨指导老师:梅磊起讫日期:2015-01~2015-062015年6月三相四桥臂逆变电源的设计摘要传统的三相逆变电源采用三桥臂结构,但是在不对称负载情况下,三相输出电压会产生负序分量和零序分量,这些因素会干扰系统的输出效果,造成系统三相电压输出不对称。

为了抑制这种不对称的情况,本文引用了三相四桥臂拓扑结构。

三相四桥臂逆变电源可以在三相负载不对称时保持三相输出电压的对称输出,且具有系统容量小成本较低的优点。

本文通过建立三相四桥臂逆变电源的数学模型,由数学模型可以得到输出电压和电感电流等各个变量之间的关系,从而实现对输出电压的控制。

本文构建了基于瞬时对称分量法下四桥臂逆变器的平均模型,该逆变器在带三相不平衡负载的情况下,可以提供三相对称电压。

三相电压和电流通过瞬时对称分量法可以分解为瞬时的正序、负序和零序分量,并在各自的参考系中转变成直流信号,再分别加以PI控制。

同时本文给出了控制器设计的详细推导和软件实现方法。

关键词:三相四桥臂逆变电源,数学模型,对称分量,三相对称电压The Design of Three-phase Four-leg InverterAbstractConventional three-phase inverter adopts three-leg topology. But when the loads are unsymmetric, undesired components of negative sequence and zero sequence which come from three-phase output voltages will cause unsymmetric output in system. For the sake of suppressing the asymmetry, a three-phase four-leg inverter which is proposed in this paper can ensure the three-phase symmetrical outputs when the loads are unsymmetric, in addition it has the advantage with smaller capacity and lower cost.This paper establish four bridge three-phase inverter arm of the mathematical model, the model can get four bridge three-phase inverter arm of the output voltage and current, inductance of the relationship between the different variables, so it can realize the output voltage control.The thesis have built average models of a four-leg inverter based on the symmetrical components, and proposed a improved control strategy. Symmetrical components of three-phase voltage and current are decomposed into DC quantities which can be controlled by PI in their respective reference systems. This paper describes the detailed derivation of controller design and software implementation.Keywords: four-leg three-phase inverter,mathematical model,symmetrical components,The three-phase symmetrical voltage目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1本课题研究背景以及研究意义 (2)1.2本课题的研究现状 (3)1.2.1 具有带不对称负载能力的三相逆变电源 (4)1.2.2 三相四桥臂逆变电源研究现状 (5)1.3本课题的主要研究内容 (6)第二章三相逆变器的数学模型 (7)2.1在ABC静止坐标系中建立三相三桥逆变器的数学模型 (8)2.2在ABC静止坐标系中建立三相四桥臂逆变器的数学模型 (9)2.3三相四桥逆变器在dqo旋转坐标系中的数学模型 (10)2.4本章小结 (11)第三章三相四桥臂逆变电源的控制策略 (12)3.1 对称分量法的理论与实现方法 (13)3.2 正负零序分量的平均模型 (14)3.3 正序、负序和零序分量的控制策略 (15)3.4 系统仿真实验 (16)3.5 本章小结 (17)第四章三相四桥臂逆变电源系统的硬件设计 (18)4.1 三相四桥臂逆变电源系统的总体设计 (19)4.2 三相四桥臂逆变电源系统的硬件设计 (20)4.2.1 功率主电路设计 (21)4.2.2 LC滤波电路和控制电路设计 (22)4.2.3 实验结果波形及分析 (23)4.3 本章小结 (24)结语 (25)参考文献 (26)致谢 (27)第一章绪论1.1本课题研究背景以及研究意义随着世界经济的快速发展,地球上的石油煤矿等一次性能源已被人类消耗殆尽。

单相正弦波逆变电源设计简易报告

单相正弦波逆变电源设计简易报告

单相正弦波逆变电源设计简易报告一、任务设计并制作输出电压为36V AC 的单相正弦波逆变电源,输入为12VDC 电源,负载为阻性。

结构框图如下图所示。

DC/AC 变换滤波器U iU oI i I o R L二、要求:2.1 基本要求(1)在额定输入电压U i =10~14.5V 下,输出电压U ORMS =36±0.5V ,频率0.5Hz 50±=O f ,额定满载输出功率50W ;(2)输出正弦波电压,THD ≤3%; (3)满载情况下,逆变效率η≥83%;(4)具有输入过压、欠压保护功能,欠压保护点9±0.5V ,过压保护点16±0.5V 。

当满足过压、欠压条件时,关闭输出;(5)输出过流保护功能,动作电流I o =1.6±0.1A 。

2.2 发挥部分(1)进一步提高逆变器效率,η≥95%; (2)输出正弦波电压THD ≤1%; (3)输出频率可调20~100Hz ;(4)具有输出短路保护功能,可自恢复,具有工作及保护指示; (5)其他。

三、说明1. 输入电源可来自直流稳压电源,或者采用调压器+隔离变压器+整流+滤波得到;2. 系统供电全部采用U i 供给,不得另外提供其他电源。

3. 不得使用电源类产品改制,不得采用各种电源和逆变模块,不得采用各类集成功率放大电路。

4. 不得采用SPWM 专用芯片。

5. 注意作品制作工艺,留出测试端口。

6. 尽可能降低制作成本。

7. 测试开始后,不允许对电路进行任何调整。

四、评分标准项目评分报告1. 方案论证2.关键技术指标的设计保证措施及关键技术分析等。

3.单元电路的工作原理,必要的理论计算等。

4. 测试方法及测试数据分析等。

5. 报告的完整性和规范性30分基本部分完成(1)21分完成(2)10分完成(3)10分完成(4)6分完成(5)3分发挥部分完成(1)12分完成(2)12分完成(3)12分完成(4)9分完成(5)5分。

基于SG3525A和IR2110的高频逆变电源设计.doc

基于SG3525A和IR2110的高频逆变电源设计.doc

基于SG3525A和IR2110的高频逆变电源设计来源:电子设计应用作者:深圳市慧康医疗器械有限公司王大贵潘文胜摘要:本文简述了PWM控制芯片SG3525A和高压驱动器IR2110的性能和结构特点,同时详细介绍了采用以SG3525A为核心器件的高频逆变电源设计。

关键词:PWM;SG3525A;IR2110;高频逆变电源引言随着PWM技术在变频、逆变频等领域的运用越来越广泛,以及IGBT、PowerMOSFET等功率性开关器件的快速发展,使得PWM控制的高压大功率电源向着小型化、高频化、智能化、高效率方向发展。

本文采用电压脉宽型PWM控制芯片SG3525A,以及高压悬浮驱动器IR2110,用功率开关器件IGBT 模块方案实现高频逆变电源。

另外,用单片机控制技术对此电源进行控制,使整个系统结构简单,并实现了系统的数字智能化。

SG3525A性能和结构SG3525A是电压型PWM集成控制器,外接元器件少,性能好,包括开关稳压所需的全部控制电路。

其主要特性包括:外同步、软启动功能;死区调节、欠压锁定功能;误差放大以及关闭输出驱动信号等功能;输出级采用推挽式电路结构,关断速度快,输出电流±400mA;可提供精密度为5V±1%的基准电压;开关频率范围100Hz~400KHZ。

其内部结构主要包括基准电压源、欠压锁定电路、锯齿波振荡器、误差放大器等,如图1所示。

图1 SG3525A内部框图及引脚功能IR2110性能和结构IR2110是美国IR公司生产的高压、高速PMOSFET和IGBT的理想驱动器。

该芯片采用HVIC和闩锁抗干扰制造工艺,集成DIP、SOIC封装。

其主要特性包括:悬浮通道电源采用自举电路,其电压最高可达500V;功率器件栅极驱动电压范围10V~20V;输出电流峰值为2A; 逻辑电源范围5V~20V,而且逻辑电源地和功率地之间允许+5V的偏移量;带有下拉电阻的COMS施密特输入端,可以方便地与LSTTL和C MOS电平匹配;独立的低端和高端输入通道,具有欠电压同时锁定两通道功能; 两通道的匹配延时为10 ns;开关通断延时小,分别为120ns和90ns;工作频率达500kHz。

三项电压型逆变电路实验报告

三项电压型逆变电路实验报告

一、引言: (2)二、交-直-交变压变频器的基本结构 (2)1、三相电压型桥式逆变电路拓扑图 (3)2、交-直-交变压变频器的工作原理 (3)三、三相电压型桥式逆变电路的Simulink建立及模型: 4四、仿真参数及仿真波形设置: (5)1.对脉冲触发器进行参数设置: (5)2. 用subplot作图: (6)3.仿真波形: (7)五、实验结果及分析: (13)六、结论及拓展: (13)七、设计心得: (14)八、参考文献: (14)交-直-交变压变频器中逆变器的仿真一、引言:逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。

相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。

这是与整流相反的变换,因而称为逆变。

逆变电路的作用是将直流电压转换成梯形脉冲波,经低通滤波器滤波后,从而使负载上得到的实际电压为正弦波。

现代逆变技术的种类很多,可以按照不同的形式进行分类。

其主要的分类方式如下:1) 按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2) 按逆变器输出能量的去向,可分为有源逆变和无源逆变。

3) 按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。

4) 按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。

5) 按输出稳定的参量,可分为电压型逆变和电流型逆变。

6) 按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。

7) 按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。

随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。

尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。

二极管钳位三电平逆变器电源设计

二极管钳位三电平逆变器电源设计

( Hu n a n V a l i n L Y S t e e l Ma i n t e n a n c e C e n t e r , L o u d i , H u n a n 4 1 7 0 0 9 , C h i n a )
Ab s t r a c t : A d i o d e — c l a mp e d t h r e e — l e v e l i n v e te r r p o we r s u p p l y b a s e d o n DS P i s i n t r o d u c e d . A p u s h -p u l l c i r c u i t i s a p p l i e d t o
i n v e r t e r ' s d u t y c y c l e i s a d j u s t e d v i a P I a r i t h me t i c t o a c h i e v e c l o s e d - l o o p c o n t r o 1 . T h e f e a s i b i l i t y o f t h e d e s i g n s c h e m e i s v e r i i f e d
相 比煤 、 石油、 天 然 气 等传 统 能 源 , 太
阳能和风能是取 之不尽 用之 不竭 的新 型环
收稿 日期 : 2 0 1 3 — 0 3 — 0 3
中图分类号 : T M4 6 4 . 2 2 文献标识码 : A
De s i g n o f Di o d e - - c l a mp e d Thr e e ・ - l e v e l I n v e r t e r Po we r S u pp l y

单相全桥逆变电器实验报告

单相全桥逆变电器实验报告

单相全桥逆变电器实验报告一、实验目标本次实验的主要目标是了解单相全桥逆变电器的原理、结构及工作特性,通过实验掌握逆变电器的运行规律,理解其在能源转换中的作用,为进一步研究逆变电源提供实践基础。

二、实验原理单相全桥逆变电器是一种将直流电能转换为交流电能的电力电子装置。

其基本工作原理是利用半导体开关器件(如晶体管、可控硅等)的开关特性,将直流电源的电能转换为高频交流电能,再通过变压器耦合升压或降压,最终输出所需电压和频率的交流电。

三、实验步骤1. 搭建单相全桥逆变电器实验平台,包括直流电源、全桥逆变电路、输出变压器、电压电流测量仪器等。

2. 设定直流电源的电压和电流值,开启电源,观察全桥逆变电路的工作状态。

3. 使用示波器观察全桥逆变电路的输出波形,理解其工作原理。

4. 调整直流电源的电压和电流值,观察全桥逆变电路输出电压和电流的变化情况,理解逆变电器的电压和电流调节特性。

5. 改变输出变压器的匝数比,观察输出电压和电流的变化情况,理解变压器的变压原理及匝数比对输出电压的影响。

6. 记录实验数据,整理实验结果,分析误差来源,得出实验结论。

四、实验结果及分析根据实验数据,绘制了全桥逆变电路的输出波形图、电压电流调节特性曲线、变压器匝数比与输出电压关系曲线等。

通过分析这些图表,可以得出以下结论:1. 全桥逆变电路能够将直流电能转换为交流电能,输出波形稳定,具有良好的电压和电流调节特性。

2. 变压器匝数比的改变可以调节输出电压的大小,实现电压的变换和匹配。

3. 实验过程中存在一定的误差,主要来源于测量仪器的精度误差和操作误差。

通过对误差的分析,可以进一步提高实验的准确性和可靠性。

五、实验总结通过本次实验,我们深入了解了单相全桥逆变电器的工作原理和特性,掌握了其运行规律。

实验结果验证了逆变电器的电压和电流调节特性以及变压器匝数比对输出电压的影响。

同时,实验过程中也暴露出了一些问题和不足之处,需要我们在后续的研究中进行改进和完善。

基于单片机的逆变电源设计

基于单片机的逆变电源设计

基于单片机的逆变电源设计摘要:为了适应当今新能源发展速度,逆变电源技术也在不断更新换代。

本文介绍了一款基于STM32芯片的SPWM逆变电源系统。

采用BOOST升压技术和SPWM逆变技术,将180V的直流电转换成220V的工频优质正弦交流电。

直流电经过升压斩波电路进入控制电路,在经过LC低通滤波器,滤除高次谐波,得到频率可调的正弦波交流输出。

本系统由升压模块,逆变模块,控制模块,反馈模块,保护模块构成具有良好的性能并实现了数字智能化为家用电器提供了一种可靠、优质的交流电源。

关键词:STM32逆变电源SPWM升压斩波电路1.课题研究背景和意义在日新月异的今天,新能源的应用范围越来广阔,而对于如何将其所转化的电输入到电网或者设备所需要的稳压恒频、体积小、重量轻、噪音低、效率高的交流电成为了成为逆变电源研制领域所要解决的问题。

逆变电源是一种采用电力电子技术进行电能变换的装置,它的作用是将输入的高低不同压,大小不同频的电转化为电网、设备、用户所需频率的交流电输出。

目前逆变电源所跨领域之大,所涉范围之广逆变电源的改进不仅能在新能源中有着不可缺少的作用,还在车载电器、野外作业、应急抢险和移动办公中有着重要的地位;而各行各业要求着逆变电源朝着更高的效率,更低的成本和更高的可靠性,还必须环保无污染,但是传统的逆变电源难以实现以上要求。

因而研究数字化、模块化的绿色逆变电源技术对当今提出的节能,高效,绿色,环保工业口号实现具有重要意义。

1.课题研究内容本论文基于当前新能源发展活跃的背景下市场对逆变电源特定负载性能和外特性功能要求下,设计了一种还具备安全可靠、高效、高功率因素、低噪音、绿色无污染的基于STM32单片机芯片的逆变电源。

1.系统总体设计1.系统设计指标采用STM32单片机作为控制主控芯片来设计一款能产生可靠、优质的交流正弦逆变电源。

开关频率:21.5KHz输入电压:直流电48V输出电压:交流电220V/50Hz输出功率:5kw逆变效率:90%1.1.总体设计方案本文采用TL494芯片与 STM32芯片来分别控制前一部分直流升压电路和后一部分的逆变电路。

1KW纯正弦波逆变电源原理图与PCB图设计

1KW纯正弦波逆变电源原理图与PCB图设计

1KW纯正弦波逆变电源原理图和PCB图设计这个机器,BT是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器,也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。

升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。

因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。

所以这次画PCB时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。

上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。

上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。

二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。

上图是DC-DC升压电路的驱动板,用的是KA3525。

这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。

这是SPWM驱动板的PCB,本方案用的是张工提供的单片机SPWM芯片TDS2285,输出部分还是用250光藕进行驱动,因为这样比较可靠。

也是为了可靠起见,这次二个上管没有用自举供电,而是老老实实地用了三组隔离电源对光藕进行供电。

电力电子技术三相桥式全控整流及有源逆变电路实验报告

电力电子技术三相桥式全控整流及有源逆变电路实验报告

一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。

整流电路是四种变换电路中最基本的变换电路,应用非常广泛。

对于整流电路,当其带不同负载情况下,电路的工作情况不同。

此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。

在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。

该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。

二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:,,整流,,逆变,,临界注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。

电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。

双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。

(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。

整流电路是一种把交流电源电压转换成所需的直流电压的电路。

AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。

采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。

2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。

②全波整流电路:全波整流电路中每根电源进线流过双方向电流,又称为桥式整流电路或双拍整流电路。

(2)按电源相数分类①单相整流电路:又分为单脉波整流电路和双脉波整流电路。

单相并联逆变电路实验报告

单相并联逆变电路实验报告

单相并联逆变电路实验报告实验目的本实验旨在通过搭建单相并联逆变电路,研究电路的工作原理及其影响因素,并通过实验结果验证理论推导。

实验材料•电源•三相变压器•电阻•电容•电感•半导体器件(二极管、晶体管、继电器等)•示波器•万用表实验步骤1.首先,将三相变压器的输入端与电源相连,确保电路供电正常。

2.将变压器的输出端连接到并联逆变电路的输入端,以提供所需的交流电源。

3.在并联逆变电路中添加电阻、电容和电感等元件,用以调节电路的输出电流和电压。

4.将半导体器件逐个连接到电路中,并确保其连接正确无误。

5.接下来,使用示波器测量电路的输出电压波形,并记录测量结果。

6.使用万用表测量电路的输出电流,并记录测量结果。

7.分析实验数据,观察电路的输出特性以及各元件对电路性能的影响。

8.根据实验结果,对电路进行优化设计,使其输出更稳定、效率更高。

9.最后,总结实验结果,总结电路的特点、优缺点以及改进方向。

实验数据与结果分析根据实验步骤记录的数据,可以得出以下结论:1.并联逆变电路的输出电压波形为交流电,能够满足特定负载的需求。

2.输出电压的幅值受电阻、电容和电感等元件的参数影响,可以通过调节这些元件的数值来控制输出电压的稳定性。

3.并联逆变电路的输出电流受负载的阻值和电压的大小影响,需要根据实际需求调整电路参数。

4.半导体器件的选用和连接方式对电路的性能有重要影响,需要根据实验结果进行优化设计。

5.通过改变电路的拓扑结构和元件参数,可以改善电路的功率因数和效率,提高电路的性能。

实验总结本实验通过搭建单相并联逆变电路,研究了电路的工作原理及其影响因素,并通过实验结果验证了理论推导。

实验数据分析表明,通过调节电路中的元件参数和优化设计,可以改善电路的输出特性和性能,提高电路的效率和稳定性。

然而,本实验仅仅是单相并联逆变电路的初步研究,还有许多问题需要深入探究。

例如,如何进一步提高电路的功率因数和效率,如何减小电路的谐波扰动等。

逆变电源设计

逆变电源设计

逆变电源设计摘要:本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(12v)转换成交流电源(320V,50HZ),并对负载进行供电。

达到的性能要求就是转换出稳定的工频电源.设计的基本要求在一些交通运载、野外测控、可移动武器装备、工程修理车等设备中都配有不同规格的电源。

通常这些设备工作空间狭小,环境恶劣,干扰大。

因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小、重量轻、成本低、可靠性高、抗干扰强等特点。

针对某种移动设备的特定要求,研制了一种简单实用的车载正弦波逆变电源,采用SPWM 工作模式,以最简单的硬件配置和最通用的器件构成整个电路。

实验证明,该电源具有电路简单、成本低、可靠性高等特点,满足了实际要求。

车载逆变器(电源转换器、Power Inverter )是一种能够将DC12V 直流电转换为和市电相同的AC220V 交流电,供一般电器使用,是一种方便的车用电源转换器。

车载电源逆变器在国外市场受到普遍欢迎。

在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。

中国进入WTO 后,国内市场私人交通工具越来越多,因此,车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。

通过点烟器输出的车载逆变器可以是20W 、40W 、80W 、120W 直到150W ,功率规格的。

再大一些功率逆变电源200W,300W,400W,500W,600W,700W,800W,1000W,1500W 要通过连接线接到电瓶上。

设计汽车逆变电源,提出了一种低成本的方波逆变电源的基本原理及制作方法;介绍了驱动电路芯片SG3524 和IR2110 的使用;设计驱动和保护电路;给出输出电压波形的实验结果。

本文阐述了要求非常高的车载电源的设计及实验过程中的一些特殊问题的解决措施,提出了一些新颖的观点。

单相正弦波逆变电源设计原理

单相正弦波逆变电源设计原理

单相正弦波逆变电源设计原理+电路+程序目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)14.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)21.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。

满载时输出功率大于100W,效率不小于80%,具备过流保护和负载短路保护等功能。

1.2总体设计方案1.2.1设计思路题目要求设计一个车载通信设备用单相正弦波逆变电源,输出电压波形为正弦波。

设计中主电路采用电气隔离、DC-DC-AC的技术,控制部分采用SPWM(正弦脉宽调制)技术,利用对逆变原件电力MOSFET的驱动脉冲控制,使输出获得交流正弦波的稳压电源。

1.2.2方案论证与比较⑴ DC-DC变换器的方案论证与选择方案一:推挽式DC-DC变换器。

单相逆变电源设计

单相逆变电源设计

题目:18KV A 单相逆变器设计与仿真院系:电气与电子工程学院专业年级:电气工程及其自动化2010级姓名:郑海强学号:1010200224同组同学:钟祥锣王敢方骞2013年11月20号单相逆变器设计一、设计得内容及要求0.8 1.0,滞后5DC333V将直流电变成交流电得电路叫做逆变电路。

根据交流侧接在电网与负载相接可分为有源逆变与无源逆变,所以本次设计得逆变器设计为无源逆变。

换流就是实现逆变得基础。

通过控制开关器件得开通与关断,来控制电流通过得支路这就是实现换流得方法。

直流侧就是电压源得为电压型逆变器,直流侧就是电流源得为电流型逆变器,综上本次设计为电压型无源逆变器。

三、主电路原理图及主要参数设计3、1 主电路原理图如图1所示图 13、2输出电路与负载计算3、2、1 负载侧参数设计计算负载侧得电路结构图如图2所示,根据图2相关经计算结果如下:C'L RiV R I 'L I CI V L LI图2 负载侧电路结构图 1、 负载电阻最小值:cos ϕ=1、0时,R=2o V /23300/(1810)5oP ;cos ϕ=0、8时,R=2o V /(o P ⨯23cos )300/(18100.8) 6.252、 负载电感最小值:'L ='L Z /(2f π)=8、3/(2100)=0、0132H μ3、 滤波电容:取滤波电容得容抗等于负载电感感抗得2倍,则:C =1/(2πf c Z )=1/(2⨯π10032)=95、92F μ取电容为100F μ,将10个10F μ得AC 电容进行并联,c()Z 实=1/(2πf C )=1/6(210010010)=15、94、滤波电抗L 得计算选取主开关器件工作频率K f =N ⨯O f =32100=3200Hz 由于移相原因,输出线电压得开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率'f=1/(2πK f /6=533、3Hz则:L = 1/(42π2'f C )= 1/(4⨯2π⨯2533⨯100610-⨯)=880H μ 实选用 L=900uH 由此 特征阻抗3、2、2 逆变电路输出电压1、 滤波电路输入端电压(无变压器时)逆变电路得输出与后续电路得连接电路如图3所示,有图3可以得到如下得计算结果。

高效直流12V转交流220V逆变电源设计

高效直流12V转交流220V逆变电源设计

目录摘要 (1)ABSTRACT............................................................ .. (2)第一章绪论 (3)第1.1节逆变器的定义 (3)第1.2节逆变器主电路的基本形式 (7)第二章逆变器主电路设计 (7)第2.1节逆变器主电路比较 (7)第2.2节逆变电源的系统结构 (11)第2.3节直流升压电路设计 (12)第2.4节逆变电路设计 (18)第三章逆变系统 (20)第3.1节太阳能逆变电源的设计要求 (20)第3.2节逆变主电路架构及功能 (20)第3.3节逆变控制方式 (21)第3.4节高频变压器设计 (24)第3.5节输出LC滤波器设计 (29)第3.6节全桥型逆变主电路元器件参数的确定 (30)第四章辅助电路、保护电路及系统抗干扰设计 (32)第4.1节辅助电源设计 (32)第4.2节保护电路设计 (34)第4.3节系统的抗干扰技术 (36)第五章研究总结与展望 (38)参考文献 (39)致谢 (40)高效直流12V转交流220V逆变电源设计摘要数字化控制以控制简单、灵活,输出性能更稳定,可以实现模拟控制所不能达到的控制等诸多优势成为电源研究领域的一大热点。

本文介绍了一种以车载高频链逆变电源为模型的逆变器。

车载逆变电源可以把汽车蓄电池的12V直流电转变成大多数电器所需要的220V交流电,系统硬件部分主要包括输出电压、直流母线电压、输出电流的采样和处理,PWM驱动信号的驱动电路,输出滤波环节,出于安全性考虑加入了短路、过压、欠压、过载、温度等保护电路。

系统软件部分则包括SPWM波的生成,闭环控制,及过载保护等。

电路主体逆变方案为-DC(低压)/DC(高压)/AC(高频SPWM脉冲)。

该方案虽然有三个功率变换环节,但其原理简单,实现的技术成熟,并且能较好地实现高频链和SPWM逆变器的结合,产生谐波含量低的工频正弦波输出,并用PSPICE对逆变部分进行了仿真,对输出滤波器参数设定和死区效应进行了分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆变电源设计与总结报告2013年5月6日星期一目录一、方案论证与比较 (1)1、总体方案的比较 (1)2、隔离型DC-DC电路方案 (2)3、高频变压器后级整流方案 (3)4、SPWM波产生方案 (3)二、理论分析与计算 (3)1.高频变压器参数设计 (3)2.LC低通滤波参数设计 (4)三、电路与程序设计 (5)1.推挽式隔离型直流变换电路 (5)2.逆变电路 (7)3.保护电路 (7)4.辅助电源 (8)5.SPWM产生程序 (8)四、测试结果及分析 (9)1.测试方法与测试条件 (9)2.主要测试结果 (9)元件参数根据计算可知,L=4.7UH,C=2.2UF.仿真波形如图11所示。

(10)五、设计总结 (10)摘要本设计实现了一种基于的高频链逆变电源。

系统由输入欠压保护、推挽升压、全桥逆变、SPWM波产生、低通滤波、输出过流保护、辅助电源等电路组成。

12V 的直流电通过推挽式变换逆变为高频方波,经高频变压器升压,再整流滤波得到一个稳定的约320V直流电压。

前级DC-DC变换采用SG3525驱动MOSFET得到高压直流电,然后通过产生的SPWM驱动全桥电路,再经低通滤波得到220V的工频正弦交流电。

采用反激式开关电源升压再经稳压芯片稳压供电很好的实现隔离,并且具有输入欠压保护和输出过流保护,输出功率可达100W。

该电源体积小、效率高、输出电压稳定,非常适用于车载逆变器。

关键词:推挽升压全桥逆变滤波反激式AbstractThis design implements a Cortex M3 based on the high-frequency link inverter power supply.System consists of input undervoltage protection, push-pull boost, full-bridge inverter, SPWM wave generator, low pass filtering, output over-current protection, auxiliary power and other circuit.12V direct current through the push-pull inverter is a high frequency square wave transform, the high-frequency step-up transformer, then rectified and filtered to get a stable DC voltage of about 320V.Former level DC-DC conversion by using SG3525 drive MOSFET high voltage DC and then generate the SPWM drive M3 full bridge circuit, and then low-pass filter obtained by the frequency sinusoidal AC 220V.With a flyback switching power supply step-up regulator chip re-powering through the realization of good isolation, and with input voltage protection and output over-current protection, output power up to 100W.The power, small size, high efficiency, output voltage stability, ideal for automotive inverter.Key words: push-pull boost full-bridge inverter flyback M3概述逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置,是太阳能、风力发电中一个重要部件。

随着微电子技术与电力电子技术的迅速发展,逆变技术也从通过直流电动机——交流发电机的旋转方式逆变技术,发展到二十世纪六、七十年代的晶闸管逆变技术,而二十一世纪的逆变技术多数采用了MOSFET、IGBT、GTO、IGCT、MCT 等多种先进且易于控制的功率器件,控制电路也从模拟集成电路发展到单片机控制甚至采用数字信号处理器(DSP)控制。

各种现代控制理论如自适应控制、自学习控制、模糊逻辑控制、神经网络控制等先进控制理论和算法也大量应用于逆变领域。

其应用领域也达到了前所未有的广阔,从毫瓦级的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站;从日常生活的变频空调、变频冰箱到航空领域的机载设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。

毋须怀疑,随着计算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。

一、方案论证与比较1、总体方案的比较方案一:如图1所示,12V的直流电经过DC-AC逆变成10V/50HZ交流电,再经工频变压器升压到220V.如图1 方案一原理框图方案二:系统框图如图2所示,本系统主要由推挽升压电路、全桥逆变电路、SPWM波产生电路、保护电路和辅助电源等电路组成。

12V直流电压经过推挽式高频逆变和高频整流得到高压直流电,在经全桥DC-AC逆变和低通滤波输出220V 的工频交流电。

图2 方案二电路框图方案一比较简单,升压斩波电路前后级电压倍数低,可以采用非电气隔离性直流变换器,但采用工频变压器经AC-AC升压,存在体积大,效率低等缺陷。

方案二实现了无工频变压器的逆变电路,可以很好的克服方案一存在的问题,同时保证了电源输出电压更稳定、更平滑。

通过比较,本设计选择方案二。

2、隔离型DC-DC电路方案方案一:采用半桥式变换电路,该电路对开关管的耐压值要求低,开关管截止时承受电压为电源电压,所用功率变压器的铁芯没有单向偏磁现象,但对电流要求大。

方案二:采用推挽式变换电路,这种电路一般需要选择高耐压值的开关管,电流要求低,截止时开关管承受电压为电源电压两倍以上。

两组开关管的漏极连在一起,门极驱动电路无需彼此绝缘,驱动电路简单。

由于本系统输入只有12V,但电流将近10A,采用方案一获得同样的输出功率要求开关管流过方案二两倍的电流,管子发热严重。

而方案二即使要求开关管承受电压为电源的两倍,也不过24V,一般MOSFET完全胜任。

通过比较,本设计选择方案二。

3、高频变压器后级整流方案方案一:采用全波整流电路,电流回路中只有一个二极管压降,损耗小,整流过程中只需两个二极管。

但是,二极管关断时承受反压是二倍的交流电压幅值,对器件耐压值要求比较高,而且变压器二次绕组有中心抽头,制作复杂。

方案二:利用全桥整流,二极管断态时承受反压仅为交流电压幅值,而且变压器绕组结构简单。

缺点是任意时刻电感的电流总要相继流过两个二极管,损耗大。

通过比较,由于逆变后电压较大有300—400V ,对管子耐压要求较高。

为了使变压器绕制简单,管子耐压较低,选择方案二。

4、SPWM 波产生方案方案一:采用模拟电路实现SPWM 。

由模拟元件构成的三角波和正弦波产生电路分别产生三角载波信号ut 和正弦调制波信号ur 送入电压比较器,从而产生SPWM 波,这种利用模拟电路调制方式的优点是完成Ut 与ur 信号的比较和确定脉冲所用的时间很短,几乎是瞬问完成而且ut 和ur 的交点是非常精确的,未做任何近似处理。

方案二:采样法软件计算实现SPWM ,利用msp430g2553通过编程直接生成SPWM 波。

充分利用M3内部带死区可调的PWM 模块和丰富的定时器,轻松实现稳定可靠SPWM 波。

方案一电路复杂,而且正弦波不太稳定,方案二电路极其简单且程序也不复杂,输出SPWM 非常漂亮。

故本次设计选择方案二。

二、理论分析与计算1.高频变压器参数设计1.1 磁芯选择与参数计算选择铁氧体磁芯,先求出磁芯窗口面积AW 与磁芯有效截面积Ae 的乘积AP, 根据AP 值, 查表找出所需磁芯材料之编号。

由于输出要求100W,当效率为0.8时,逆变器输入端应有120W,考虑到温升问题高频变压器功率预留6% 的裕度, 则设计输出功率为Po= 1.06*120= 127W 。

由于变压器用于推挽变换电路当中, 由 104⨯==fB KJ P A A AP m o e w ηδ 其中J=400A/cm 4, K =0.4,η=0.8,δ=0.8,f=60KHZ,Bm =0.2。

求得AP=0.7395cm4,查磁芯参数表知EC42符合设计要求,再根据型号查找对应的有效截面积Ae=2.04cm 2。

1.2 变压器匝数计算初级绕组匝数为:=⨯⨯⨯⨯⨯=⨯=04.22.0106041014410N 344max 1A B f V e m s i 1.43 取初级匝数N 1=2。

次级绕组匝数为:2.50245.02122702.01.121maxmin 2=⨯⨯⨯++=⨯⨯⨯++=N D V V V V N i O Lf D 取次级匝数为50匝。

1.3 绕组导线线径及股数计算采用铜线考虑集肤效应,由于开关频率为60KHZ,故穿透深度为:mm mm f 4.502,27.01000*601.661.66=∆===∆故可知线径不得超过0.54mm ,取线径为0.38mm 。

根据工程实际情况和绕组损耗, 取J= 4A/mm 2,导线直径为φ=0.38mm,由设计要求知I imax =12A,I OMAX =0.45A,由公式:45.26)2/38.0(1415.34122max =⨯⨯=⨯=S J I N W i p 可知初级线圈采用26股并绕,同理可求出次级线圈股数为1股。

2. LC 低通滤波参数设计为了将SPWM 波的谐波分量滤除,在逆变器的输出端加了LC 滤波器,从而得到正弦交流信号,滤波器的截止频率一般都是开关频率的1/10~1/2,设定SPWM 波的频率为20K ,则f 定为1.2kHZ ,由公式LC f π21=取电容C=3.3uF ,电容选择聚丙电容,得L=4.7mH 。

三、电路与程序设计1.推挽式隔离型直流变换电路如图3,电路由脉宽调制芯片SG3525产生带死区互补PWM波驱动IRF3205,两个开关管经变压器初级绕组的中心端交替导通,每次导通时间小于半个周期。

次级整流二极管也轮流导通,交替经滤波电感向负载提供电流并向电容充电。

图3 推挽升压电路2.逆变电路由于输出功率较大,达100W所以采用全桥逆变,如图4所示。

相关文档
最新文档