换元法题库学生版

合集下载

初三换元法例题

初三换元法例题

初三换元法例题一、题目:计算下列等式的值1. 17a + 8b - 3c,其中a = 2,b = 5,c = 3。

2. 4x + 2y - 5z,其中x = 3,y = 7,z = 2。

1. 代入a = 2,b = 5,c = 3,得:17(2) + 8(5) - 3(3)= 34 + 40 - 9所以,17a + 8b - 3c 的值为74。

2. 代入x = 3,y = 7,z = 2,得:4(3) + 2(7) - 5(2)= 12 + 14 - 10所以,4x + 2y - 5z 的值为16。

二、题目:写出下列等式的换元表达式。

1. 5a + 3b - 2c,a = x + 1,b = 2y,c = z - 3。

2. 2x + 4y - 3z,x = a - 1,y = b + 2,z = c + 3。

1. 代入a = x + 1,b = 2y,c = z - 3,得:5(x + 1) + 3(2y) - 2(z - 3)= 5x + 5 + 6y - 2z + 6= 5x + 6y - 2z + 11所以,换元后的表达式为 5x + 6y - 2z + 11。

2. 代入x = a - 1,y = b + 2,z = c + 3,得:2(a - 1) + 4(b + 2) - 3(c + 3)= 2a - 2 + 4b + 8 - 3c - 9= 2a + 4b - 3c - 3所以,换元后的表达式为 2a + 4b - 3c - 3。

三、题目:用换元法解下列问题。

1. 有一个长方形,长是x + 3,宽是x - 2,求其周长和面积。

2. 小明的体重是a - 10kg,小明增加了b kg,现在的体重是多少?1. 周长 = 2(长 + 宽) = 2(x + 3 + x - 2) = 4x + 2面积 = 长× 宽 = (x + 3)(x - 2) = x^2 + x - 6所以,长方形的周长为4x + 2,面积为x^2 + x - 6。

初中数学专题训练换元法解题方法练习及试题解析

初中数学专题训练换元法解题方法练习及试题解析

专题02 换元法【规律总结】换元法是指引入一个或几个新的变量代替原来的某些变量的变量求出结果之后,返回去求原变量的结果.换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题.其理论根据是等量代换.我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量取值范围对应于原变量的取值范围,不能缩小也不能扩大。

【典例分析】 例1、已知方程组{2a −3b =133a +5b =30.9的解是{a =8.3b =1.2,则{2(x −2)−3(y +1)=133(x −2)+5(y +1)=30.9的解是:( )A. {x =8.3y =1.2B. {x =10.3y =2.2C. {x =6.3y =2.2D. {x =10.3y =0.2【答案】D 【解析】 【分析】本题考查了换元法和二元一次方程组的解,掌握其解得定义是解题的关键.根据换元法先令x −2=a ,y +1=b ,再根据二元一次方程组的解,得x −2=8.3和y +1=1.2,即可求得x 与y 的值. 【解答】解:令x −2=a ,y +1=b , 则方程组{2(x −2)−3(y +1)=133(x −2)+5(y +1)=30.9, 可化为:{2a −3b =133a +5b =30.9,∵方程组{2a −3b =133a +5b =30.9的解为{a =8.3b =1.2,∴{x −2=8.3y +1=1.2, ∴{x =10.3y =0.2. 故选:D .例2、已知(2016+a)(2018+a)=b ,则(2016+a)2+(2018+a)2=_________________(用含b的代数式表示)【答案】4+2b【解析】1.【分析】本题考查了完全平方公式和整体代入法的思想,灵活使用整体代入法是解本题的关键.令2016+a=x,2018+a=y,将原式化为(x−y)2+2xy,即可求解.【解答】解:令2016+a=x,2018+a=y,则(2016+a)(2018+a)=xy=b,(2016+a)2+(2018+a)2=x2+y2=(x−y)2+2xy=(−2)2+2b=4+2b;故答案为4+2b.例3、【阅读材料】若x满足(80−x)(x−60)=30,求(80−x)2+(x−60)2的值.解:设(80−x)=a,(x−60)=b,则(80−x)(x−60)=ab=30,a+b=(80−x)+ (x−60)=20,所以(80−x)2+(x−60)2=a2+b2=(a+b)2−2ab=202−2×30=340【解决问题】(1)若x满足(2019−x)2+(2017−x)2=4042,求(2019−x)(2017−x)的值;(2)已知a1,a2,a3,...a2015均为负数,M=(a1+a2+...+a2014)(a2+a3+...+a2015),N=(a1+a2+...+a2015)(a2+a3+...+a2014),比较M与N的大小关系并说明理由;(3)如图,正方形ABCD的边长为x,AE=1,CG=2,长方形EFGD的面积是5,四边形NGDH和MEDQ都是正方形,PQDH是长方形,则图中阴影部分的面积为多少?直接写出答案.(结果必须是一个具体的数值).【答案】解:(1)设(2019−x)=c,(2017−x)=d,则c−d=(2019−x)−(2017−x)=2,(2019−x)(2017−x)=cd,∴(2019−x)2+(2017−x)2=c2+d2=(c−d)2+2cd=4042,即22+2cd=4042解得:cd=2019,即(2019−x)(2017−x)=2019;(2)设x=a1+a2+⋯+a2014,y=a2+a3+⋯+a2015,则M=xy,2,N=(x+a2015)(y−a2015)=xy+a2015(y−x)−a2015M−N=a2015(y−x−a2015)=−a1a2015由于a1,a2,a3,...a2015均为负数所以−a1a2015为负数,则M−N=−a1a2015<0,M<N;(3)由题意得:(x−1)(x−2)=5,设x−1=a,x−2=b,则ab=5,a−b=1,∴(a +b )2=(a −b )2+4ab =21. 则阴影部分的面积为21.【解析】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.(1)模仿例题,利用换元法解决问题即可.(2)设x =a 1+a 2+⋯+a 2014,y =a 2+a 3+⋯+a 2015,则M =xy ,N =(x +a 2015)(y −a 2015)=xy +a 2015(y −x)−a 20152,M −N =a 2015(y −x −a 2015)=−a 1a 2015由于a 1,a 2,a 3,...a 2015均为负数,所以−a 1a 2015为负数,则M −N =−a 1a 2015<0,最后得M <N ; (3)模仿例题,利用换元法解决问题:由题意得:(x −1)(x −2)=5,设x −1=a ,x −2=b ,则ab =5,a −b =1,得出(a +b )2=(a −b )2+4ab =21.【好题演练】一、选择题1.设a 、b 是实数,且11+a −11+b =1b−a ,则1+b1+a 的值为( ).A. 1±√52B. ±1±√52C. ±3−√52D. 3±√52【答案】D 【解析】 【分析】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.先设1+a =x ,1+b =y ,则b −a =y −x ,原方程可化为1x −1y =1y−x ,整理得,y 2−3xy +x 2=0,方程两边同除以x 2,解关于yx 的一元二次方程即可. 【解答】解:解:设1+a =x ,1+b =y ,则b −a =y −x ,原方程可化为1x −1y =1y−x , 整理得,y 2−3xy +x 2=0,两边同除以x2,得(yx )2−3(yx)+1=0,解得yx =3±√52,即1+b1+a 等于3±√52,故选D.2.已知实数a,b,c满足a+b+c=1,1a+1+1b+3+1c+5=0,则(a+1)2+(b+3)2+(c+5)2的值为().A. 125B. 120C. 100D. 81【答案】C【解析】【分析】本题考查换元法和整体代入法,巧妙利用换元法是解题的关键.首先令a+1=x,b+3=y,c+5=z,分别求出x+y+z和xy+yz+xz,然后所求代数式即为x2+y2+z2,整体代入可求出值.【解答】解:令a+1=x,b+3=y,c+5=z,∵a+b+c=1∴x+y+z=(a+1)+(b+3)+(c+5)=10,又1a+1+1b+3+1c+5=0则1x +1y+1z=0,∴xy+yz+xz=0,∴(a+1)2+(b+3)2+(c+5)2=x2+y2+z2=(x+y+z)2−2(xy+yz+xz)=102=100.故选C.3.已知(x−2015)2+(x−2017)2=34,则(x−2016)2的值是()A. 4B. 8C. 12D. 16【答案】D【解析】【分析】本题考查了完全平方公式以及换元法.将x−2016设为t,则x−2015=t+1,x−2017=t−1,代入原方程中,可得到关于t 的方程,进而求解。

利用换元法解决试题(非常全)

利用换元法解决试题(非常全)

利用换元法解决试题(非常全)一、选择题1. 为解方程,我们可设,则,原方程可化为.解得,,当时,,所以;当时,,所以.故原方程的解为,,,.以上解题方法主要体现的数学思想是A. 数形结合B. 换元与降次C. 消元D. 公理化2. 如果一个三角形的三边长分别为,,,化简的结果是A. B. C. D.3. 用换元法解方程,设,则原方程可化为A. B. C. D.4. 当使用换元法解方程时,若设,则原方程可变形为A. B. C. D.5. 已知,则或 B. D. 无法确定6. 已知,则的值为A. B. C. D.7. ,则的值为A. C. 或 D. 无法确定8. 若,则A. 或或或 D. 或9. 方程的解为A. ,B. ,C. ,D. ,10. 用换元法解方程时,如果设,那么原方程可化为A. B. C. D.11. 已知,,,均为正数,且满足,.则与之间的关系为A. B. C. D. 无法确定12. 小明用计算器计算的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知是的倍,则正确的结果是A. B. C. D.13. 已知方程组的解是则方程组的解是A. B. C. D.14. 已知实数,满足:,,则的值为A. C. D.15. 有面额为壹圆、贰圆、伍圆的人民币共张,购买一把价值为元的雨伞,不同的付款方式共有A. 种B. 种C. 种D. 种16. 若实数、满足,则的值为A. C. 或或17. 在求的值时,小林发现:从第二个加数起每一个加数都是前一个加数的倍,于是她设:然后在式的两边都乘,得:得,即,所以,得出答案后,爱动脑筋的小林想:如果把“”换成字母“”(且),能否求出的值?你的答案是A. B. C. D.18. 用换元法解方程时,若设,则原方程可化为A. B. C. D.19. 已知是一元二次方程的一个实数根,则的取值范围为A. B. C. D.20. 已知实数满足,则的值是B. 或或二、填空题21. 已知,则.22. 能使成立的的值为.23. 一题多解是拓展我们发散思维的重要策略.对于方程“”可以有多种不同的解法,观察此方程,假设.()则原方程可变形为关于的方程:,通过先求的值,从而可得;()上述方法用到的数学思想是.24. 若方程组的解为则方程组的解是.25. ()已知,那么.()若实数,满足,则.26. 如果,那么的值为.27. 在求的值时,张红发现:从第二个加数起每一个加数都是前一个加数的倍,于是她假设:然后在式的两边都乘以,得:得,,即,所以.得出答案后,爱动脑筋的张红想:如果把“”换成字母(且),能否求出的值?如能求出,其正确答案是.28. 关于,的方程组那么.29. 在方程中,如果设,那么原方程可化为关于的整式方程是.30. 解方程时,若设,则方程可化为.31. 若,则的值是.32. 设函数的图象与函数的图象的交点坐标为,则的值为.33. 计算的结果是.34. 计算的结果是.35. 方程的实根是.36. 三个同学对问题"若方程组的解是求方程组的解" 提出各自的想法.甲说:"这个题目好象条件不够,不能求解";乙说:"它们的系数有一定的规律,可以试试";丙说:"能不能把第二个方程组的两个方程的两边都除以,通过换元替换的方法来解决".参考他们的讨论,你认为这个题目的解应该是.37. 已知,则关于的方程的解是.38. 满足的的值为.39. 如果,那么的值为.40. 若,则的值为三、解答题41. 解下列方程组.(1)(2)42. 如图中的个点处各写有一个数字.已知每个点所写的数字等于和这个点有线段相连的三个点处的数字的平均数,则代数式的值是多少?43. 解下列分式方程:(1);(2);(3);(4).44. 解方程组:45. 若,,试比较与的大小.46. 用换元法解方程.47. 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共千克,其中枇杷的产量不超过樱桃产量的倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为千克,销售均价为,今年樱桃的市场销售量比去年减少了,销售均价与去年相同,该果农去年枇杷的市场销售量为千克,销售均价为,今年枇杷的市场销售量比去年增加了,但销售均价比去年减少了,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求的值.48. 计算:.49. 计算:.50. 计算:(,且为正整数).51. 解方程:.52. 先化简,再求值:,其中.53. 解方程组:54. 求的值,令,则,因此,.参照以上推理,计算的值.55. 关于的方程:的解为:,;(可变形为)的解为:,;的解为:,;的解为:,.(1)请你根据上述方程与解的特征,猜想关于的方程()的解是什么?(2)请总结上面的结论,并求出方程的解.56. 阅读理解:善于思考的小聪在解方程组时,发现方程组和之间存在一定关系,他的解法如下:解:将方程变形为:.把方程代入方程得:,解得:把代入方程得:.∴原方程组的解为小聪的这种解法叫“整体换元”法.请用“整体换元”法完成下列问题:(1)解方程组(i)把方程代入方程,则方程变为;(ii)原方程组的解为.(2)解方程组57. 先让我们一起来学习方程的解法:解:令,则,方程两边平方可得,解得,,,,.点评:类似的方程可以用“整体换元”的思想解决.不妨一试:如图1,在平面直角坐标系中,抛物线经过点,顶点为点,点为抛物线上的一个动点,是过点且垂直于轴的直线,过作,垂足为点,连接.(1)求抛物线的解析式;(2)①当点运动到点处时,通过计算发现:(填“”、“”或“”);②当点在抛物线上运动时,猜想与有何数量关系,并证明你的猜想;(3)当为等边三角形时,求点坐标;(4)如图 2,设点,问是否存在点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.58. 已知:如图1,抛物线与轴正半轴交于,两点,与轴交于点,直线经过,两点,且.(1)求抛物线的解析式;(2)若直线平行于轴并从点开始以每秒个单位的速度沿轴正方向平移,且分别交轴、线段于点,,同时动点从点出发,沿方向以每秒个单位速度运动,(如图2);当点运动到原点时,直线与点都停止运动,连接,若点运动时间为秒;设,当为何值时,有最小值,并求出最小值.(3)在(2)的条件下,是否存在的值,使以,,为顶点的三角形与相似;若存在,求的值;若不存在,请说明理由.59. 阅读材料:为解方程,我们可以将视为一个整体,然后设,则,原方程化为①,解得,.当时,,,;当时,,,;原方程的解是,,,.解答问题:(1)填空:在由原方程得到方程①的过程中利用了换元法达到了的目的;(2)利用材料中的方法解方程:.60. 解方程这是一个一元四次方程,根据该方程的特点,我们通常可以这样来解:设,那么,于是原方程可变为①,解这个方程得:,.当时,,;当时,,.所以原方程有四个根:,,,.(1)这一解法在由原方程得到方程①的过程中,利用了法达到降次的目的,体现了的数学思想.(2)参照上面解题的思想方法解方程:答案第一部分1. B 【解析】本题体现了两个重要的数学思想,换元和降次的数学思想.2. B3. A4. D5. B6. C 【解析】由已知条件直接求解比较困难,通过观察,不难发现所求代数式与已知条件之间存在一定的关系,即.若设,则,.7. A8. A 【解析】令,则原方程化为,即,所以,..9. B 【解析】将看成一个整体,移项,得,配方,得,即.得,,.10. C11. A12. C则故.13. C14. A15. C【解析】设壹圆、贰圆、伍圆的人民币分别有张,张,张,则由题意可得:16. D17. B 【解析】设则得,所以,即.18. D19. B 【解析】∵方程有实数根,∴.由题意得或令,则方程可化为:;方程化为:.∵是方程或的解,∴方程、的判别式非负,即,∴.20. D第二部分21.【解析】设,则有,解得,.由于,故.,或23.24.25. (),()26.【解析】设,则,整理得,解得,即或(不合题意,舍去).27. (且)28.29.【解析】方程整理得,,设,原方程可化为,,方程两边都乘以,去分母得,.30.或【解析】,,.33.【解析】设,35.36.【解析】37.38. 或39.40. 或【解析】令 .则原式可化为,整理得,解得,经检验都是方程的解;则,则的值为或 .第三部分41. (1)得:得:把代入得:方程组的解为(2)令,,则:由得由得把代入得方程组的解为42. 由条件可知,,,,,所以.设,,则,解得.所以43. (1)原方程可化为:整理,得解方程,得经检验:是增根,舍去;所以原方程的根是.(2)设,则方程为:所以,所以,所以所以由得:所以所以由得:所以,所以,所以,,经检验:,,,都是原方程的解,所以原方程的解是,,,.(3)设,则解得:当时,解得:当时,所以此方程无解.经检验,,是原方程的解.所以原方程的解是,.(4)整理得设则整理得:解得:当时,解得:当时,解得:经检验这四个解都是原方程的解.所以原方程的解是,,,.44. 原方程组可变形为因此,可以将与看作是方程的两个根,解方程得:,.经检验:都是原方程的解,原方程的解是45. 设,则,,.46. 解:设,则原方程化为解得,当时,解得,当时,此方程无实数根.经检验,,都是原方程的根.原方程的根为, .47. (1)设该果农今年收获樱桃千克,根据题意得:解得:答:该果农今年收获樱桃至少千克;(2)由题意可得:令,原方程可化为:整理可得:解得:(舍去),,,答:的值为.48. 设,,则49. 设,则有:,,即,故原式的值为.50. 设,则51. 设,则原方程变为即由分式值为的条件,得且.且.或,且.解得经检验,是原分式方程的解.52.当时,.53. 由题意得,又,..解方程得原方程组的解为或.54. 设,则,,.55. (1),.(2)结论:方程的左边是未知数与其倒数的倍数的和,方程的右边与左边形式完全相同,只是其中的未知数换成了某个常数,这样左边的未知数就等于右边的常数和其倒数的倍数.可变形为 .或,即或,经检验:,都是原方程的解.原方程的解为,.56. (1)(i);(ii)(2)将方程变形为把方程代入方程得解得把代入方程,得所以原方程组的解为57. (1)抛物线经过点,,,抛物线解析式为,顶点.(2)①②结论:.理由:设点坐标,,,.【解析】①当点运动到点处时.由勾股定理得,,.(3)为等边三角形,.,易证.,解得:,.(4),,.,,以,,为顶点的三角形与相似,与,与是对应边,,设点,,解得.点坐标或.58. (1)由直线:知:,;,,即.设抛物线的解析式为:,代入,得:,解得.抛物线的解析式:.(2)在中,,,则;,;而;,设,则,当时,取得最大值,此时取得最小值.当时,有最小值,且最小值为.(3)在中,,,则;在中,,,则;;以,,为顶点的三角形与相似,已知,则有两种情况:①,解得;②,解得;综上所述,当时,以,,为顶点的三角形与相似.59. (1)降次.(2)设,原方程化为,解得,.当时,解得或当时,解得或;原方程的解是,,,.60. (1)换元,转化(2)设,则由原方程得到.整理,得,解得或.当,即,则,解得,.经检验,它们都是原方程的根;当,即,则,解得,.经检验,它们都是原方程的根;综上所述,原方程的根为:,,,.。

第二换元积分法练习题含答案-2021年个人精心整理

第二换元积分法练习题含答案-2021年个人精心整理

. ..
December 1, 2019 2 / 51
一、第二换元积分法练习题
38.
d√x
39. √ dx
40. x2√1 − x dx
(1 + x2) 1 − x2
2x − 3 + 1
√ 41. x 4 2x + 3 dx 42.
x+1

dx 43.
x2 1 − x2 dx
x x−2
ln 2x
2x3x
a2 − x2 + C
2
a2
9.3 arcsin
x 2

1 x
2
4 − x2 + C
1 10. arccos + C
|x|
x
11. √
+C
1 + x2
1 12.
arcsin(x − 1) + (x − 1)
2x − x2
2
x
1
13. arcsin x − √
+ C 14.
1 + 1 − x2
2
+C
arcsin x + ln x + 1 − x2 + C
三、习题解答
当 x < −a 时, 设 x = −u, 则 u > a, 且 dx = −du, 于是
√ x2 − a2 dx = x
√ u2 − a2 du (用上段结果) u
=
u2 − a2 + a arccos
a u
+C
=
x2 − a2 + a arccos
a −
+C
x

《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)

《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)
解:(1)换元,降次
(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,
解得x=3或x=6;
(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0
即(x﹣3)(x﹣4)=0
解得x=3或x=4.
例4.阅读下面材料:解答问题
为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=± ;当y=4时,x2﹣1=4,∴x2=5,∴x=± ,故原方程的解为x1= ,x2=﹣ ,x3= ,x4=﹣ .
2.2.5《解一元二次方程—换元法》典型例题解析与同步训练
【知识要点】
1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
解得y1=6,y2=﹣2(4分)
当y=6时,x2﹣x=6即x2﹣x﹣6=0
∴x1=3,x2=﹣2(6分)
当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0
∵△=(﹣1)2﹣4×1×2<0
∴方程无实数解(8分)
∴原方程的解为:x1=3,x2=﹣2.(9分)
例5.阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.
(3)先移项,然后用提取公因式法对左边进行因式分解即可.

用换元法解一次方程组习题及答案

用换元法解一次方程组习题及答案

1 解方程组576233x y x y +=⎧⎨+=⎩, ①. ②2 解方程组521623+126x y x y z x y z +=⎧⎪+=⎨⎪++=⎩, ①, ②. ③3 解方程组24+393251156713x y z x y z x y z +=⎧⎪-+=⎨⎪-+=⎩, ①, ②. ③4. 解方程组⎪⎩⎪⎨⎧=---=+-+)2.(1213343)1(,04231y x y x5. 解方程组⎪⎩⎪⎨⎧-=--+=-++.1106,3106y x y x y x y x6. 解方程组7. 解方程组⎩⎨⎧=-=+)2.(97177)1(,1232y x y x8.⎪⎩⎪⎨⎧+-=-+-=+②)(316①)(236y x y x y x y x⎪⎪⎩⎪⎪⎨⎧=---=-+-152223*********yx y x yx y x1. 解:由①令5373x k y k =+=-,,所以3537k x k y +⎧=⎪⎪⎨-⎪=⎪⎩, ③. ④ 把③、④代入②,解得18k =-.⑤ 把⑤代入③、④,得原方程组的解为33x y =-⎧⎨=⎩,.2. 解:由①令5828x k y k =+=-,.所以8582k x k y +⎧=⎪⎪⎨-⎪=⎪⎩, ④. ⑤ 把④、⑤代入②、③,整理,得1110323104k z k z +=⎧⎨-=-⎩,.解得21k z =⎧⎨=⎩,.把k =2分别代入④、⑤,得23x y =⎧⎨=⎩,.所以原方程组的解为231x y z =⎧⎪=⎨⎪=⎩,,.3. 解:根据①令:12122=3+4333x k y k z k k ⎧⎪=+⎨⎪=--⎩,,.所以1212323433k x k y k k z +⎧=⎪⎪+⎪=⎨⎪--⎪=⎪⎩,,. 把④、⑤、⑥代入②、③,整理得121213182318k k k k +=-⎧⎨-=⎩,.解得1251k k =-⎧⎨=-⎩, ⑦. ⑧把⑦、⑧代入④、⑤、⑥,得原方程组的解为1123x y z =-⎧⎪⎪=⎨⎪=⎪⎩,,.4. 解:由①,得4231+=+y x . 设k y x =+=+4231,则13-=k x ,24-=k y ,代入②,得12133244313=-----k k .∴1=k .∴213=-=x ,224=-=y .∴原方程组的解是⎩⎨⎧==.2,2y x 5. 解:设m y x =+6,n yx =-10.原方程组可化为⎩⎨⎧=-=+.1,3n m n m 解得⎩⎨⎧==.2,1n m ∴⎪⎩⎪⎨⎧=-=+.210,16y x yx 即⎩⎨⎧-=-=+.20,6y x y x 解得⎩⎨⎧-==.7,13y x∴原方程组的解为⎩⎨⎧-==.7,13y x6. 解:设 , . 原方程组可化为 解得 ∴ ,解得7. 解:由①可设t x 662+=,t y 663-=,即t x 33+=,t y 22-=,代入②,得.97)22(17)33(7=--+t t∴2=t .∴,9233=⨯+=x .2222-=⨯-=y ∴原方程组的解为⎩⎨⎧-==.2,9y x说明:本题若按常规设法,可设t x +=62,t y -=63,此时23t x +=,32ty -=﹒由于出现了分数,给运算带来麻烦,因此设t x 662+=,t y 663-=,此时t x 33+=,t y 22-=,没有出现分类,使运算变得简捷.8.解:令a=(x+y);b=(x-y),则原方程组变为:⎪⎩⎪⎨⎧-=-=④316③236a b a a由③式可得: a=12把a=12代入④得:b=6-4=2将a=12,b=2反代回a=x+y;b=x-y 得方程组⎩⎨⎧=+=-⑥2⑤12y x y x解得:x=7,y=5y x b 521-=⎩⎨⎧=-=+1251034b a b a ⎩⎨⎧==21b a ⎪⎩⎪⎨⎧=-=-2152123y x y x ⎪⎩⎪⎨⎧==.221,114y x y x a 231-=。

4.2换元积分法-习题

4.2换元积分法-习题

第 4 章 不定积分换元积分法 习题解1.在括号中填入适合的系数,使以下等式建立: ⑴ dx () d (5 x 2) ;【解】因为 d (5 x 2) 5dx ,所以 dx1 )d (5 x2) 。

(5⑵ xdx () d (7 3x 2) ;【解】因为 d (7 3x 2 )6xdx ,所以 xdx (1 )d (7 3x2 ) 。

6⑶ x 4 dx ( ) d (2 x 5 3) ;【解】因为 d (2 x 5 3)10x 4dx ,所以 x 4 dx( 1 ) d (2 x 5 3) 。

10⑷1dx () d ( x) ;x【解】因为 d ( x)2 1 dx ,所以 1 dx ( 2 ) d ( x ) 。

x x⑸ dx() d (3ln x ) ;x3dx ,所以dx1【解】因为 d (3ln x )( ) d (3ln x ) 。

xx 3⑹ dx () d(2 arcsin x) ;1 x2【解】因为 d (2 arcsin x)dx,所以dx() d(2 arcsin x) 。

x 21 x 21⑺ xdx() d( 1x 2) ;1 x 2【解】因为 d (1 x2 )xdx ,所以 xdx() d ( 1 x 2 ) 。

1 x2 1 x 2⑻dx() d(arctan3x) 。

1 9x23dxdx 1【解】因为 d (arctan 3x),所以 ( )d (arctan3x) 。

1 9x2 1 9x 2 32.求以下不定积分:⑴(2 x 1)2 dx ;【解】 这是复合函数的积分,用简单变量u 替代中间变量 2x 1 ,积分红为能够直接积分的u 2 ,于是,应用凑微分法,得(2 x 1)2 dx 1 (2 x 1)2 d (2 x1)------d (2 x 1) 2dx21 1(2 x 1)3 c ------u 2 du 1 u 3 c2 331(2 x 1)3 c6⑵11 dx ;3x【解】这是复合函数的积分,用简单变量u 替代中间变量 1 3x ,积分红为能够直接积分的1 , u于是,应用凑微分法,得1 1 1------1 dx3 1 d (1 3x)3x3x1 ln 1 3x c ------3⑶1dx ;33 5xd (1 3x) 3dx1du ln u cu【解】 这是复合函数的积分,用简单变量u 替代中间变量 3 5x ,积分红为能够直接积分的1 ,3u于是,应用凑微分法,得11 1d(3 5x) 33 5xdx3355x 1 3(325x)3c5 223(35x)3c102⑷ xe x dx ;------d(3 5x) 5dx1du 2------3 u 3 c3u22【解】 这是积函数的积分,分别出复合函数e x ,余下为微分部份 xdx ,对照中间变量的微分 d( x 2 )2xdx ,仅相差一常数倍,于是,应用凑微分法,得xe x 2 dx1 e x2 d( x 2 ) ------d( x 2 )2xdx21 e x2 c------e u du e u c2⑸2x 3dx ;x 41【解】 这是积函数的积分,分别出复合函数1 ,余下为微分部份 2x 3dx ,对照中间变量1 x 4的微分 d (1 x 4 )4x 3dx ,仅相差一常数倍,于是,应用凑微分法,得2x3114------1 x 4dx2 1 x 4d (1 x )1 ln 1 x 4c------21ud(1 x 4 ) 4x 3dxdu ln u c⑹tan10x sec 2xdx ;【解】 这是三角函数的积分, 将 tan 10 x 作为复合函数, 余下为微分部份sec 2 xdx 恰为 tan x的微分,于是,应用凑微分法,得tan 10 xsec 2 xdxtan 10 xd tan x------ d tan x sec 2 xdx 1 tan 11 x c ------u 10du1 u 11 c1111⑺ e xdx ;x【解】这是积函数的积分,分别出复合函数e x,余下为微分部份1dx ,对照中间变量的x微分 d x1 dx ,仅相差一常数倍,于是,应用凑微分法,得2 x e x dx 2 e x d x ------d x1 dxx2 x2e xc------e u du e u cx⑻dx ;2 3x 2【解】这是积函数的积分,分别出复合函数 1 ,余下为微分部份xdx ,对照中间变2 3x 2量的微分 d (2 3x 2 )6xdx ,仅相差一常数倍,于是,应用凑微分法,得2 x dx 11d (2 3x 2 ) ------d (23x 2 )6xdx3x 2623x 212 23x 2 c------1 du 2u c6u1 2 3x 2 c3⑼ tan 1x 2x x 2 dx ;1【解】这是积函数的积分,分别出复合函数tan 1 x 2 ,余下为微分部份x dx ,对1 x 2比中间变量的微分d 1 x 22x dx ,恰巧相等,于是,应用凑微分法,得2 1 x 2tan 1 x 21 x dxtan 1 x 2 d 1 x 2--- d 1x 2x dxx 21 x 2tan 1 x 2 d 1 x 2------tan udusin u du 1 d cosuln cosu ccosucosuln cos 1 x 2 c【此答案与课本答案能够互化:ln cos 1 x 2ln (cos 1x 2 ) 1ln1ln sec 1 x 2 】cos 1 x 2⑽1x dx ;xee【解】这个复合函数有两个不一样的中间变量 e x 和 e x ,要进行换元积分,须先化为同一此中间变量:1 e x e x ,e x e x e x (e x e x ) (e x )2 1这成为积函数的积分,分别出复合函数 1 ,余下为微分部份e x dx ,对照中间(e x )2 1变量的微分de x e x dx ,仅相差一常数倍,于是,应用凑微分法,得1 e xdx 1 x---- x xe x e x dx (e x ) 2 1 (e x ) 2 1 de de e dxarctan e x c ------ 1 du arctan u c1 u2⑾1 dx ;xln x ln(ln x)【解法一】这是积函数的积分,分别出复合函数1,余下为微分部份1dx ,对照ln(ln x) x ln x中间变量的微分 d ln(ln x) 1 1dx ,恰巧相等,于是,应用凑微分法,得ln x x1 dx 1 d ln(ln x) ---- d ln(ln x) 1 1dxx ln x ln(ln x) ln(ln x) ln x xln ln(ln x) c ------ 1du ln u c u【解法二】1dx1d ln x ln x u1x ln x ln(lndu x) ln x ln(ln x) u ln u1ln u1ln t c ln ln u cd ln u t dtln u tln lnln x c 。

2022-2023学年初一数学第二学期培优专题训练30 换元法因式分解

2022-2023学年初一数学第二学期培优专题训练30 换元法因式分解

专题30 换元法因式分解【例题讲解】阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式()()22414212x x x x -+-+-. 解:设24x x y -=,()()1212y y =++-2310y y =+-()()52y y =+-()()224542x x x x =-+-- (1)请你用换元法对多项式()()2232358x x x x -+---进行因式分解; (2)凭你的数感,大胆尝试解方程:()()2221230x x x x -+--=. 【解答】(1)解:设23x x y -=,则原式()()()()()()222258318633633y y y y y y x x x x =+--=--=-+=---+(2)解:设22t x x =-.则()()130t t +-=.解得1t =-或3t =.当1t =-时,221x x -=-,即()210x -=.解得121x x ==.当3t =时,223x x -=,即()()310x x -+=.解得33x =,41x =-.综上所述,原方程的解为121x x ==,33x =,41x =-. 【综合解答】1.阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式22()()21234a a a a ---++进行因式分解的过程. 解:设22a a A -=原式(1)(3)4A A =-++(第一步)221A A =++(第二步)2(1)A =+(第三步)22(21)a a =-+(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的__________(填代号).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)按照“因式分解,必须进行到每一个多项式因式都不能再分解为止”的要求,该多项式分解因式的最后结果为______________.(3)请你模仿以上方法对多项式22(43)(411)49x x x x ---++进行因式分解.2.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”下面是小涵同学用换元法对多项式22(41)(47)7x x x x 进行因式分解的过程解:设24x x y -=①,将①带入原式后,原式(1)(7)7y y (第一步)28y y =+(第二步)(8)y y (第三步)22(4)(48)x x x x (第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的______方法;(2)老师说,小涵因式分解的结果不彻底,请你通过计算得出该因式分解的最后结果;(3)请你用“换元法”对多项式2222()(2)(1)(1)1x x x x x x x x 进行因式分解3.阅读并解决问题:材料1:在因式分解中,有一类形如2()x m n x mn +++的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成2()()()x m n x mn x m x n +++=++. 例如:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.材料2:分解因式:2()2()1a b a b ++++.解:设a b x +=,则原式22221(1)(1)x x x a b =++=+=++.这样的解题方法叫做“换元法”,即当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式.换元法是一个重要的数学方法,不少问题能用换元法解决.(1)运用上述方法分解因式:①268x x ++=___________,②26x x --=___________;(2)请用“换元法”进行因式分解:()()2242464x x x x -+-++.4.下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程.解:设24x x y -=,原式(2)(6)4y y =+++2816y y =++2(4)y =+()2244x x =-+ 回答下列问题:(1)该同学因式分解的结果是否彻底?_____________(填“彻底”或“不彻底”),若不彻底,请写出因式分解的最后结果__________________________;(2)以上方法叫做“换元法”.请你模仿以上方法对()()222221x x x x --++进行因式分解.5.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.回答下列问题:(1)该同学第二步到第三步运用了因式分解的 ;(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果 .(3)以上方法叫做“换元法”,请你模仿以上方法对(x 2-2x )(x 2-2x +2)+1进行因式分解.6.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++- ()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数. 7.阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式()()2242464x x x x -+-++进行因式分解的过程. 解:设24x x y -=,原式()()264(y y =+++第一步)2816(y y =++第二步)2(4)(y =+第三步)22(44)(x x =-+第四步)(1)小影同学第二步到第三步运用了因式分解的______(填写选项).A .提取公因式B .平方差公式C .两数和的平方公式D .两数差的平方公式(2)小影同学因式分解的结果是否彻底?______.(填彻底或不彻底);若不彻底,请你帮她直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式()()222221x x x x ++++进行因式分解.8.阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式(a 2﹣2a ﹣1)(a 2﹣2a +3)+4进行因式分解的过程. 解:设a 2﹣2a =A ,原式=(A ﹣1)(A +3)+4(第一步)=A 2+2A +1(第二步)=(A +1)2(第三步)=(a 2﹣2a +1)2(第四步)=(a ﹣1)4回答下列问题:(1)该同学第二步到第三步运用了因式分解的______(填代号).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)请你模仿以上方法,分解因式:(x 2﹣4x ﹣3)(x 2﹣4x +11)+49.9.下面是小明同学对多项式()()2252564x x x x -+-++进行因式分解的过程:解:设25x x y -=,则(第一步)原式(2)(6)4y y =+++(第二步)22816(4)y y y =++=+(第三步)把25x x y -=代入上式,得原式()2254x x =-+(第四步) 我们把这种因式分解的方法称为“换元法”,请据此回答下列问题:(1)该同学因式分解的结果 (填“彻底”或“不彻底”),若不彻底,请你直接写出因式分解的最后结果: ;(2)请你仿照上面的方法,对多项式()()223344a a a a --++进行因式分解.10.阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式()()2221234a a a a ---++进行因式分解的过程.解:设22a a A -=原式()()134A A =-++(第一步)221A A =++(第二步)()21A =+(第三步)()2221a a =-+(第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______(填代号).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)按照“因式分解,必须进行到每一个多项式因式都不能再分解为止”的要求,该多项式分解因式的最后结果为_______.(3)请你模仿以上方法对多项式()()224341149x x x x ---++进行因式分解.(4)知识延伸:解一元高次方程的常用方法是因式分解法,即若“0AB =,则0A =或0B =”.解方程()()2228120x x x x +-++=. 11.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2+3x ﹣9)(x 2+3x+1)+25 进行因式分解的过程.解:设x 2+3x =y原式=(y ﹣9)(y+1)+25(第一步)=y 2﹣8y+16(第二步)=(y ﹣4)2(第三步)=(x 2+3x ﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的();A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式(9x 2- 6x+3)(9x 2- 6x -1)+ 4进行因式分解.专题30 换元法因式分解【例题讲解】阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式()()22414212x x x x -+-+-.解:设24x x y -=,()()1212y y =++-2310y y =+-()()52y y =+-()()224542x x x x =-+--(1)请你用换元法对多项式()()2232358x x x x -+---进行因式分解; (2)凭你的数感,大胆尝试解方程:()()2221230x x x x -+--=. 【解答】(1)解:设23x x y -=,()()()()()()222258318633633y y y y y y x x x x =+--=--=-+=---+(2)解:设22t x x =-.则()()130t t +-=.解得1t =-或3t =.当1t =-时,221x x -=-,即()210x -=.解得121x x ==.当3t =时,223x x -=,即()()310x x -+=.解得33x =,41x =-.综上所述,原方程的解为121x x ==,33x =,41x =-. 【综合解答】1.阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式22()()21234a a a a ---++进行因式分解的过程.解:设22a a A -=原式(1)(3)4A A =-++(第一步)221A A =++(第二步)2(1)A =+(第三步)22(21)a a =-+(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的__________(填代号).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)按照“因式分解,必须进行到每一个多项式因式都不能再分解为止”的要求,该多项式分解因式的最后结果为______________.(3)请你模仿以上方法对多项式22(43)(411)49x x x x ---++进行因式分解.【答案】(1)C ;(2)4(1)a -;(3)4(2)x -【分析】(1)从解题步骤可以看出该同学第二步到第三步运用了两数和的完全平方公式;(2)对第四步的结果括号里的部分用完全平方公式分解,再用幂的乘方计算即可;(3)模仿例题设24x x A -=,对其进行换元后去括号,整理成多项式,再进行分解,分解后将A 换回24x x -,再分解彻底即可.【解答】(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式,故选:C ;(2)原式=22224(21)(1)(1)a a a a ⎡⎤-+⎣==--⎦ 故答案为:4(1)a -;(3)设24x x A -=.22(43)(411)49x x x x ---++(3)(11)49A A =-++2816A A =++2(4)A =+2244x x -+=()4(2)x =-.【点评】本题考查的是因式分解,解题关键是要能理解例题的分解方法并能进行模仿,要注意分解要彻底.2.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”下面是小涵同学用换元法对多项式22(41)(47)7x x x x 进行因式分解的过程解:设24x x y -=①,将①带入原式后,原式(1)(7)7y y (第一步)28y y =+(第二步)(8)y y (第三步)22(4)(48)x x x x (第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的______方法;(2)老师说,小涵因式分解的结果不彻底,请你通过计算得出该因式分解的最后结果;(3)请你用“换元法”对多项式2222()(2)(1)(1)1x x x x x x x x 进行因式分解【答案】(1)提取公因式(2)2(4)(48)x x x x(3)22(1)(1)x x x x【分析】(1)根据因式分解的方法判断即可;(2)因式分解必须进行到每一个多项式因式都不能再分解为止,将因式24x x -分解成(4)x x -即可;(3)用换元法设2x x t +=,代入多项式,然后仿照题干的换元法解答即可.【解答】(1)解:由题意得:从28y y 到(8)y y 运用了因式分解中的提取公因式法故答案为:提取公因式(2)解:由题意得:()()22448x x x x --+ 2(4)(48)x x x x(3)解:设2x x t +=,将2x x t +=代入2222()(2)(1)(1)1x x x x x x x x 中得:(2)(1)(1)1t t t t原式22211t t t222t t2(1)t t222()(1)x x x x22(1)(1)x x x x【点评】本题考查了因式分解的方法和运用,解题关键是灵活运用换元法对较为复杂的多项式进行因式分解,达到去繁化简的效果.3.阅读并解决问题:材料1:在因式分解中,有一类形如2()x m n x mn +++的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成2()()()x m n x mn x m x n +++=++. 例如:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.材料2:分解因式:2()2()1a b a b ++++.解:设a b x +=,则原式22221(1)(1)x x x a b =++=+=++.这样的解题方法叫做“换元法”,即当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式.换元法是一个重要的数学方法,不少问题能用换元法解决.(1)运用上述方法分解因式:①268x x ++=___________,②26x x --=___________;(2)请用“换元法”进行因式分解:()()2242464x x x x -+-++.【答案】(1)①(2)(4)x x ++,②(2)(3)x x +-.(2)4(2)x -【分析】(1)由题意直接进行因式分解即可;(2)设242x x y -+=,把原多项式换元后因式分解,再代入还元;【解答】(1)①268x x ++=(2)(4)x x ++,②26x x --=(2)(3)x x +-;故答案为:①(2)(4)x x ++,②(2)(3)x x +-.(2)设242x x y -+=,则原式(4)4y y =++244y y =++2(2)y =+()22422x x =-++ 22(2)x ⎡⎤=-⎣⎦ 4(2)x =-.【点评】本题考查了因式分解的完全平方公式和换元法.看懂和理解题例是解决本题的关键.4.下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程.解:设24x x y -=,原式(2)(6)4y y =+++2816y y =++2(4)y =+()2244x x =-+ 回答下列问题:(1)该同学因式分解的结果是否彻底?_____________(填“彻底”或“不彻底”),若不彻底,请写出因式分解的最后结果__________________________;(2)以上方法叫做“换元法”.请你模仿以上方法对()()222221x x x x --++进行因式分解.【答案】(1)不彻底,()42x -(2)()41x -【分析】(1)根据完全平方公式可知244x x -+可继续分解,从而可得答案;(2)设22x x y -=,整理后再根据完全平方公式把原式进行分解即可.【解答】(1)∵()()242442x x x -+=-, ∴该同学因式分解的结果不彻底,故答案为:不彻底,()42x -;(2)设22x x y -=, ()()222221x x x x --++21y y =++()221y y =++()2221=-+x x4=-,x(1)x-.故答案为:()41【点评】本题考查的是因式分解,在解答此类题目时要注意完全平方公式的应用和换元法的应用.5.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.回答下列问题:(1)该同学第二步到第三步运用了因式分解的;(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果.(3)以上方法叫做“换元法”,请你模仿以上方法对(x2-2x)(x2-2x+2)+1进行因式分解.【答案】(1)完全平方公式(或完全平方公式法或公式法)(2)不彻底;(x-2)4(3)(x﹣1)4【分析】(1)根据分解时所用公式判断;(2)用完全平方差公式继续分解;(3)先换元,再用公式分解.(1)解:该同学第二步到第三步运用了因式分解的完全平方公式(或完全平方公式法或公式法).故答案为:完全平方公式(或完全平方公式法或公式法).(2)∵x2-4x+4=(x-2)2 ,∴该同学因式分解的结果不彻底,最后结果为(x-2)4 .故答案为:不彻底;(x-2)4 .(3)解:设x2-2x=y,则(x2-2x)(x2-2x+2)+1=y(y+2)+1=y2+2y+1=(y+1)2=( x2-2x+1)2【点评】本题考查因式分解,整体代换后用公式是求解本题的关键.6.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++- ()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数. 【答案】(1)(1)()42x -(2)()()2211x y --(3)见解析【分析】(1)仿照题意方法一、二求解即可;(2)仿照题意方法二求解即可;(3)先把多项式化成()()2227656x x x x x +++++,然后仿照题意方法二得到原式()2266x x =++,由此即可得答案.【解答】(1)解:解法一:设24x x y -=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =-+ ()42x =-;方法二:设214x m x n +=-=,,则原式()()=69m n m n ++++ ()()269m n m n =++++()23m n =++()22143x x =+-+ ()2244x x =-+ ()42x =-;(2)解:设x y m xy n +==,,则原式()()()2221m n m n =--+- 2222421m mn m n n n =--++-+()22221m mn m n =--+-()()22211m m n n =-+++ ()21m n =-- ()21x y xy =+-- ()()2211x y =--;(3)解:()()()()21236x x x x x +++++ ()()2227656x x x x x =+++++,设26x m x n +==,,则原式()()2=75m n m n n +++ 221236m mn n =++()26m n =+ ()2266x x =++,∵()22660x x ++≥,∴()()()()212360x x x x x ++++≥+, ∴多项式()()()()21236x x x x x +++++的值一定是非负数. 【点评】本题主要考查了因式分解,正确理解题意是解题的关键.7.阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式()()2242464x x x x -+-++进行因式分解的过程. 解:设24x x y -=,原式()()264(y y =+++第一步)2816(y y =++第二步)2(4)(y =+第三步)22(44)(x x =-+第四步)(1)小影同学第二步到第三步运用了因式分解的______(填写选项).A .提取公因式B .平方差公式C .两数和的平方公式D .两数差的平方公式(2)小影同学因式分解的结果是否彻底?______.(填彻底或不彻底);若不彻底,请你帮她直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式()()222221x x x x ++++进行因式分解. 【答案】(1)C ;(2)不彻底,4(2)x -;(3)4(1)x +.【分析】(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;(3)根据材料,用换元法进行分解因式即可.【解答】解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,故选:C ;(2)小影同学因式分解的结果不彻底,原式2244x x -+=()22[(2)]x =-4(2)x =-,故答案为:不彻底,4(2)x -;(3)设22x x y +=,原式()21y y =++,221y y =++,21)y +=(,222(1)x x +=+,4(1)x =+.【点评】本题考查了因式分解-换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.8.阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式(a 2﹣2a ﹣1)(a 2﹣2a +3)+4进行因式分解的过程. 解:设a 2﹣2a =A ,原式=(A ﹣1)(A +3)+4(第一步)=A 2+2A +1(第二步)=(A +1)2(第三步)=(a 2﹣2a +1)2(第四步)=(a ﹣1)4回答下列问题:(1)该同学第二步到第三步运用了因式分解的______(填代号).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)请你模仿以上方法,分解因式:(x 2﹣4x ﹣3)(x 2﹣4x +11)+49. 【答案】(1)C ;(2)(x -2)4【分析】(1)完全平方公式是两数的平方和与这两个数积的两倍的和或差;(2)按照例题的分解方法进行分解即可.【解答】解:(1)运用了C ,两数和的完全平方公式;(2)设x 2-4x =A .(x 2-4x -3)(x 2-4x +11)+49=(A -3)(A +11)+49=A 2+8A +16=(A +4)2=(x 2-4x +4)2=(x -2)4.【点评】本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.9.下面是小明同学对多项式()()2252564x x x x -+-++进行因式分解的过程:解:设25x x y -=,则(第一步)原式(2)(6)4y y =+++(第二步)22816(4)y y y =++=+(第三步)把25x x y -=代入上式,得原式()2254x x =-+(第四步) 我们把这种因式分解的方法称为“换元法”,请据此回答下列问题:(1)该同学因式分解的结果 (填“彻底”或“不彻底”),若不彻底,请你直接写出因式分解的最后结果: ;(2)请你仿照上面的方法,对多项式()()223344a a a a --++进行因式分解.【答案】(1)不彻底,()()2214x x --;(2)()()2212a a --【分析】(1)根据因式分解的步骤进行解答即可;(2)设23a a x -=,再根据不同的方法把原式进行分解即可.【解答】解:(1)该同学因式分解的结果不彻底,原式()2254x x =-+ =()()2214x x --;(2)设23a a x -=,则()()223344a a a a --++ =()44x x ++=244x x ++=()22x +=()2232a a -+ =()()2212a a --【点评】本题考查的是因式分解,在解答此类题目时要注意完全平方公式和十字相乘法的应用. 10.阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式()()2221234a a a a ---++进行因式分解的过程. 解:设22a a A -=原式()()134A A =-++(第一步)221A A =++(第二步)()21A =+(第三步)()2221a a =-+(第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______(填代号).A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)按照“因式分解,必须进行到每一个多项式因式都不能再分解为止”的要求,该多项式分解因式的最后结果为_______.(3)请你模仿以上方法对多项式()()224341149x x x x ---++进行因式分解.(4)知识延伸:解一元高次方程的常用方法是因式分解法,即若“0AB =,则0A =或0B =”.解方程()()2228120x x x x +-++=. 【答案】(1)C ;(2)()41a -;(3)()42x -;(4)2x =-或1x =或3x =-或 2.x =【分析】(1)由()22211A A A ++=+,运用的是两数和的完全平方公式,从而可得答案; (2)由()22211,a a a -+=- 从而可得最后的答案;(3)设设24,x x m -= 可得()()224341149x x x x ---++()()31149m m =-++ 2816m m =++,再利用完全平方公式分解,再把24x x m -=代入可得答案;(4)由()()2228120x x x x +-++=可得:()()()()21320,x x x x +-+-=利用0AB =,则0A =或0B =,从而可得答案.【解答】解:(1)由()22211A A A ++=+,运用的是两数和的完全平方公式,故答案为:.C(2)()()()22242=211,1a a a a ⎡⎤=-⎣⎦--+ 故答案为:()41.a -(3)设24,x x m -= ∴ ()()224341149x x x x ---++()()31149m m =-++2816m m =++()24m =+()2244x x =-+ ()()22422.x x ⎡⎤=-=-⎣⎦ (4) ()()2228120x x x x +-++=, ()()22260,x x x x ∴+-+-=()()()()21320,x x x x ∴+-+-=+20x ∴=或10x -=或30x +=或20x -=,2x ∴=-或1x =或3x =-或 2.x =【点评】本题考查的是换元法分解因式,因式分解法解高次方程,掌握换元法分解因式及利用因式分解法解高次方程是解题的关键.11.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2+3x ﹣9)(x 2+3x+1)+25 进行因式分解的过程. 解:设x 2+3x =y原式=(y ﹣9)(y+1)+25(第一步)=y 2﹣8y+16(第二步)=(y ﹣4)2(第三步)=(x 2+3x ﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的();A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2- 6x+3)(9x2- 6x -1)+ 4进行因式分解.【答案】(1)C;(2)(x-1)2(x+4)2;(3)(3x-1)4.【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【解答】解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x-1)2(x+4)2;故答案为:(x-1)2(x+4)2;(3)(9x2- 6x+3)(9x2- 6x -1)+ 4设9x2- 6x =y,原式=(y+3)(y-1)+4,=y2+2y+1,=(y+1)2,=(9x2- 6x +1)2,=(3x-1)4.【点评】本题考查了因式分解-换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.。

换元法 习题训练

换元法 习题训练

换元法习题训练Ⅰ、再现性题组:1.y=sinx·cosx+sinx+cosx的最大值是_________。

2.设f(x2+1)=loga(4-x4) (a>1),则f(x)的值域是_______________。

3.已知数列{an }中,a1=-1,an+1·an=an+1-an,则数列通项an=___________。

4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。

5.方程1313++-xx=3的解是_______________。

6.不等式log2(2x-1) ·log2(2x+1-2)〈2的解集是_______________。

Ⅱ、示范性题组:例1. 实数x、y满足4x2-5xy+4y2=5 (①式),设S=x2+y2,求1Sm ax+1Sm in的值。

例2.△ABC的三个内角A、B、C满足:A+C=2B,1cos A+1cos C=-2cos B,求cosA C-2的值。

(96年全国理)例3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a2的最大值和最小值。

例4. 设对所于有实数x,不等式x2log241()aa++2x log221aa++log2()aa+1422>0恒成立,求a的取值范围。

(87年全国理)例5. 已知sinθx=cosθy,且cos22θx+sin22θy=10322()x y+(②式),求xy的值。

例6. 实数x、y满足()x-192+()y+1162=1,若x+y-k>0恒成立,求k的范围。

Ⅲ、巩固性题组:1.已知f(x3)=lgx (x>0),则f(4)的值为_____。

A. 2lg2B. 13lg2 C. 23lg2 D. 23lg42.函数y=(x+1)4+2的单调增区间是______。

A. [-2,+∞)B. [-1,+∞) D. (-∞,+∞)C. (-∞,-1]3.设等差数列{an }的公差d=12,且S100=145,则a1+a3+a5+……+a99的值为_____。

中考数学复习换元法解一元二次方程专项练习35题

中考数学复习换元法解一元二次方程专项练习35题

换元法解一元二次方程(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(3)已知:(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.(5)(x2﹣2x)2+(x2﹣2x)﹣2=0 (6)2(﹣x)2﹣(x ﹣)﹣1=0.(7)(x﹣1)2+5(1﹣x)﹣6=0 (8)(x+3)2﹣5(x+3)﹣6=0.(9)2(x﹣1)2+5(x﹣l)+2=0.(10)(x+2)2﹣3(x+2)+2=0.(11)(2x﹣3)2﹣5(2x﹣3)=﹣6 (12)(2x﹣x2)2﹣2(x2﹣2x)+1=0.(13)(x2﹣1)2﹣5(x2﹣1)+4=0.(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0 (15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2020的值.(16)(x2﹣x)2﹣5(x2﹣x)+6=0,(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.(18)(2x+1)2﹣6(2x+1)+5=0(19)(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2.(20)已知(x2+y2)2﹣3(x2+y2)﹣40=0,求x2+y2.(21)(x2+x)(x2+x﹣3)﹣3(x2+x)+8=0.(22)(x+2)2+6(x+2)﹣91=O;(23)(3x﹣2)2+(2﹣3x)=20.(24)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0.(25)(x2﹣2)2﹣7(x2﹣2)=0.(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.(28)(x2﹣1)2﹣5(x2﹣1)+4=0,(29)(x2﹣x)2﹣8(x2﹣x)+12=0.(30)(x2+x)2﹣8(x2+x)+12=0. (31)(x2﹣1)2﹣5(x2﹣1)+4=0, (32)(x2﹣2x)2﹣2(x2﹣2x)﹣3=0(33)(x2﹣1)2﹣5(x2﹣1)+4=0,(34)x(x+3)(x2+3x+2)=24.(35)已知:(x2+y2)2﹣(x2+y2)﹣12=0,求x2+y2的值.换元法解一元二次方程35题参考答案:(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.解:设2x2﹣3x=y,原方程转化为:y2+5y+4=0(1分),解得:y1=﹣4,y2=﹣1(3分)当y1=﹣4时,2x2﹣3x+4=0,无实数根.(4分)当y2=﹣1时,2x2﹣3x+1=0,解得x1=,x2=1.故原方程根为x1=,x2=1(3)(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”,解:设x2+2x=y,则原方程可变为:(y﹣1)(y+2)=4整理得y2+y﹣2=4即:y2+y﹣6=0解得y1=﹣3,y2=2∴x2+2x的值为﹣3或2(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.解:设x2+y2=m,则原方程可变为:(m﹣3)(2m﹣4)=24∴2(m﹣3)(m﹣2)=24.∴m2﹣5m+6=12.∴m2﹣5m﹣6=0解得m1=6,m2=﹣1∵x2+y2≥0∴x2+y2的值为6(5)(x2﹣2x)2+(x2﹣2x)﹣2=0解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣(6)2(﹣x)2﹣(x ﹣)﹣1=0.解:2(﹣x)2﹣(x ﹣)﹣1=0,变形得:2(x ﹣)2﹣(x ﹣)﹣1=0,设y=x ﹣,则原方程可化为2y2﹣y﹣1=0,…(2分)因式分解得:(2y+1)(y﹣1)=0,解得:y=﹣或y=1,…(5分)当y=﹣时,x ﹣=﹣,解得:x=0;当y=1时,x ﹣=1,解得:x=,∴x1=,x2=0(7)(x﹣1)2+5(1﹣x)﹣6=0解:设x﹣1=y,则原方程可化为:y2﹣5y﹣6=0,∴y1=﹣1,y2=6,∴x﹣1=﹣1,x﹣1=6∴x1=0,x2=7(8)(x+3)2﹣5(x+3)﹣6=0.解:设y=x+3,则原方程可化为y2﹣5y﹣6=0.解得:y1=6,y2=﹣1.当y1=6时,x+3=6,x1=3;当y2=﹣1时,x+3=﹣1,x2=﹣4.∴x1=3,x2=﹣4(8)2(x﹣1)2+5(x﹣l)+2=0.解:设x﹣l=y,则由原方程,得2y2+5y+2=0,即(y+2)(2y+1)=0,∴y+2=0,或2y+1=0,解得,y=﹣2,或y=﹣;①当y=﹣2时,x﹣1=﹣2,解得,x=﹣1;②当y=﹣时,x﹣1=﹣,解得,x=;综上所述,原方程的解是x1=﹣1,x2=(9)(x+2)2﹣3(x+2)+2=0.解:令x+2=t,原方程可化为t2﹣3t+2=0,(t﹣1)(t﹣2)=0,解得t1=1,t2=2,∴x+2=1或x+2=2,∴x1=﹣1,x2=0(10)(2x﹣3)2﹣5(2x﹣3)=﹣6解:(1)∵3x2﹣5x﹣2=0∴(3x+1)(x﹣2)=0即3x+1=0或x﹣2=0解得x1=2;x2=.(11)设t=2x﹣3,则原方程可化为:t2﹣5t+6=0 ∴(t﹣2)(t﹣3)=0∴t=2或3,即2x﹣3=2或3解得x1=;x2=3(12)根据题意,令y=x2﹣2x,原方程可化为:y2﹣2y+1=0,解得y=1,即x2﹣2x=1,可用公式法求解,其中a=1,b=﹣2,c=﹣1,∴△=8>0,∴方程的解为x==,即x1=1﹣,x2=1+(13)(x2﹣1)2﹣5(x2﹣1)+4=0.解:设x2﹣1=t.则由原方程,得t2﹣5t+4=0,即(t﹣1)(t﹣4)=0,解得,t=1或t=4;①当t=1时,x2﹣1=1,∴x2=2,∴x=±;②当t=4时,x2﹣1=4,∴x2=5,∴x=±.综合①②,原方程的解是:x1=,x2=﹣,x3=,x4=﹣(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0解:设x2﹣x=y,所以原方程变化为:y2﹣2y﹣3=0,解得y=﹣1或3,当y=﹣1时,x2﹣x=﹣1,无解;当y=3时,x2﹣x=3,解得,x1=,x2=,∴原方程的解为x1=,x2=(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2020的值.解:根据题意,设a+2b=x,代入原方程得:x2﹣2x+1=0,即(x﹣1)2=0∴x=1,即a+2b=1,所以(a+2b)2020=1(16)(x2﹣x)2﹣5(x2﹣x)+6=0解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=0,解得y=2或3,当y=2时,x2﹣x=2,解得:x1=2,x2=﹣1;当y=3时,x2﹣x=3,解得,x3=,x4=,∴原方程的解为x1=2,x2=﹣1,x3=,x4=.(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.解:设a2+b2=y据题意得y2﹣y﹣6=0解得y1=3,y2=﹣2∵a2+b2≥0∴a2+b2=3(18)(2x+1)2﹣6(2x+1)+5=0解:设2x+1=a,原方程可化为a2﹣6a+5=0,解得a=1或5,当a=1时,即2x+1=1,解得x=0;当a=5时,即2x+1=5,解得x=2;∴原方程的解为x1=0,x2=2(19).解:设u=x2+3x﹣4,v=2x2﹣7x+6,则u+v=3x2﹣4x+2.则原方程变为u2+v2=(u+v)2,即u2+v2=u2+2uv+v2,∴uv=0,∴u=0或v=0,即x2+3x﹣4=0或2x2﹣7x+6=0.解得(20)解:设x2+y2=t(t≥0),则t2﹣3t﹣40=0,所以(t﹣8)(t+5)=0,解得,t=8或t=﹣5(不合题意,舍去),故x2+y2=8(21)解:设x2+x=y,原方程可变形为:y(y﹣3)﹣3y+8=0,y2﹣6y+8=0,(y﹣4)(y﹣2)=0,解得:y1=4,y2=2,当y1=4时,x2+x=4,解得:x1=,x2=.当y2=2时,x2+x=2,解得:x3=1,x4=﹣2(22)(x+2)2+6(x+2)﹣91=O;设x+2=y,则原方程可变形为:y2+6y﹣91=0,解得:y1=7,y2=﹣13,当y1=7时,x+2=7,x1=5,当y2=﹣13时,x+2=﹣13,x2=﹣15;(23)设3x﹣2=t,则t2﹣t﹣20=0,∴(t+4)(t﹣5)=0,∴t+4=0或t﹣5=0,解得 t=﹣4或t=5.当t=﹣4时,3x﹣2=﹣4,解得 x=﹣;当t=5时,3x﹣2=5,解得 x=,综上所述,原方程的解为:x=﹣或 x=.(24)解:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0,分解因式得:(x2﹣3x﹣4)(x2﹣3x+2)=0,即(x﹣4)(x+1)(x﹣1)(x﹣2)=0,可得x﹣4=0或x+1=0或x﹣1=0或x﹣2=0,解得:x1=4,x2=﹣1,x3=1,x4=2(25)解:根据题意,把y=x2﹣2代入方程(x2﹣2)2﹣7(x2﹣2)=0得:y2﹣7y=0,解得y1=0,y2=7,当y1=0时,即x2﹣2=0,解得:x1=﹣,x2=,当y2=7时,即x2﹣2=7,解得:x3=﹣3,x4=3,∴原方程的解为:x1=﹣,x2=,x3=﹣3,x4=3(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.解:设x2+y2=t,则原方程变形为t(t+2)﹣8=0,整理得t2+2t﹣8=0,∴(t+4)(t﹣2)=0,∴t1=﹣4,t2=2,当t=﹣4时,则x2+y2=﹣4,无意义舍去,当t=2时,则x2+y2=2.所以x2+y2的值为2(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,∴(x2+y2)2﹣(x2+y2)﹣12=0,即(x2+y2+3)(x2+y2﹣4)=0,∴x2+y2=﹣3,或x2+y2=4,∵x2+y2≥0,∴x2+y2=4 (28)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,设x2﹣1=y原方程可化为y2﹣5y+4=0,解此方程得y1=1,y2=4.当y=1时,x2﹣1=1,∴x=±;当y=4时,x2﹣1=4,∴x=±,∴原方程的解为x1=,x2=﹣,x3=,x4=﹣.(29)解方程:(x2﹣x)2﹣8(x2﹣x)+12=0.设x2﹣x=A,由题意,得A2﹣8A+12=0,解得:A1=6,A2=2.当A=6时,x2﹣x=6,解得:x1=3,x2=﹣2;当A=2时,x2﹣x=2,解得:x3=2,x4=﹣1.∴原方程的解为:x1=6,x2=﹣2,x3=2,x4=﹣1 (30)解方程:(x2+x)2﹣8(x2+x)+12=0.解:设y=x2+x,方程化为y2﹣8y+12=0,即(y﹣2)(y﹣6)=0,解得y=2或y=6,即x2+x=2或x2+x=6,分解因式得:(x+2)(x﹣1)=0或(x﹣2)(x+3)=0,解得:x1=﹣2,x2=1,x3=2,x4=﹣3(31)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解;设x2﹣1=y,即(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,又化为(y﹣1)(y﹣4)=0解得y1=1,y2=4.当y=1即x2﹣1=1时,x2=2,x=±;x1=,x2=﹣当y=4即x2﹣1=4时,x2=5,x=±;x3=,x4=﹣(32)解方程(x2﹣2x)2﹣2(x2﹣2x)﹣3=0解:设x2﹣2x=y,即(x2﹣2x)2=y2,原方程可化为y2﹣2y﹣3=0,解得y1=3,y2=﹣1,当y1=3时,x2﹣2x=3,解得x1=3,x2=﹣1;当y2=﹣1时,x2﹣2x=﹣1,解得x3=x4=1;∴原方程的解为x1=3,x2=﹣1;x3=x4=1(33)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解:设x2﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y1=1时,x2﹣1=1,∴;当y2=4时,x2﹣1=4,∴.因此原方程的解为:.(34)设x2+3x=y.∵x(x+3)(x2+3x+2)=24,∴(x2+3x)(x2+3x+2)=24,∴y(y+2)=24,即(y﹣4)(y+6)=0,解得,y=4或y=﹣6;①当y=4时,x2+3x=4,即(x﹣1)(x+4)=0,解得,x1=﹣4,x2=1;②当y=﹣6时,x2+3x=﹣6,即x2+3x+6=0,∵△=9﹣24=﹣15<0,∴该方程无解;综上所述,原方程的根是:x1=﹣4,x2=1 (35)解:(x2+y2)2﹣(x2+y2)﹣12=0,设x2+y2=a,则有a2﹣a﹣12=0,因式分解得:(a﹣4)(a+3)=0,解得:a1=4,a2=﹣3,∵x2+y2>0,即a>0,∴a=﹣3不合题意,舍去,则x2+y2=a=4中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°【答案】A【解析】根据∠ABD=35°就可以求出AD的度数,再根据180BD︒=,可以求出AB,因此就可以求得ABC∠的度数,从而求得∠DBC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC ==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.2.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( ) A.6 B.8 C.10 D.12 【答案】D【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.3.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A .B .C .D .【答案】D 【解析】A 选项:∠1+∠2=360°-90°×2=180°; B 选项:∵∠2+∠3=90°,∠3+∠4=90°, ∴∠2=∠4, ∵∠1+∠4=180°, ∴∠1+∠2=180°; C 选项:∵∠ABC=∠DEC=90°,∴AB ∥DE ,∴∠2=∠EFC , ∵∠1+∠EFC=180°,∴∠1+∠2=180°; D 选项:∠1和∠2不一定互补. 故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.4.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80【答案】C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8, ∴22226810AE BE +=+=∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24=76. 故选C.考点:勾股定理.5.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( ) A .10000x ﹣90005x -=100B .90005x -﹣10000x=100 C .100005x -﹣9000x=100D .9000x ﹣100005x -=100 【答案】B【解析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 ﹣10000x=100,故选B .【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【答案】B【解析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.7.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.【答案】D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A ,B ,C 中铁片顺序为1,1,5,6,选项D 中铁片顺序为1,5,6,1. 故选D . 【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键. 8.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数ky x= (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12【答案】C【解析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k. 【详解】∵四边形OCBA 是矩形, ∴AB=OC ,OA=BC , 设B 点的坐标为(a ,b ), ∵BD=3AD , ∴D (4a,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k ,∴E (a , ka),∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab-12•4ab -12•34a •(b-k a )=9, ∴k=245,故选:C 【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.9.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A .5个B .4个C .3个 D .2个【答案】B【解析】解:∵二次函数y=ax 3+bx+c (a≠3)过点(3,3)和(﹣3,3), ∴c=3,a ﹣b+c=3.①∵抛物线的对称轴在y 轴右侧, ∴bx 2a=-,x >3. ∴a 与b 异号. ∴ab <3,正确.②∵抛物线与x 轴有两个不同的交点, ∴b 3﹣4ac >3. ∵c=3,∴b 3﹣4a >3,即b 3>4a .正确. ④∵抛物线开口向下,∴a <3. ∵ab <3,∴b >3.∵a ﹣b+c=3,c=3,∴a=b ﹣3.∴b ﹣3<3,即b <3.∴3<b <3,正确. ③∵a ﹣b+c=3,∴a+c=b . ∴a+b+c=3b >3. ∵b <3,c=3,a <3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3. ∴3<a+b+c <3,正确.⑤抛物线y=ax 3+bx+c 与x 轴的一个交点为(﹣3,3),设另一个交点为(x 3,3),则x 3>3, 由图可知,当﹣3<x <x 3时,y >3;当x >x 3时,y <3.∴当x >﹣3时,y >3的结论错误.综上所述,正确的结论有①②③④.故选B . 10.如图,数轴上有M 、N 、P 、Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( )A .MB .NC .PD .Q 【答案】A【解析】解:∵点P 所表示的数为a ,点P 在数轴的右边,∴-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍,∴数-3a 所对应的点可能是M ,故选A .点睛:本题考查了数轴,解决本题的关键是判断-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍.二、填空题(本题包括8个小题) 11.计算(32)3_____ 2【解析】根据二次根式的运算法则进行计算即可求出答案.【详解】( 323=3232 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.12.关于x 的一元二次方程24410x ax a +++=有两个相等的实数根,则581a aa --的值等于_____.【答案】3-【解析】分析:先根据根的判别式得到a-1=1a,把原式变形为23357a a a a +++--,然后代入即可得出结果.详解:由题意得:△=2(4)44(1)0a a -⨯+= ,∴210a a --= ,∴221,1a a a a =+-=,即a(a-1)=1, ∴a-1=1a, 5562232888()811a a a a a a a a a a--∴==-=-- 33232(1)8(1)3318835a a a a a a a a a=+-+=+++--=+-(1)3(1)57a a a a =+++-- 24a a =--143=-=-故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac :当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.13.若-2a m b 4与5a 2b n+7是同类项,则m+n= . 【答案】-1.【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.试题解析:由-2a m b4与5a2b n+7是同类项,得,解得.∴m+n=-1.考点:同类项.14.如图,正方形ABCD的边长为422+,点E 在对角线BD 上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.【答案】2【解析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【详解】设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴BD=2AB=42+4,EF=BF=x,∴BE=2x,∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴BD=BE+ED=2x+4+22=42+4,解得:x=2,即EF=2.15.因式分解:a2b+2ab+b=.【答案】b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b+2ab+b=b (a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b2 16.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.【答案】36°【解析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.17.如图,点,,D E F分别在正三角形ABC的三边上,且DEF∆也是正三角形.若ABC∆的边长为a,DEF∆的边长为b,则AEF∆的内切圆半径为__________.【答案】3()6a b-【解析】根据△ABC 、△EFD 都是等边三角形,可证得△AEF ≌△BDE ≌△CDF ,即可求得AE+AF=AE+BE=a ,然后根据切线长定理得到AH=12(AE+AF-EF )=12(a-b );,再根据直角三角形的性质即可求出△AEF 的内切圆半径.【详解】解:如图1,⊙I 是△ABC 的内切圆,由切线长定理可得:AD=AE ,BD=BF ,CE=CF ,∴AD=AE=12[(AB+AC )-(BD+CE )]=12 [(AB+AC )-(BF+CF )]=12(AB+AC-BC ),如图2,∵△ABC ,△DEF 都为正三角形, ∴AB=BC=CA ,EF=FD=DE ,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°, ∴∠1+∠2=∠2+∠3=120°,∠1=∠3; 在△AEF 和△CFD 中,13BAC CEF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CFD (AAS );同理可证:△AEF ≌△CFD ≌△BDE ; ∴BE=AF ,即AE+AF=AE+BE=a .设M 是△AEF 的内心,过点M 作MH ⊥AE 于H , 则根据图1的结论得:AH=12(AE+AF-EF )=12(a-b );∵MA 平分∠BAC , ∴∠HAM=30°;∴HM=AH•tan30°=12(a-b )3)3a b -)3a b -. 【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH 的长是解题关键.18.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是__________.【答案】13m <且0m ≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m >1且m≠1,求出m 的取值范围即可.详解:∵一元二次方程mx 2-2x+3=1有两个不相等的实数根, ∴△>1且m≠1, ∴4-12m >1且m≠1,∴m <13且m≠1, 故答案为:m <13且m≠1.点睛:本题考查了一元二次方程ax 2+bx+c=1(a≠1,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义. 三、解答题(本题包括8个小题)19.如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF ,使得ABEFABC SS ∆=.【答案】(1)见解析;(2)见解析.【解析】(1)利用矩形的性质得出AB 的中点,进而得出答案.(2)利用矩形的性质得出AC 、BC 的中点,连接并延长,使延长线段与连接这两个中点的线段相等. 【详解】(1)如图所示:CD 即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.20.如图,以△ABC 的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .求证:DE 是⊙O 的切线;设△CDE 的面积为 S 1,四边形ABED 的面积为 S 1.若 S 1=5S 1,求tan ∠BAC 的值;在(1)的条件下,若AE =32,求⊙O 的半径长. 【答案】(1)见解析;(1)tan ∠BAC =22;(3)⊙O 的半径=1.【解析】(1)连接DO ,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E 为BC 的中点可以得出DE=BE ,就有∠EDB=∠EBD ,OD=OB 可以得出∠ODB=∠OBD ,由等式的性质就可以得出∠ODE=90°就可以得出结论.(1)由S 1=5 S 1可得△ADB 的面积是△CDE 面积的4倍,可求得AD :CD=1:1,可得AD :BD 2:2=.则tan ∠BAC 的值可求;(3)由(1)的关系即可知DB BCAD AB=,在Rt △AEB 中,由勾股定理即可求AB 的长,从而求⊙O 的半径.【详解】解:(1)连接OD ,∴OD =OB∴∠ODB =∠OBD . ∵AB 是直径, ∴∠ADB =90°, ∴∠CDB =90°. ∵E 为BC 的中点,∴DE =BE , ∴∠EDB =∠EBD ,∴∠ODB+∠EDB =∠OBD+∠EBD , 即∠EDO =∠EBO .∵BC 是以AB 为直径的⊙O 的切线, ∴AB ⊥BC , ∴∠EBO =90°, ∴∠ODE =90°, ∴DE 是⊙O 的切线; (1)∵S 1=5 S 1 ∴S △ADB =1S △CDB ∴AD 2DC 1= ∵△BDC ∽△ADB∴AD DBDB DC⋅= ∴DB 1=AD•DC ∴DB 2AD 2=∴tan ∠BAC ==22. (3)∵tan ∠BAC =DB 2AD 2=∴22BC AB =,得BC =22AB ∵E 为BC 的中点∴BE =24AB∵AE =32,∴在Rt △AEB 中,由勾股定理得2222(32)AB AB 4⎛⎫=+ ⎪ ⎪⎝⎭,解得AB =4 故⊙O 的半径R =12AB =1.【点睛】本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.21.实践:如图△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC 的平分线,交BC 于点O.以O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,AB 与⊙O 的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.【答案】(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为103. 【解析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB 与⊙O 的位置关系是相切; (2)首先根据勾股定理计算出AB 的长,再设半径为x ,则OC=OD=x ,BO=(12-x )再次利用勾股定理可得方程x 2+82=(12-x )2,再解方程即可. 【详解】(1)①作∠BAC 的平分线,交BC 于点O ; ②以O 为圆心,OC 为半径作圆.AB 与⊙O 的位置关系是相切.(2)相切; ∵AC=5,BC=12,∴AD=5,AB=22512+=13, ∴DB=AB-AD=13-5=8,设半径为x ,则OC=OD=x ,BO=(12-x ) x 2+82=(12-x )2,解得:x=103.答:⊙O 的半径为103. 【点睛】本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定. 22.已知关于 x 的一元二次方程 x 2﹣2(k ﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.【答案】方程的根120=2x x =-或【解析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根, ∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0, 解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.23.如图,四边形AOBC 是正方形,点C 的坐标是(42,0).正方形AOBC 的边长为 ,点A 的坐标是 .将正方形AOBC 绕点O 顺时针旋转45°,点A ,B ,C 旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当△OPQ 为等腰三角形时,求出t 的值(直接写出结果即可).【答案】(1)4,(22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216;(3)83t =. 【解析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积;(2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t .【详解】解:(1)连接AB ,与OC 交于点D , 四边形AOBC 是正方形, ∴△OCA 为等腰Rt △,∴AD=OD=12OC=22,∴点A 的坐标为()22,22.4,()22,22. (2)如图∵ 四边形AOBC 是正方形, ∴ AOB 90∠=,AOC 45∠=.∵ 将正方形AOBC 绕点O 顺时针旋转45, ∴ 点A '落在x 轴上. ∴OA OA 4'==. ∴ 点A '的坐标为()4,0. ∵ OC 42=,∴ A C OC OA 424=-='-'. ∵ 四边形OACB ,OA C B '''是正方形, ∴ OA C 90∠''=,ACB 90∠=. ∴ CA E 90∠'=,OCB 45∠=. ∴ A EC OCB 45∠∠=='.∴ A E A C 424=='-'.∵2ΔOBC AOBC 11S S 4822==⨯=正方形, ()2ΔA EC11S A C A E 4242416222'=⋅=-=-'',∴ΔOBC ΔA EC OA EBS S S ''=-=四边形 ()82416216216--=-.∴旋转后的正方形与原正方形的重叠部分的面积为16216-.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时, ∵POQ 90∠=,OP=t ,OQ=2t∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP ,QM 为OP 的垂直平分线, OP=2OM=2BQ ,OP=t ,BQ=2t-4, t=2(2t-4), 解得:t=83. ③当点P 、Q 在AC 上时,ΔOPQ 不能为等腰三角形综上所述,当8t 3=时ΔOPQ 是等腰三角形 【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.24.雾霾天气严重影响市民的生活质量。

历年初三数学中考总复习专题训练15-换元法填空通关50题(含答案)

历年初三数学中考总复习专题训练15-换元法填空通关50题(含答案)

换元法填空通关50题(含答案)1. 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是 {x =5,y =−2, 则方程组{a 1(x −3)+b 1(y +1)=c 1,a 2(x −3)+b 2(y +1)=c 2 的解是 .2. 能使 6∣k +2∣=(k +2)2 成立的 k 的值为 .3. 一题多解是拓展我们发散思维的重要策略.对于方程“4x −3+6(3−4x )=7(4x −3)”可以有多种不同的解法,观察此方程,假设 4x −3=y .(1)则原方程可变形为关于 y 的方程: ,通过先求 y 的值,从而可得 x = ; (2)上述方法用到的数学思想是 .4. 若方程组 {2a −3b =13,3a +5b =30.9的解为 {a =8.3,b =1.2, 则方程组{2(x +2)−3(y −1)=13,3(x +2)+5(y −1)=30.9 的解是 .5. 已知方程组 {2x −3y =13,3x +5y =−9的解是 {x =2,y =−3, 则方程组{2(x −1)−3(y +2)=13,3(x −1)+5(y +2)=−9 的解是 .6. 三个同学对问题“若方程组 {a 1x +b 1y =c 1,a 2x −b 2y =c 2的解是 {x =3,y =4. 求方程组{3a 1x +2b 1y =5c 1,3a 2x −2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“他们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两边都除以 5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .7. 若 (m +n )(m +n +5)=6,则 m +n 的值是 .8. 已知方程组 {2a −3b =13,3a +5b =30.9的解是 {a =8.3,b =1.2, 则方程组{2(x −3)−3(y +2)=13,3(x −3)+5(y +2)=30.9的解是 .9. (1)已知 (x +y )(x +y +2)=8,那么 x +y = .(2)若实数 x ,y 满足 (x 2+y 2+2)(x 2+y 2−1)=0,则 x 2+y 2= .10. 如果 (a 2+b 2+1)(a 2+b 2−1)=63,那么 a 2+b 2 的值为 .11. 已知 (a 2+b 2)2−(a 2+b 2)−6=0,则 a 2+b 2= .12. 解方程 2x x 2−1−3x 2−3x=2 时,若设 y =xx 2−1,则方程可化为 .13. 三个同学对问题“若方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是 {x =1,y =2. 求方程组{a 1x +2b 1y =3c 1,a 2x +2b 2y =3c 2的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以 3,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .14. 用换元法解方程 2x x 2−1−3x 2−3x=1 ,若设x x 2−1=y ,则原方程可化为关于 y 的一元二次方程为 .15. 关于 x ,y 的方程组 {2x +2y=45,2x+3y=35, 那么 1x −1y= .16. 设 a ,b 是一个直角三角形两条直角边的长,且 (a 2+b 2)(a 2+b 2−1)=12,则这个直角三角形的斜边长为 .17. 若 (a 2+b 2)(a 2+b 2−3)−4=0,则 a 2+b 2= .18. 三个同学对问题“若方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是 {x =3,y =4, 求方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以 5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .19. (x2+y2)(x2−1+y2)−12=0,则x2+y2的值是.20. 计算(1−12−13−14−15)(12+13+14+15+16)−(1−12−13−14−15−16)(12+1 3+14+15)的结果是.21. 对任意实数a,b,若(a2+b2)(a2+b2−1)=12,则a2+b2=.22. 已知(x2+y2)2+5(x2+y2)−6=0,则x2+y2的值为.23. 已知关于x的一元一次方程12013x+3=2x+b的解为x=2,那么关于y的一元一次方程12013(y+1)+3=2(y+1)+b的解为.24. 若(a2+b2)(a2+b2+2)=24,则a2+b2=.25. 已知关于 x 的方程 3x x 2−1+x 2−1x=52,如果设x x 2−1=y ,那么原方程化为关于 y 的方程是 .26. 在求 1+3+32+33+34+35+36+37+38 的值时,张红发现:从第二个加数起每一个加数都是前一个加数的 3 倍,于是她假设:S =1+3+32+33+34+35+36+37+38, ⋯⋯①然后在 ① 式的两边都乘以 3,得:3S =3+32+33+34+35+36+37+38+39, ⋯⋯②②−① 得,3S −S =39−1,即 2S =39−1, 所以 S =39−12.得出答案后,爱动脑筋的张红想:如果把“3”换成字母 m (m ≠0 且m ≠1),能否求出 1+m +m 2+m 3+m 4+⋯+m 2016 的值?如能求出,其正确答案是 .27. 已知 (x 2+y 2)2+5(x 2+y 2)−6=0,则 x 2+y 2 的值为 .28. 用换元法解方程 (xx+1)2−6xx+1+5=0 时,可设 y = ,从而原方程可化为 ;29. 若 y =x 2+x ,则分式方程 x 2+x +1=5x 2+x可变形为 ;30. 已知 (x +y )(x +y +2)−8=0,求 x +y 的值,若设 x +y =z ,则原方程可变为 ,所以求出 z 的值即为 x +y 的值,所以 x +y 的值为 .31. 若实数 a ,b 满足 (4a +4b )(4a +4b −2)−8=0,则 a +b = ( ).32. 如果二元一次方程组 {2014x −2015y =2013,2015x −2014y =2016的解是 {x =2,y =1, 那么二元一次方程组 {2014(x +y )−2015(x −y )=2013,2015(x +y )−2014(x −y )=2016 的解是 .33. 用换元法解分式方程2x−1x −x2x−1=2时,如果设2x−1x=y,并将原方程化为关于y的整式方程,那么这个整式方程是.34. 方程(2009−x)2+(2010−x)2=13的根是.35. 在方程x2+3x2−4x−4x+4=0中,如果设y=x2−4x,那么原方程可化为关于y的整式方程是.36. 解方程xx2+1+x2+1x=52时,设xx2+1=y,于是原方程变形为整式方程为.37. 计算(1−12−13−14−15)(12+13+14+15+16)−(1−12−13−14−15−16)(12+1 3+14+15)的结果是.38. 若 (m 2+n 2)(m 2+n 2−2)−8=0,则 m 2+n 2 的值是 .39. 如果 (a +b +1)(a +b −1)=63,那么 a +b 的值为 .40. 满足 22x+1−3⋅2x+1+4=0 的 x 的值为 .41. 方程 (xx−1)2+6=5(xx−1) 的整数解是 .42. 三个同学对问题 "若方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是 {x =3,y =4. 求方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解" 提出各自的想法.甲说:"这个题目好象条件不够,不能求解";乙说:"它们的系数有一定的规律,可以试试";丙说:"能不能把第二个方程组的两个方程的两边都除以 5 ,通过换元替换的方法来解决".参考他们的讨论,你认为这个题目的解应该是 .43. 用换元法解方程1x2−2x+2x=x2−3时,如果设y=x2−2x,则原方程可化为关于y的一元二次方程的一般形式是.44. 计算(12+13+⋯+12009)(1+12+⋯+12008)−(1+12+⋯+12009)(12+13+⋯+12008)的结果是.45. 设函数y=2x的图象与函数y=x−1的图象的交点坐标为(a,b),则1 a −1b的值为.46. 方程1x2+1+x2+1x2=103x的实根是.47. 已知a+b+c=10,则关于x的方程x−abc +x−bca+x−cab=2(1a+1b+1c)的解是x=.48. 用换元法解分式方程x 2−2x+2xx2−2=3时,如果设y=x2−2x,那么原方程可化为关于y的一元二次方程的一般形式是.49. 已知实数m,n满足m−n2=1,则代数式m2+2n2+4m−1的最小值等于.50. 若2x2−5x+82x2−5x+1−5=0,则2x2−5x−1的值为参考答案,仅供参考哦1. {x =8,y =−3【解析】由题意得 {x −3=5,y +1=−2,所以 {x =8,y =−3.2. −2,4 或 −83. y −6y =7y ,34,换元思想4. {x =6.3,y =2.25. {x =3,y =−56. {x =5,y =107. −6 或 18. {x =11.3,y =−0.89. (1)2或−4,(2)1 10. 8【解析】设 a 2+b 2=x , 则 (x +1)(x −1)=63, 整理得 x 2=64,解得 x =±8,即 a 2+b 2=8 或 a 2+b 2=−8(不合题意,舍去). 11. 3【解析】设 a 2+b 2=x , 则有 x 2−x −6=0, 解得 x 1=3,x 2=−2. 由于 a 2+b 2≥0, 故 a 2+b 2=x 1=3. 12. 2y −3y =213. {x =3,y =314. 2y 2−y −3=0 15. 10 16. 217. 418. {x =5,y =10【解析】{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2,两边同时除以 5 得,{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2,有和方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式一样,所以 {35x =3,25y =4,解得 {x =5,y =10.19. 4 20. 16【解析】设 a =1−12−13−14−15,b =12+13+14+15,则原式=a (b +16)−(a −16)⋅b=ab +16a −ab +16b =16(a +b ),∵ a +b =1−12−13−14−15+12+13+14+15=1, ∴ 原式=16.21. 4【解析】设 x =a 2+b 2(x >0),则 x (x −1)=12,解得 x 1=−3(舍去),x 2=4.22. 1【解析】设 x 2+y 2=a (a ≥0),则 a 2+5a −6=0. 解得 a 1=−6(舍去),a 2=1. 23. y =1 24. 4 25. 3y +1y=5226. m 2017−1m−1(m ≠0 且 m ≠1)27. 128.xx+1,y 2−6y +5=029. y +1=5y30. z 2+2z −8=0,2,−4 31. −0.5 或 1 32. {x =32,y =12.【解析】显然 {x +y =2,x −y =1.∴ {x =32,y =12.33. y 2−2y −1=0 34. x 1=2007,x 2=2012 35. y 2+4y +3=0【解析】方程整理得,x 2−4x +3x 2−4x+4=0,设 y =x 2−4x ,原方程可化为,y +3y +4=0,方程两边都乘以 y ,去分母得, y 2+4y +3=0. 36. 2y 2−5y +2=0.37. 16【解析】设 12+13+14+15=a ,原式=(1−a )(a +16)−(1−a −16)a=a +16−a 2−16a −a +a 2+16a =16.38. 4【解析】原方程可化为 (m 2+n 2)2−2(m 2+n 2)−8=0, Δ=(−2)2−4×1×(−8)=36, ∴m 2+n 2=2±√362=2±62,∴m 2+n 2=4 或 m 2+n 2=−2. ∵m 2+n 2≥0, ∴m 2+n 2=4. 39. ±8 40. 1 或 0 41. 2 42. {x =5,y =10【解析】{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2⇒{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2⇒{35x =3,25y =4⇒{x =5,y =10.43. y 2−3y −1=0 44.1200945. −12【解析】ab =2,b −a =1,1a−1b=b−a ab=−12.46.3±√5247. 1048. y2−3y+2=0=3,整理即是.【解析】换元可得:y+2y49. 450. 0或2【解析】令y=2x2−5x+1 .−5=0,则原式可化为y−1+8y整理得y2−6y+8=0,解得y1=2,y2=4,经检验都是方程的解;则2x2−5x−1=2x2−5x+1−2=y−2,则2x2−5x−1的值为0或2 .。

2020九年级数学上册第二十一章解-换元法同步练习(新版)新人教版

2020九年级数学上册第二十一章解-换元法同步练习(新版)新人教版

21.2.5解一元二次方程-换元法学校:___________姓名:___________班级:___________一.选择题(共15小题)1.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是()A.x1=﹣1,x2=﹣3.5 B.x1=1,x2=﹣3.5C.x1=1,x2=3.5 D.x1=﹣1,x2=3.52.已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或23.已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是()A.﹣3 B.1 C.﹣3或1 D.﹣1或34.已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=2,x2=6 D.x1=﹣2,x2=﹣65.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或36.已知x是实数且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x的值为()A.3 B.﹣3或1 C.1 D.﹣1或37.若实数x、y满足(x2+y2+2)(x2+y2﹣2)=0,则x2+y2的值为()A.1 B.2 C.2或﹣1 D.2或﹣28.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或29.已知方程ax2+bx+c=0的解是x1=2,x2=﹣3,则方程a(x+1)2+b(x+1)+c=0的解是()A.x1=1,x2=﹣4 B.x1=﹣1,x2=﹣4 C.x1=﹣1,x2=4 D.x1=1,x2=410.设(x2+y2)(x2+y2+2)﹣15=0,则x2+y2的值为()A.﹣5或3 B.﹣3或5 C.3 D.511.(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A.4 B.2 C.4或﹣2 D.4或212.用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣113.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣414.已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或315.若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1二.填空题(共5小题)16.若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b= .17.设x,y是一个直角三角形两条直角边的长,且(x2+y2)(x2+y2﹣1)=20,则这个直角三角形的斜边长为.18.已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是.19.若(x2+y2+3)2﹣6(x2+y2+3)+8=0,则x2+y2﹣5= .20.如果(m+n)(m+n+5)=6,则m+n= .三.解答题(共4小题)21.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.22.(3x﹣2)2﹣5(3x﹣2)+4=0.23.已知实数x,y满足(x2+y2)(x2+y2﹣12)=45,求x2+y2的值.24.阅读下面的材料,解答后面的问题材料:“解方程x4﹣3x2+2=0”解:设x2=y,原方程变为y2﹣3y+2=0,(y﹣1)(y﹣2)=0,得y=1或y=2当y=1时,即x2=1,解得x=±1;当y=2时,即x2=2,解得x=±综上所述,原方程的解为x1=1,x2=﹣1,x3=.x4=﹣问题:(1)上述解答过程采用的数学思想方法是A.加减消元法 B.代入消元法 C.换元法 D.待定系数法(2)采用类似的方法解方程:(x2﹣2x)2﹣x2+2x﹣6=0.2018-2019学年度人教版数学九年级上册同步练习:21.2.5解一元二次方程-换元法参考答案与试题解析一.选择题(共15小题)1.解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣4,所以x1=﹣1,x2=﹣3.5.故选:A.2.解:设y=a2﹣b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∴a2﹣b2=4或﹣2.故选:C.3.解:(x2+y2)(x2+y2+2)﹣3=0,(x2+y2)2+2(x2+y2)﹣3=0,(x2+y2+3)(x2+y2﹣1)=0,x2+y2﹣1=0,x2+y2=1,故选:B.4.解:∵方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∴方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.5.解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.6.解:由y=x2+3x,则(x2+3x)2+2(x2+3x)﹣3=0,可化为:y2+2y﹣3=0,分解因式,得,(y+3)(y﹣1)=0,解得,y1=﹣3,y2=1,当x2+3x=﹣3时,经△=32﹣3×4=﹣3<0检验,可知x不是实数当x2+3x=1时,经检验,符合题意.故选:C.7.解:设t=x2+y2,则t≥0,原方程变形为(t+2)(t﹣2)=0,解得:t=2或t=﹣2(舍去).故选:B.8.解:t=x+y,则由原方程,得t(t﹣3)+2=0,整理,得(t﹣1)(t﹣2)=0.解得t=1或t=2,所以x+y的值为1或2.故选:D.9.解:设t=x+1,则方程a(x+1)2+b(x+1)+c=0化为at2+at+c=0,因为方程ax2+bx+c=0的解是x1=2,x2=﹣3,所以t1=2,t2=﹣3,当t=2时,x+1=2,解得x=1;当t=﹣3时,x+1=﹣3,解得x=﹣4,所以方程a(x+1)2+b(x+1)+c=0的解是x1=1,x2=﹣4.故选:A.10.解:设t=x2+y2,则原方程可化为t2+2t﹣15=0,∴t=x2+y2=3或t=x2+y2=﹣5,又∵t≥0,∴x2+y2=3.故选:C.11.解:设m2+n2=t(t≥0),由原方程,得t(t﹣2)﹣8=0,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),所以m2+n2=4.故选:A.12.解:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.13.解:设x2+2x=y,则原方程化为y(y﹣2)﹣8=0,解得:y=4或﹣2,当y=4时,x2+2x=4,此时方程有解,当y=﹣2时,x2+2x=﹣2,此时方程无解,舍去,所以x2+2x=4.故选:B.14.解:设y=x2+x+1=y,则(x2+x+1)2+2(x2+x+1)﹣3=0,可化为:y2+2y﹣3=0,分解因式得:(y+3)(y﹣1)=0,解得:y1=﹣3,y2=1,当x2+x+1=﹣3时,经△=12﹣4×1×4<0检验,可知x不是实数,当x2+x+1=1时,经检验,符合题意.故选:A.15.解:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.二.填空题(共5小题)16.解:设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.17.解:设x2+y2=t,则原方程可化为:t(t﹣1)=20,∴t2﹣t﹣20=0,即(t+4)(t﹣5)=0,∴t1=5,t2=﹣4(舍去),∴x2+y2=5,∴这个直角三角形的斜边长为,故答案为:.18.解:(x2+y2)(x2+y2﹣1)=12,(x2+y2)2﹣(x2+y2)﹣12=0,(x2+y2+3)(x2+y2﹣4)=0,x2+y2+3=0,x2+y2﹣4=0,x2+y2=﹣3,x2+y2=4,∵不论x、y为何值,x2+y2不能为负数,∴x2+y2=4,故答案为:4.19.解:设x2+y2+3=t∵(x2+y2+3)2﹣6(x2+y2+3)+8=0,∴t2﹣6t+8=0∴t=2或t=4当t=2时,x2+y2+3=2∴x2+y2=﹣1故t=2舍去当t=4时,x2+y2+3=4∴x2+y2=1∴原式=1﹣5=﹣4故答案为:﹣420.解:设m+n为x则(m+n)(m+n+5)=6变形为x(x+5)=6 移项去括号得x2+5x﹣6=0因式分解得(x+6)(x﹣1)=0解得x=1或﹣6即m+n=1或﹣6.三.解答题(共4小题)21.解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.22.解:设(3x﹣2)=y,原方程等价于y2﹣5y+4=0因式分解,得(y﹣4)(y﹣1)=0,于是,得y﹣4=0或y﹣1=0,解得y=4或y=1,3x﹣2=4,3x﹣2=1,解得x1=2,x2=1.23.解:设x2+y2=a,则a(a﹣12)=45,a2﹣12a﹣45=0,(a﹣15)(a+3)=0,a1=15,a2=﹣3,∵x2+y2=a≥0,∴x2+y2=15.24.解:(1)上述解答过程采用的数学思想方法是换元法.故答案是:C;(2)设x2﹣2x=y,原方程化为y2﹣y﹣6=0,整理,得(y﹣3)(y+2)=0,得y=3或y=﹣2当y=3时,即x2﹣2x=3,解得x=﹣1或x=3;当y=﹣2时,即x2﹣2x=2,解得x=1±综上所述,原方程的解为x1=﹣1,x2=3,x3=1+.x4=1﹣.。

三角换元积分题目

三角换元积分题目

三角换元积分题目(原创版)目录一、三角换元积分法概述二、三角换元积分法的应用实例三、总结正文一、三角换元积分法概述三角换元积分法是高等数学中的一种积分方法,它是通过将变量替换为三角函数,从而将复杂的被积函数化为简单的形式,进而求得积分值的一种方法。

三角换元积分法主要应用于含有根号内的函数积分、三角函数的积分以及复合函数的积分等领域。

二、三角换元积分法的应用实例下面我们通过一个具体的实例来说明三角换元积分法的应用。

例题:计算积分 $int sqrt{1+x^2} dx$。

解:我们可以通过三角换元法来解决这个问题。

令 $x = sin t$,则$dx = cos t dt$。

原式可化为:$$int sqrt{1+x^2} dx = int sqrt{1+sin^2 t} cos t dt$$由于 $sqrt{1+sin^2 t} = cos t$,所以:$$int sqrt{1+x^2} dx = int cos^2 t dt$$再利用倍角公式 $cos 2t = 2cos^2 t - 1$,可得:$$int sqrt{1+x^2} dx = int frac{1+cos 2t}{2} dt$$最后,利用定积分的性质,得到:$$int sqrt{1+x^2} dx = frac{1}{2} int (1 + cos 2t) dt = frac{1}{2} (t + sin 2t) + C$$将 $t$ 替换回 $x$,得到:$$int sqrt{1+x^2} dx = frac{1}{2} (arcsin x + x) + C$$通过这个例子,我们可以看到三角换元积分法能够简化被积函数,从而使积分过程变得容易。

三、总结总之,三角换元积分法是一种非常有用的积分方法,它适用于多种类型的函数积分。

4.2.8两类换元法例题

4.2.8两类换元法例题

2 ( 3)2x

dx 1
2

1 ln 3
d( 3)x 2
令(3)x t 2
( 3)2x 1
22
1 dt
ln 3 t 2 1 2

1 2ln 3

(
t
1
1

1 )dt t 1

1
ln t
2(ln 3 ln 2) t
1 1
C
2
1
3x 2x
2(ln 3 ln 2) ln 3x 2x C .
42 2
2x

x [(1 2x)12

(x 1)3 2x2 ]dx
1 44
1 (1 2x)11

1 40
1 (1 2x)10
( x2 4

3 2
x
3 ln 2
x

1 )C 2x
1
例5
sin2(2 x 3)cos2(2 x 3) dx
解令
2x 3 t
凑线性函数
2
2
解二 原式 1 2
1 sin2 t cos2 t dt =2
1 sin2 2t dt =
1 sin2 2t d2t
= cot(2t) C
= cot(2(2x 3)) C
凑线性函数
例6 求

arctan x (1
x x)
dx
注意积分
1 dx x (1 x)

[4x x2ex3 1]dx
4x 1 ex31d (x3 1) ln 4 3
凑幂函数微分
4x ex3 1 C

人教版八年级上册知识点试题精选-换元法解分式方程

人教版八年级上册知识点试题精选-换元法解分式方程

2017年12月27日校园号的初中数学组卷换元法解分式方程一.选择题(共20小题)1.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.3y2﹣y+1=0 B.3y2﹣y﹣1=0 C.y2﹣y+1=0 D.y2+y﹣3=02.用换元法解方程+=6,若设y=,则原方程可化为()A.y2+6y+8=0 B.y2﹣6y+8=0 C.y2+8y﹣6=0 D.y2+8y+6=03.已知实数x满足,则的值为()A.2 B.﹣1 C.﹣2 D.2或﹣14.已知方程,若设x2+3x=y,则原方程可化为()A.y2﹣20y=8 B.y2﹣20=8 C.y﹣20=8y D.y2﹣20=8y5.用换元法解方程+=时,如果设x=,那么原方程可化为()A.2x2﹣5x+2=0 B.x2﹣5x+1=0 C.2x2+5x+2=0 D.2x2﹣5x+1=06.用换元法解分式方程时,如果设,那么原方程可化为()A.2y2+3y﹣5=0 B.2y2﹣5y+3=0 C.y2+3y﹣5=0 D.y2﹣5y+3=07.用换元法解方程时,可以设,那么原方程可以化为()A.y2+y﹣2=0 B.y2+y﹣1=0 C.y2﹣2y﹣1=0 D.y2﹣y﹣2=08.用换元法解方程时,设x+=y,则原方程可化为()A.y2﹣2y﹣3=0 B.y2﹣2y﹣1=0 C.y2﹣y﹣1=0 D.y2﹣2y+3=09.解方程﹣=3时,设=y,则原方程可化为关于y的整式方程是()A.y﹣=3 B.y2﹣2y=3 C.y2﹣3y﹣2=0 D.y2+3y﹣2=010.用换元法解分式方程x2﹣x+=1时,如果设x2﹣x=y,则原方程可化为关于y的整式方程是()A.y2+2y+1=0 B.y2+2y﹣1=0 C.y2﹣y+2=0 D.y2+y﹣2=011.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=012.用换元法解方程﹣=3时,设=y,则原方程可化为()A.B.C.D.13.若1﹣+=9,则的值是()A.4 B.﹣2 C.4或﹣2 D.±314.用换元法解方程:+=3时,若设,并将原方程化为关于y的整式方程,那么这个整式方程是()A.y2﹣3y+2=0 B.y2﹣3y﹣2=0 C.y2+3y+2=0 D.y2+3y﹣2=015.已知﹣x2=2+x,则代数式2x2+2x的值是()A.2 B.﹣6 C.2或﹣6 D.﹣2或616.已知x为实数,且,那么x2+9x的值为()A.1 B.﹣3或1 C.3 D.﹣1或317.已知x为实数,且﹣(x2+x)=2,则x2+x的值为()A.0 B.1 C.2 D.x218.解方程﹣=2时,如果设=y,则原方程可化为关于y的整式方程是()A.3y2+2y+1=0 B.3y2+2y﹣1=0 C.3y2+y+2=0 D.3y2+y﹣2=019.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=020.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或1二.填空题(共15小题)21.用换元法解方程时,可设,则原方程可化为关于y的整式方程为.22.已知分式方程+=3,如果t=,那么原方程可化为关于t的整式方程是.23.已知关于x的方程+=,如果设=y,那么原方程化为关于y 的方程是.24.用换元法解分式方程时,如果设,将原方程化为关于y 的整式方程,那么这个整式方程是.25.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y 的整式方程是.26.在分式方程+=1中,令y=,则原方程可化为关于y的方程是.27.解方程=3时,设y=,则原方程化为关于y的整式方程为.28.在分式方程中,令,则原方程可化为关于y的整式方程是.29.已知方程(+1)2﹣﹣3=0,如果设+1=y,那么原方程化为关于y的方程是.30.用换元法解方程时,如果设,那么原方程可化为关于y的整式方程,它可以是.31.用换元法解分式方程﹣=﹣1时,如果设=y,并将原方程化为关于y的整式方程,那么这个整式方程是.32.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.33.用换元法解方程﹣2•+1=0时应设y=.34.用换元法解方程+=,设y=,那么原方程化为关于y的整式方程是.35.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是.三.解答题(共15小题)36.解方程:()2﹣﹣6=0.37.解方程:.38.阅读下面材料,解答后面的问题解方程:.解:设,则原方程化为:,方程两边同时乘以y得:y2﹣4=0,解得:y=±2,经检验:y=±2都是方程的解,∴当y=2时,,解得:x=﹣1,当y=﹣2时,,解得:x=,经检验:x=﹣1或x=都是原分式方程的解,∴原分式方程的解为x=﹣1或x=.上述这种解分式方程的方法称为换元法.问题:(1)若在方程中,设,则原方程可化为:;(2)若在方程中,设,则原方程可化为:;(3)模仿上述换元法解方程:.39.解方程:+=4.40.解方程:.41.解方程:.42.解方程:﹣﹣3=0.43.解方程:.44.解方程:x2+3x﹣=8.45.先阅读理解下面的例题,再按要求解答下列问题:解方程()2﹣6()+5=0解:令=y,代入原方程后,得:y2﹣6y+5=0(y﹣5)(y﹣1)=0解得:y1=5 y2=1∵=y∴=5或=1①当=1时,方程可变为:x=5(x﹣1)解得x=②当=1时,方程可变为:x=x﹣1此时,方程无解检验:将x=代入原方程,最简公分母不为0,且方程左边=右面∴x=是原方程的根综上所述:原方程的根为:x=根据以上材料,解关于x的方程x2++x+=0.46.解方程:.47.在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.老师:同学们,今天我们来探索如下方程的解法:()2﹣4()+4=0.学生甲:老师,原方程可整理为﹣+4=0,再去分母,行得通吗?老师:很好,当然可以这样做.再仔细观察,看看这个方程有什么特点?还可以怎样解答?学生乙:老师,我发现是整体出现的!老师:很好,我们把看成一个整体,用y表示,即可设=y,那么原方程就变为y2﹣4y+4=0.全体学生:噢,等号左边是一个完全平方式?!方程可以变形成(y﹣2)2=0老师:大家真会观察和思考,太棒了!显然y2﹣4y+4=0的根是y=2,那么就有=2学生丙:对啦,再解这两个方程,可得原方程的根x=2,再验根就可以了!老师:同学们,通常我们把这种方法叫做换元法,这是一种重要的转化方法.全体同学:OK,换元法真神奇!现在,请你用换元法解下列分式方程(组):(1)()2﹣+1=0;(2).48.阅读下面材料,解答后面的问题解方程:﹣=0.解:设y=,则原方程化为:y﹣=0,方程两边同时乘以y得:y2﹣4=0,解得:y=±2,经检验:y=±2都是方程y﹣=0的解,∴当y=2时,=2,解得:x=﹣1;当y=﹣2时,=﹣2,解得:x=,经检验:x=﹣1或x=都是原分式方程的解,∴原分式方程的解为x=﹣1或x=.上述这种解分式方程的方法称为换元法.问题:(1)若在方程﹣=0中,设y=,则原方程可化为:;(2)模仿上述换元法解方程:﹣﹣1=0.49.用换元法解分式方程:=2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即:=﹣1或=3;解得:x=或x=﹣经检验:x=或x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?50.解方程:.2017年12月27日校园号的初中数学组卷换元法解分式方程参考答案与试题解析一.选择题(共20小题)1.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.3y2﹣y+1=0 B.3y2﹣y﹣1=0 C.y2﹣y+1=0 D.y2+y﹣3=0【分析】设=y,则原方程化为y﹣+1=0,去分母即可.【解答】解:﹣+1=0,设=y,则原方程化为y﹣+1=0,y2+y﹣3=0,故选D.【点评】本题考查了用换元法解分式方程的应用,解此题的关键是能正确换元.2.用换元法解方程+=6,若设y=,则原方程可化为()A.y2+6y+8=0 B.y2﹣6y+8=0 C.y2+8y﹣6=0 D.y2+8y+6=0【分析】根据y=,进而代入原方程求出即可.【解答】解:∵设y=,则原方程可化为:y+=6,∴y2﹣6y+8=0.故选;B.【点评】此题主要考查了换元法解分式方程,将原式中式式子用y代替得出是解题关键.3.已知实数x满足,则的值为()A.2 B.﹣1 C.﹣2 D.2或﹣1【分析】设x+=a,方程变形后,计算即可求出值.【解答】解:设x+=a,方程变形为a2﹣a﹣2=0,分解因式得:(a﹣2)(a+1)=0,解得:a=2或a=﹣1,经检验是分式方程的解,则x+=2或﹣1.当x+=﹣1时,无解.故选A.【点评】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.已知方程,若设x2+3x=y,则原方程可化为()A.y2﹣20y=8 B.y2﹣20=8 C.y﹣20=8y D.y2﹣20=8y【分析】把方程中的(x2+3x)换成y即可.【解答】解:∵设x2+3x=y,∴原方程可化为y﹣=8,整理得y2﹣20=8y.故选:D.【点评】本题考查了换元法解分式方程.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.5.用换元法解方程+=时,如果设x=,那么原方程可化为()A.2x2﹣5x+2=0 B.x2﹣5x+1=0 C.2x2+5x+2=0 D.2x2﹣5x+1=0【分析】根据换元法,可得关于x的分式方程,根据等式的性质,可得整式方程.【解答】解:换元法解方程+=时,如果设x=,那么原方程可化为2x+2×﹣5=0,化简,得2x2﹣5x+2=0,故选:A.【点评】本题考查了换元法解分式方程,换元是解题关键,注意要化简成整式方程.6.用换元法解分式方程时,如果设,那么原方程可化为()A.2y2+3y﹣5=0 B.2y2﹣5y+3=0 C.y2+3y﹣5=0 D.y2﹣5y+3=0【分析】根据方程特点设y=,则原方程可化为2y﹣+3=0,则y2+3y﹣5=0.【解答】解:设=y,则原方程化为2y2+3y﹣5=0.故选A.【点评】本题考查了用换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.7.用换元法解方程时,可以设,那么原方程可以化为()A.y2+y﹣2=0 B.y2+y﹣1=0 C.y2﹣2y﹣1=0 D.y2﹣y﹣2=0【分析】将分式方程中的换为y,换为,去分母即可得到结果.【解答】解:根据题意得:y﹣=1,去分母得:y2﹣y﹣2=0.故选D【点评】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.8.用换元法解方程时,设x+=y,则原方程可化为()A.y2﹣2y﹣3=0 B.y2﹣2y﹣1=0 C.y2﹣y﹣1=0 D.y2﹣2y+3=0【分析】本题考查用换元法整理分式方程的能力,关键是利用平方关系寻找与y的关系.【解答】解:设x+=y,则有:,所以,所以方程变形为y2﹣2y﹣3=0,故选:A.【点评】考查了换元法解分式方程,用换元法解分式方程时一种常用的方法,它能够使方程化繁为简,化难为易,因此对能用此方法解的分式方程的特点应该加以注意,并要能够熟练变形整理.9.解方程﹣=3时,设=y,则原方程可化为关于y的整式方程是()A.y﹣=3 B.y2﹣2y=3 C.y2﹣3y﹣2=0 D.y2+3y﹣2=0【分析】先将=y代入原方程,通过去分母,将原方程化为关于y的整式方程.【解答】解:解方程﹣=3时,设=y,则原方程可化为去分母,得y2﹣2=3y即y2﹣3y﹣2=0故选:C.【点评】本题主要考查了换元法解分式方程,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,叫换元法.换元的实质是转化,关键是构造元和设元,有时需要通过变形才能换元.10.用换元法解分式方程x2﹣x+=1时,如果设x2﹣x=y,则原方程可化为关于y的整式方程是()A.y2+2y+1=0 B.y2+2y﹣1=0 C.y2﹣y+2=0 D.y2+y﹣2=0【分析】根据换元法,可得答案.【解答】解:设x2﹣x=y,原方程等价于y﹣1+=0,两边都乘以y,得y2﹣y+2=0,故选:C.【点评】本题考查了解分式方程,利用换元法是解题关键.11.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0【分析】直接把化为y即可.【解答】解:设,则原方程化为5y﹣+1=0,去分母得,5y2+y﹣1=0.故选D.【点评】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.12.用换元法解方程﹣=3时,设=y,则原方程可化为()A.B.C.D.【分析】可设=y,则=2y,原方程可化为2y﹣=3,即2y﹣﹣3=0.【解答】解:设=y,则原方程可化为2y﹣=3,即2y﹣﹣3=0.故选:C.【点评】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.13.若1﹣+=9,则的值是()A.4 B.﹣2 C.4或﹣2 D.±3【分析】令=y,将方程换为以y为未知数的一元二次方程,然后求解即可.【解答】解:令=y,则原方程可化为1﹣2y+y2=9,(y﹣1)2=9,所以,y﹣1=3或y﹣1=﹣3,解得y=4或y=﹣2.故选C.【点评】本题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.14.用换元法解方程:+=3时,若设,并将原方程化为关于y的整式方程,那么这个整式方程是()A.y2﹣3y+2=0 B.y2﹣3y﹣2=0 C.y2+3y+2=0 D.y2+3y﹣2=0【分析】根据换元法,可得答案.【解答】解:由+=3时,若设,得y+=3.化简,得y2﹣3y+2=0.故选:A.【点评】本题考查了换元法解分式方程,换元是解题关键.15.已知﹣x2=2+x,则代数式2x2+2x的值是()A.2 B.﹣6 C.2或﹣6 D.﹣2或6【分析】设x2+x=a,再把原方程化为关于a的分式方程,求出a的值,代入代数式即可得出结论.【解答】解:设x2+x=a,则原方程可化为﹣a﹣2=0,去分母得,﹣a2﹣2a+3=0,解得a=1或a=﹣3.当a=1时,x2+x﹣1=0,△=1+4=5>0,此时x有解,原式=2(x2+x)=2a=2;当a=﹣3时,x2+x+3=0,△=1﹣12=﹣11<0,此时x无解.故选A.【点评】本题考查的是换元法解分式方程,在解答此类问题时要注意求出的未知数的值代入所设方程中进行检验.16.已知x为实数,且,那么x2+9x的值为()A.1 B.﹣3或1 C.3 D.﹣1或3【分析】设x2+9x=y,方程变形后,求出解得到y的值,经检验即可确定出所求式子的值.【解答】解:设x2+9x=y,方程变形为﹣y=2,去分母得:3﹣y2=2y,即y2+2y﹣3=0,分解因式得:(y﹣1)(y+3)=0,解得:y=1或y=﹣3,经检验y=1与y=﹣3都为分式方程的解,则x2+9x的值为﹣3或1,故选B【点评】此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.17.已知x为实数,且﹣(x2+x)=2,则x2+x的值为()A.0 B.1 C.2 D.x2【分析】根据换元法,可得u=x2+x,根据解分式方程,可得答案.【解答】解:设u=x2+x,得﹣μ=2.3﹣u2=2u,解得u1=﹣3,u2=1.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,故不符合题意.故x2+x的值为1.故选:B.【点评】本题考查了用换元法解方程,解题关键是能准确的找出可用替换的代数式x2+x,再用字母u代替解方程.18.解方程﹣=2时,如果设=y,则原方程可化为关于y的整式方程是()A.3y2+2y+1=0 B.3y2+2y﹣1=0 C.3y2+y+2=0 D.3y2+y﹣2=0【分析】把看作整体,与互为倒数,再得出方程即可.【解答】解:∵=y,∴=,则原方程变形为﹣3y=2,整理得3y2+2y﹣1=0,故选B.【点评】本题考查用换元法使分式方程简便.换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程.应注意换元后的字母系数.19.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0【分析】直接利用已知将原式用y替换得出答案.【解答】解:∵设=y,∴﹣=3,可转化为:y﹣=3,即y﹣﹣3=0.故选:B.【点评】此题主要考查了换元法解分式方程,正确得出y与x值间的关系是解题关键.20.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或1【分析】利用完全平方公式可把原式变为(x﹣)2+x﹣﹣2=0,用十字相乘法可得x﹣的值.【解答】解:x2+﹣2+x﹣﹣2=0∴(x﹣)2+(x﹣)﹣2=0解得x﹣=﹣2或1.故选D【点评】本题的关键是把x﹣看成一个整体来计算,即换元法思想.二.填空题(共15小题)21.用换元法解方程时,可设,则原方程可化为关于y的整式方程为y2+2y+1=0.【分析】换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是,设,换元后整理即可求得.【解答】解:∵,∴y++2=0,整理得:y2+2y+1=0.故答案为:y2+2y+1=0.【点评】考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.22.已知分式方程+=3,如果t=,那么原方程可化为关于t的整式方程是t2﹣3t+2=0.【分析】把t=代入方程,得出t+=3,整理成一般形式即可.【解答】解:∵+=3,t=,∴t+=3,整理得:t2﹣3t+2=0,故答案为:t2﹣3t+2=0.【点评】本题考查了用换元法解分式方程的应用,解此题的关键是能正确换元,题目是一道比较典型的题目,难度不是很大.23.已知关于x的方程+=,如果设=y,那么原方程化为关于y的方程是3y+=.【分析】先根据=y得到,再代入原方程进行换元即可.【解答】解:由=y,可得∴原方程化为3y+=故答案为:3y+=【点评】本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.24.用换元法解分式方程时,如果设,将原方程化为关于y 的整式方程,那么这个整式方程是y2+y﹣3=0.【分析】根据题意,设=y,则=,代入分式方程,整理可得整式方程.【解答】解:由题意,设=y,则=,∴原方程化为:y﹣+1=0,∴整理得:y2+y﹣3=0.故答案为y2+y﹣3=0.【点评】本题考查用换元法将分式方程化为整式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,在解方程时能够使问题简单化.25.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y 的整式方程是y2﹣3y+2=0.【分析】方程各项具备倒数关系,设y=x2+2x,则原方程另一个分式为.可用换元法转化为关于y的分式方程,然后去分母即可求解.【解答】解:设y=x2+2x,则原方程可化为y+=3,去分母,得y2﹣3y+2=0.故答案是:y2﹣3y+2=0.【点评】本题考查了换元法解分式方程.这是常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.26.在分式方程+=1中,令y=,则原方程可化为关于y的方程是y2﹣y+2=0.【分析】设y=,则=,原方程可化为y+=1,求出即可.【解答】解:设y=,则原方程可化为y+=1,即y2﹣y+2=0,故答案为:y2﹣y+2=0.【点评】本题考查了解分式方程的应用,能正确换元是解此题的关键,难度适中.27.解方程=3时,设y=,则原方程化为关于y的整式方程为y2﹣3y+2=0.【分析】设y=,将方程变形即可得到结果.【解答】解:根据题意得:y+=3,去分母得:y2﹣3y+2=0,故答案为:y2﹣3y+2=0【点评】此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.28.在分式方程中,令,则原方程可化为关于y的整式方程是y2﹣4y+3=0.【分析】方程根据y=变形即可得到结果.【解答】解:分式方程变形得:+3×=4,根据y=,得到=,分式方程整理得:y+=4,整理得:y2﹣4y+3=0,故答案为:y2﹣4y+3=0【点评】此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.29.已知方程(+1)2﹣﹣3=0,如果设+1=y,那么原方程化为关于y的方程是y2﹣2y﹣3=0.【分析】直接利用已知得出=y,进而将原式变形求出答案.【解答】解:∵设+1=y,则=y,∴(+1)2﹣﹣3=0∴y2﹣2y﹣3=0.故答案为:y2﹣2y﹣3=0.【点评】此题主要考查了换元法解分式方程,正确用y替换x是解题关键.30.用换元法解方程时,如果设,那么原方程可化为关于y的整式方程,它可以是y2﹣3y﹣2=0.【分析】将分式方程中的换为y,换为,去分母即可得到结果.【解答】解:根据题意得:y﹣=3,去分母得:y2﹣3y﹣2=0.故答案为:y2﹣3y﹣2=0.【点评】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.31.用换元法解分式方程﹣=﹣1时,如果设=y,并将原方程化为关于y的整式方程,那么这个整式方程是y2+y﹣2=0.【分析】根据题意,设=y,则=,代入分式方程,两边同时乘以y,整理可得整式方程.【解答】解:设=y,则=,原方程化为:y﹣=﹣1,两边同时乘以y,整理得:y2+y﹣2=0.故答案为y2+y﹣2=0.【点评】本题考查用换元法将分式方程化为整式方程,用换元法解分式方程是常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.32.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.【点评】本题考查用换元法使分式方程简便.换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程.应注意换元后的字母系数.33.用换元法解方程﹣2•+1=0时应设y=.【分析】和是倒数关系,设两个中的任何一个都可以.【解答】解:设y=,则原方程变为y﹣+1=0,故答案为:.【点评】此题主要考查了换元法解分式方程,关键是注意观察方程特点.34.用换元法解方程+=,设y=,那么原方程化为关于y的整式方程是3y+=.【分析】根据y=,将方程变形即可.【解答】解:根据题意得:3y+=,故答案为:3y+=【点评】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.35.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是2.【分析】根据换元法,可得答案.【解答】解:设x+=u,原方程等价于u2﹣u﹣2=0,解得u=2或u=﹣1,x+=2或x+=﹣1(不符合题意,舍),故答案为:2.【点评】本题考查了解方程,利用换元法是解题关键.三.解答题(共15小题)36.解方程:()2﹣﹣6=0.【分析】根据换元法解方程,可得一元二次方程,根据解一元二次方程的方法,可得方程的解,根据解分式方程,可得答案.【解答】解:设u=,方程等价于u2﹣u﹣6=0,解得u=3或u=﹣2,或,解得x=﹣或x=﹣.【点评】本题考查了换元法解分式方程,换元是解分式方程的关键.37.解方程:.【分析】本题考查用换元法解分式方程的能力.可根据方程特点设,则原方程化为y2﹣y﹣2=0.解一元二次方程求y,再求x.【解答】解:设,则原方程化为y2﹣y﹣2=0(2分)解得y1=2,y2=﹣1(2分)当y1=2时,得x=﹣1(1分)当y1=﹣1时,得(1分)检验:当x1=﹣1时,x(x﹣1)=2≠0,当x2=时,x(x﹣1)=﹣≠0,∴x1=﹣1,是原方程的解.(1分)【点评】本题考查了用换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根38.阅读下面材料,解答后面的问题解方程:.解:设,则原方程化为:,方程两边同时乘以y得:y2﹣4=0,解得:y=±2,经检验:y=±2都是方程的解,∴当y=2时,,解得:x=﹣1,当y=﹣2时,,解得:x=,经检验:x=﹣1或x=都是原分式方程的解,∴原分式方程的解为x=﹣1或x=.上述这种解分式方程的方法称为换元法.问题:(1)若在方程中,设,则原方程可化为:;(2)若在方程中,设,则原方程可化为:;(3)模仿上述换元法解方程:.【分析】(1)和(2)将所设的y代入原方程即可;(3)利用换元法解分式方程,设,将原方程化为,求出y的值并检验是否为原方程的解,然后求解x的值即可.【解答】解:(1)将代入原方程,则原方程化为;(2)将代入方程,则原方程可化为;(3)原方程化为:,设,则原方程化为:,方程两边同时乘以y得:y2﹣1=0解得:y=±1,经检验:y=±1都是方程的解.当y=1时,,该方程无解;当y=﹣1时,,解得:;经检验:是原分式方程的解,∴原分式方程的解为.【点评】本题考查了分式方程的解法,关键是如何换元,题目比较好,有一定的难度.39.解方程:+=4.【分析】可根据方程特点设y=,则原方程可化为y2﹣4y+3=0.解一元二次方程求y,再求x.【解答】解:设y=,得:+y=4,y2﹣4y+3=0,解得y1=1,y2=3.当y1=1时,=1,x2﹣x+1=0,此方程没有数解.当y2=3时,=3,x2﹣3x+1=0,解得x=.经检验x=都是原方程的根,所以原方程的根是x=.【点评】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.40.解方程:.【分析】设=y,则原方程化为y=+2y,解方程求得y的值,再代入=y 求值即可.结果需检验.【解答】解:设=y,则原方程化为y=+2y,解之得,y=﹣.当y=﹣时,有=﹣,解得x=﹣.经检验x=﹣是原方程的根.∴原方程的根是x=﹣.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.41.解方程:.【分析】此题应先设3x﹣1为y,然后将原方程化为3y﹣2=5解得y=,最后求出x的值.【解答】解:设3x﹣1=y则原方程可化为:3y﹣2=5,解得y=,∴有3x﹣1=,解得x=,将x=代入最简公分母进行检验,6x﹣2≠0,∴x=是原分式的解.【点评】本题主要考查用换元法解分式方程,求出结果一定要注意必须检验.42.解方程:﹣﹣3=0.【分析】将看做一个整体,左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个方程,求出方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分解因式得:(+1)(﹣3)=0,可得:+1=0或﹣3=0,解得:x=1或x=3,经检验都是分式方程的解.【点评】此题考查了换元法解分式方程,解题的关键是将看做一个整体.43.解方程:.【分析】设x2+3x=y,方程化为关于y的方程,去分母转化为整式方程,求出整式方程的解得到y的值,即为x2+3x,进而求出x的值,代入检验即可得到分式方程的解.【解答】解:令x2+3x=y,方程化为y﹣8=,去分母得:y2﹣8y﹣20=0,即(y﹣10)(yx+2)=0,解得:y=10或y=﹣2,∴x2+3x=10或x2+3x=﹣2,解得x1=﹣5,x2=2,x3=﹣1,x4=﹣2,经检验:x1=﹣5,x2=2,x3=﹣1,x4=﹣2都是原方程的根.则原方程的根是x1=﹣5,x2=2,x3=﹣1,x4=﹣2.【点评】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.44.解方程:x2+3x﹣=8.【分析】根据换元法:设u=,可得关于u的分式方程,根据解方程,可得答案.【解答】解:设u=,原方程等价于﹣20u=8.化简,得20u2+8u﹣1=0.解得u=,u=﹣.当u=时,x2+3x=10.解得x=﹣5,x=2,经检验x=﹣5,x=2是原分式方程的解;当u=﹣时,x2+3x+2=0.解得x=﹣1,x=﹣2,经检验:x=﹣1,x=﹣2是原分式方程的解;综上所述:x=﹣5,x=2,x=﹣1,x=﹣2是原分式方程的解.【点评】本题考查了解分式方程,换元法是解题关键,要检验分式方程的解,以防产生增根,体现了化繁为简的化归转化思想.45.先阅读理解下面的例题,再按要求解答下列问题:解方程()2﹣6()+5=0解:令=y,代入原方程后,得:y2﹣6y+5=0(y﹣5)(y﹣1)=0解得:y1=5 y2=1∵=y∴=5或=1①当=1时,方程可变为:x=5(x﹣1)解得x=②当=1时,方程可变为:x=x﹣1此时,方程无解检验:将x=代入原方程,最简公分母不为0,且方程左边=右面∴x=是原方程的根综上所述:原方程的根为:x=根据以上材料,解关于x的方程x2++x+=0.【分析】先变形,设x+=a,则原方程化为a2+a﹣2=0,求出a的值,再代入求出x的值,最后进行检验即可.【解答】解:x2++x+=0,(x+)2+x+﹣2=0,设x+=a,则原方程化为:a2+a﹣2=0,解得:a=﹣2或1,当a=﹣2时,x+=﹣2,x2+2x+1=0,解得:x=﹣1,当a=1时,x+=1,x2﹣x+1=0,此方程无解;经检验x=﹣1是原方程的解,所以原方程的解为x=﹣1.【点评】本题考查了解分式方程的应用,能正确换元是解此题的关键.46.解方程:.【分析】因为=3×,所以可设=y,然后对方程进行整理变形.【解答】解:设y=,则原方程化为:y﹣+2=0,整理,得y2+2y﹣3=0,解得:y1=﹣3,y2=1.当y1=﹣3时,=﹣3,得:3x2+2x+3=0,则方程无实数根;当y2=1时,=1,得:x2﹣2x+1=0,解得x1=x2=1;经检验x=1是原方程的根,所以原方程的根为x=1.【点评】此题考查的是换元法解分式方程,用换元法解分式方程,可简化计算过程,减少计算量,是一种常用的方法.要注意总结能用换元法解的分式方程的特点.47.在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.老师:同学们,今天我们来探索如下方程的解法:()2﹣4()+4=0.学生甲:老师,原方程可整理为﹣+4=0,再去分母,行得通吗?老师:很好,当然可以这样做.再仔细观察,看看这个方程有什么特点?还可以怎样解答?学生乙:老师,我发现是整体出现的!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--换元法.题库学生版
————————————————————————————————作者:————————————————————————————————日期:
换元法
教学目标
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”
三、换元思想
解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.
【例 1】计算:
1111111111 (1)()(1)()
2424624624 ++⨯++-+++⨯+
【巩固】
11111111111111 (1)()(1)()
23423452345234 +++⨯+++-++++⨯++
【巩固】计算:
621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
【巩固】计算:(0.10.210.3210.4321
+++)⨯(0.210.3210.43210.54321
+++)-
(0.10.210.3210.43210.54321
++++)⨯(0.210.3210.4321
++)
例题精讲
【巩固】 计算下面的算式
(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)
【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。

【巩固】 计算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)
⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭
【巩固】 计算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
= 。

【例 2】计算:
1111111111 11
2200723200822008232007⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-+++⨯+++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
【巩固】
1111111111111111 11213141213141511121314151213141⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
【巩固】计算1111111111111111
())() 5791179111357911137911 +++⨯+++-++++⨯++
()(
【巩固】计算
111111111111111111 11
234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
【例 3】 计算:
212391239112923912341023410223103410⎛⎫⎛⎫⎛⎫⎛⎫+++++++++⨯-++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
【例 4】 计算
111121113111431
141
20092009++
++
++
+++
+
【例 5】 计算:2222281181181111111
8118118811⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-+÷++⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎣⎦
【例 6】计算:
2
2010 200920111
⨯+
【巩固】计算200820092007 200820091
+⨯
⨯-
(4级)。

相关文档
最新文档