五年级奥数综合问题 第三讲 方阵问题
五年级奥数讲义题
第3讲巧用运算定律一、复习巩固(比一比,练一练):25×125×32 2.5×1.25×3.2二、例题:29.5×47.5+62.1×52.2+47.8×32.6三、(举一反三):12.5×4.8×3.2 45×2.8 35×5.6 19.6×36+19.6×46+9.8×38 85×3.4+16×3.45.8×6.9+0.58×32-5.8×0.1 6.5×38-2.5×38+4×62消去问题在有些应用题中,给出了两个或两个以上的未知数量间的关系,要求出这些未知的数量,先把题中的条件按对应关系一一排列出来,思考时可以通过比较条件,分析对应的未知量的变化情况,设法消去一个或一些未知量,从而把一道数量关系较复杂的题目,变成比较简单的题目解答出来,这种方法叫做消去法。
例:小红在商店里买了4块橡皮和3把小刀,共付0.59元。
小黄买同样的2块橡皮和3把小刀,共付0.43元。
问:一块橡皮和一把小刀的价钱各是多少元?试试看1.买3枝钢笔,2块橡皮共付4.98元。
若买5枝钢笔、2块橡皮要付7.98元。
问一枝钢笔、一块橡皮各值多少元?2. 小卫到百货商店买了2枝圆珠笔和1枝钢笔,用去人民币5.5元。
如果买一枝圆珠笔和2枝钢笔要人民币6.5元,问1枝圆珠笔和1枝钢笔价格各是多少元?3. 2份蛋糕和2杯饮料共用28元,1份蛋糕和3份饮料共用去18元,问一份蛋糕和一杯饮料各需多少元?第2讲正方形队列同学们,还记得国庆时激动人心的阅兵式吗?陆海空三军仪仗队都是方阵。
方阵可以由各种不同的实物排成,既有实心方阵也有空心方阵。
这一讲,我们就来一起研究这些方阵。
例题1:有一个正文形花圃,四个角各摆了1盆花。
如果每边都摆了5盆花,那么四边一共摆了几盆花?试试看:有一个正方形池塘,四个角各栽了1棵树,如果每边栽8棵树,那么四边一共栽了几棵树?例题2:80个小朋友手拉手围成一个正方形,四个角上各站着1个小朋友,则正方形的每条边上有多少个小朋友?试试看:在正方形围墙四周等距离地装有96盏灯,四个角上各装有1盏,这样每边有多少盏灯?例题3:五年级的部分同学参加运动会队列训练,排成如右图所示的正方形,最外层每边有5人。
三年级方阵问题的所有公式
三年级方阵问题的所有公式好嘞,以下是为您生成的关于三年级方阵问题的所有公式的文章:在咱们小学三年级的数学世界里,方阵问题就像是一个神秘的小城堡,里面藏着好多有趣的公式和秘密。
今天咱们就一起来揭开这个小城堡的神秘面纱!先来说说方阵的定义吧。
方阵呀,就是士兵们排成的那种整整齐齐的正方形队伍。
在数学里呢,就是每行每列人数都相等的正方形排列。
那方阵问题都有哪些公式呢?咱们一个一个来看。
首先是最基本的,方阵总人数 = 每边人数×每边人数。
比如说一个方阵每边有 5 个人,那总人数就是 5×5 = 25 人。
还有方阵最外层人数的公式。
方阵最外层人数 = 每边人数×4 - 4 。
我给您讲讲为啥是这样哈。
咱们就拿一个每边有 6 个人的方阵来说。
每边 6 个人,四条边算下来应该是 6×4 = 24 人,但是四个角上的人都被重复计算了一次,所以要减去 4 ,就是 20 人。
再来说说相邻两层之间人数相差 8 这个事儿。
比如说有个外层每边是 10 人的方阵,那外层人数就是 10×4 - 4 = 36 人。
里层每边就少 2 个人,变成 8 个人,里层人数就是 8×4 - 4 = 28 人,两层相差 36 - 28 = 8 人。
记得有一次,我在课堂上给孩子们讲方阵问题。
当时我在黑板上画了一个方阵,让孩子们数一数总人数。
结果有的孩子横着数,有的孩子竖着数,还有的孩子直接用公式算。
看着他们那认真又有点小迷糊的样子,真是可爱极了。
有个小家伙怎么都算不对,急得小脸通红。
我走过去,耐心地引导他,从每边人数开始,一步一步带着他用公式计算,最后他终于算出了正确答案,那开心的笑容就像春天里绽放的花朵。
讲完了公式,咱们来做几道练习题巩固一下。
比如说,有一个方阵最外层一共有 32 人,那每边有多少人呢?咱们就用最外层人数的公式倒推一下。
先加上 4 ,32 + 4 = 36 人,再除以 4 ,36÷4 = 9 人,所以每边就是 9 人。
小学生奥数方阵问题应用题(最新)
1.小学生奥数方阵问题应用题1、幼儿园小朋友在老师指导下,把棋子排成2个正方形方阵,如果在这个方阵中去掉横竖各一排,则这个方阵少了9枚棋子,那么这个方阵共有多少枚棋子?2、活动中,老师把学生组成一个正方形方队,其中有两行、两列都是男生,男生共有36人,其余是女生,问参加这个方队的学生共有多少人?3、在一块正方形草地四周种树,四个角上都种上一棵,每边种10棵,这块草地四周共种树多少棵?4、晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子11枚。
晶晶摆这个方阵共享围棋子多少枚?5、三年级学生组成一个正方形方队,共8行,每行8人,后来由于服装不够,只好去掉一行一列,问去掉了多少学生?2.小学生奥数方阵问题应用题1、某校五年级学生排成一个方阵,最外一层的人数为60人。
问方阵外层每边有多少人?这个方阵共有五年级学生多少人?2、晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个。
晶晶摆这个方阵共享围棋子多少个?3、三年级学生排成一个方阵最外一层的人数是60人请问方阵外层每边有多少人这个方阵共有三年级学生多少人?4、弟弟用围棋子摆成一个三层的`空心方阵、最外一层每边有14个棋子。
问弟弟摆这个方阵,共享了多少个棋子?5、三年级学生组成一个正方形方队,共8行,每行8人,后来由于服装不够,只好去掉一行一列,问去掉了多少学生?3.小学生奥数方阵问题应用题1、有一个用圆片摆成的两层中空方阵,外层每边有16个圆片,如果把内层的圆片取出来,在外层再摆一层,变成一个新的中空方阵,应再增加多少圆片?2、解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?3、有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?4、某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?5、六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?4.小学生奥数方阵问题应用题1、一个七层空心方阵最外一层共有80人,则最内层共有()人。
五年级数学方阵公式
五年级数学方阵问题公式如下:
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是:
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一先看作实心方阵,则总人数有:
10×10=100(人)
再算空心部分的方阵人数。
从外往里,每进一层,每边人数少2,则进到第四层,每边人数是:
10-2×3=4(人)
所以,空心部分方阵人数有:
4×4=16(人)
故这个空心方阵的人数是:
100-16=84(人)
解二直接运用公式。
根据空心方阵总人数公式得:(10-3)×3×4=84(人)。
五上数学思维拓展《方阵问题》
★解题思路:(1)实心方阵:每边数×每边数=总数(每边数-1)×4=每层数每层数÷4+1=每边数(2)空心方阵:大实心方阵-小实心方阵=总数(每边数-层数)×层数×4=总数1. 100 名同学排成一个方阵,后来又减去一行一列,问减少了多少人?解:100-(10-1)×(10-1)=19 (人)答:减少19 人.2. 有一个用棋子摆成的方阵,如果再放入19 枚棋子,可使每行每列上的棋子各增加一枚.原来的方阵中有多少棋子?解:原来每边上的棋子数(19+1)÷2-1=9 (枚);原来方阵中棋子总数9×9=81 (枚).答:原来的方阵中有81 枚棋子.3. 180 枚棋子摆成一个三层的空心方阵,最外层有多少棋子?最外层每边有多少棋子?解:180÷3+8=68 (枚);68÷4+1=18 (枚).答:最外层的有68 枚,最外层每边上有18 枚棋子4. 某校四年级学生排成一个方阵,最外一层的人数是60 人,问方阵外层每边有多少人?这个方阵共有四年级学生多少人?解:外层每边60÷4+1=16(人);总人数16×16=256(人).答:方阵外层每边有16 人,这个方阵共有四年级学生256 人.5. 在一次团体操表演中,有一个中空方阵最外层有64 人,最内层有32 人.参加团体操表演的共多少人?解:外层每边人数64÷4+1=17 (人);内层每边人数32÷4+1=9 (人);中空方阵人数17×17-(9-2)×(9-2)=240 (人).答:参加团体操表演的共240 人.6. 将一个每边16 枚棋子的实心方阵变成一个四层的中空方阵,此中空方阵的最外层每边有多少棋子?解:16×16÷4÷4+4=20 (枚).答:最外层每边有20 枚棋子.7. 252 名同学组成一个三层的空心方阵.如果要在方阵内部再增加一层,组成四层空心方阵要增加多少人?如果要在外部增加一层,又要增加多少人?解:中间层人数252÷3=84 (人);向里增加一层需84-8×2=68 (人);向外增加一层需84+8×2=100 (人).答:向内部增加一层需增加68 人,向外部增加一层需100 人.8. 同学们要把操场的盆花摆成实心方阵,结果还剩4 盆,如果增加一行一列,又少15 盆.求共有多少盆花?解:增加的那条边上有花(4+15+1)÷2=10 (盆);实际有花10×10-15=85 (盆).答:共有85 盆花.9. 有一群学生排成三层中空方阵,多9 人.如中空部分增加两层,又少15 人.问有学生多少人?解:最外层人数(9+15-8)÷2+8×4=40(人);总人数40+(40-8)+(40-8×2)+9=105(人).答:有学生105 人.10. 用若干围棋子摆成一个方阵,有两行两列都是黑棋,共48 枚,其余都是白棋,白棋有多少枚?解:每条边上棋子数(48+4)÷4=13(枚);共有棋子13×13=169(枚);白棋有169-48=121(枚).答:白棋有121 枚.11. 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14 个.晶晶摆这个方阵共用围棋子多少个?解:最外层(14-1)×4=52(个);中间层52-8=44(个);三层共有44×3=132(个).答:摆这个方阵共用围棋子132 个。
小学三四年级奥数之方阵问题
同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,今天我们将共同研究和分析这类问题。
士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。
(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求了。
解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。
例2.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。
(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。
解:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个)(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)答:这个方阵最里层一周有40个棋子;摆这个空心方阵共用144个棋子。
小学五年级奥数—植树问题中的方阵问题解析
11
1.小明用玻璃珠摆成一个三层空心 方阵,如果最外层每边有玻璃珠19 颗,小明摆这个方阵最里层一周共 有多少颗玻璃珠?摆这个三层空心 方阵共用了多少颗玻璃珠?
12
解
析
三层空心方阵
空心、实心方阵每层的个数是一样的, 每层的总个数=这层的每边个数×4-4
空心方阵的总数=每层的总个数相加
每向里一层,每边的个数比外一层的每边的个数少2。
8
3.学校体操队排成方阵进行表演, 最外围的一圈有队员64人,如果在 这圈的外围再增加一圈队员以扩大 方阵,需要增加多少人?这时整个 方阵共有多少人?
9
解 析
实心方阵数学中一个重要的数量关系式: 方阵总人数=行数×列数 每层的总个数=这层的每边个数×4-4
每向里一层,每边的个数都要在上一层的基础上减去2。
3.解答这类问题,要仔细看清楚题目,是直线型还是环型。 如果是直线型,要弄清楚是路的一边栽树,还是路的两边 栽树;区分是两端都栽树、一端不栽还是两端都不裁。
3
1.四年级参加运动会入场式,排成 一个方阵,最外层一周的人数是32 人,问方阵最外层每边的人数是多 少?这个方阵共有多少人?
解 析
方阵是一部分人或物排列成正方形队列的形式。 方阵分为实心方阵和空心方阵。
=(最外层的每边个数-2)×4-4 =最外层的每边个数×4-2×4-4 =最外层的每边个数×4-4-8
每向里一层的总个数,都 要比外一层的总个数少8。
16
252名学生组成一个三层的中空方阵
每向里一层的总个数,都要比外一 层的总个数少8。
最外层-8=中间层 中间层-8=最里层
根据平均数的计算方式
中间一层的人数: 252÷3=84(人)
13
4数学科目五年级教案、方阵问题
【解法探索】 例1
每边有( 四周共有(
)个 )个
, 。
每边有( 四周共有(
)个 )个
, 。
每边有( 四周共有(
)个 )个
, 。
你能概括出每边个数与四周总个数的关系吗? 四周总个数= 每边个数= 例 2 求下面各实心方阵的个数。
实心方阵每边有 ( ) 个 一共有( )个 。
, 实心方阵每边有 ( ) 个 一共有( )个 。
知识能力情感能力实际动手能力运算能力由浅入深由旧知识引出新知识从知识点到解题再到总结采取小步子原理分化难题最后解决难题教学步骤及教学方法课程资料学生排队士兵列队横着排叫做行竖着排叫做列
个性化教案
授课日期: 2013 年 7月 日
学生姓名 年 级 小五
教师姓名 学 科 数学
授课时长 课 型 一对一
2H
, 实心方阵每边有 ( ) 个 一共有( )个 。
,
你能概括出实心方阵每边个数与总个数的关系吗?
例 3 求下面各空心方阵的个数。 (1)右图是两层空心方阵,从外往里数,第一层每边有( )个,
四周一共有( )个;第二层每边有( )个,四周一共有( )个。 中小学全脑教育培训专家 3/6
空心方阵一共有(
3. 有 100 个少先队员参加广播操比赛,十人一行,排成了一个正方形队。这个正 方形四周站了多少个少先队员?
4. 在一块正方形场地的四周竖电线杆四个角上都竖 1 根,一共竖 28 根,正方 形场地每边竖多少根电线杆?
中小学全脑教育培训专家
2/6
5. 某会议室的天棚是正方形,准备在天棚四周每边安装 8 灯(包括四个角上都安 装 1 盏) ,四周一共安装多少盏灯?
例 1:有一条公路长 900 米,在公路的一侧从头到尾每隔 10 米栽一根电线杆,可栽多少
小学生数学公式方阵问题
小学生数学公式方阵问题
小学生数学公式方阵问题
方阵问题公式
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)层数4=中空方阵的人数。
总人数4层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一先看作实心方阵,则总人数有
1010=100(人)
再算空心部分的`方阵人数。
从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-23=4(人)
所以,空心部分方阵人数有
44=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二直接运用公式。
根据空心方阵总人数公式得
(10-3)34=84(人)。
小学五年级奥数练习题:质数与合数、方阵问题
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学五年级奥数:质数与合数、⽅阵问题》,希望帮助到您。
【质数与合数】 1、有⼈说:“任何7个连续整数中⼀定有质数。
”请你举⼀个例⼦,说明这句话是错的。
2、从⼩到⼤写出5个质数,使后⾯的数都⽐前⾯的数⼤12。
3、9个连续的⾃然数,它们都⼤于80,那么其中质数最多有多少个? 4、⽤1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要⽤到并且只能⽤⼀次,那么这9个数字最多能组成多少个质数? 5、已知⼀个两位数除1477,余数是49。
求满⾜这样条件的所有两位数。
6、某校师⽣为贫困地区捐款1995元。
这个学校共有35名教师,14个教学班。
各班学⽣⼈数相同且多于30⼈不超过45⼈。
如果平均每⼈捐款的钱数是整数,那么平均每⼈捐款多少元? 7、在做⼀道两位数乘以两位数的乘法题时,⼩马虎把⼀乘数中的数字5看成8,由此得乘积为1872。
那么原来的乘积是多少? 8、已知两个数的和被5除余1,它们的积是2924,那么它们的差等于多少? 9、在射箭运动中,每射⼀箭得到的环数或者是“0”(脱靶),或者是不超过10的⾃然数。
甲、⼄两名运动员各射了5箭,每⼈5箭得到的环数的积都是1764,但是甲的总环数⽐⼄少4环。
求甲、⼄的总环数各是多少? 10、⼀个长⽅体的长、宽、⾼都是整数厘⽶,它的体积是1998⽴⽅厘⽶,那么它的长、宽、⾼的和的最⼩可能值是多少厘⽶?【⽅阵问题】 1、要排成⼀个4⾏4列的正⽅形⽅阵,需要()名同学。
2、学⽣进⾏军训队列表演,排成⼀个7⾏7列,如果去掉⼀⾏⼀列,要去掉()⼈,还剩下()⼈。
3、某年级同学参加⼴播操⽐赛,因服装问题要横竖各减少⼀排,这样共去掉了19⼈,则此年级原准备()⼈参加⽐赛。
小学生奥数练习题方阵问题、归一问题
小学生奥数练习题方阵问题、归一问题1.小学生奥数练习题方阵问题篇一1、某班抽出一些学生参加节日活动表演,想排成一个正方形的方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?(7+4+1)÷2=6(人),6×6-4=32(人)答:共抽出学生32人2、棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?8×8=64(粒)(8-1)×4=28(粒)答:棋子总数64粒,最外层28粒。
3、设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人?解:设最外层的每边人数是x人,则:(x-6)×6×4=360,x=21答:最外层每边人数是21人4、某校学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?(96÷4+1)×(96÷4+1)=625(名)答:这个学校有学生625名。
5、明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?(15-5)×4=40(个)3×40+3×8=144(个)答:这个方阵最里层一周共有40个棋子,三层空心方阵共用144个棋子。
2.小学生奥数练习题方阵问题篇二1、用若干棋子摆成中实方阵,再把这个中实方阵拆开,用这些棋子摆成一个只有一层的中空方阵,求棋子有多少个?2、仪仗队员组成两个实心方阵,甲方阵每边12人,后来两队合在一起排成一个中空方阵的丙方阵,丙方阵最外层一边人数比乙方阵最外层一边人数多4人,又原来甲方阵的人正好填满丙方阵空心。
求原乙方阵每边的人数(指最外层一边人数)。
3、原排成方阵的若干同学,改排成每边4行的中空方阵,改编后最外面一行的人数比原来方阵每边人数多16人,求学生人数。
奥数之方阵问题全面汇总试题
方阵问题知识概要方阵可以分为实心方阵和空心方阵。
计算组成实心方阵、空心方阵的物体的个数是主要的方阵问题。
方阵的基本特点是:方阵中,里一层总比外一层的一边少2个物体,里一层物体的个数一定比个一层物体总个数少8个。
实心方阵中物体个数=最外层的一边个数×最外层一边的个数;(每边数—1)×4=每层数;每层数÷4+1=每边数空心方阵中物体的个数=(最外层一边的个数—层数)×层数×41、有一个正方形的稻田,四个角上都放1个稻草人,如果每边放5个,四边共放多少个稻草人?2、有围棋子若干,恰好可以排成每边10个的正方形,棋子总数多少个?3、有一个正方形池塘,四个角上都栽1棵树,一共栽了28棵树,那么每边栽多少棵?4、同学们排成一个两层空心方阵,外层每边8人,这个方阵一共有多少人?5、把若干个棋子摆成一个三层的空心方阵,最外层每边12个棋子,求这个方阵共有多少个棋子?6、同学们在军训时排成了一个由204人组成的三层空心方阵,求最外面一层每边有多少人?7、某小学举行运动会,同学们排成正方形队列参加团体操表演。
如果在这个正方形队列中减少一行一列,则要减少15人,问参加团体操表演的有多少同学?8、小刚在用棋子摆好的实心阵上又填了17枚棋子,使它的横竖各增加一排,成了大一点的实心方阵,求原来实心方阵有多少枚棋子?9、同学们在军训时,进行队列表演,由于场地有限,在原来的正方形队列中,横竖各减少一排,一共去掉了21名同学原来参加队列表演的有多少人?10、运动会上,在正方形操场的四周都插上彩旗,四个角上都插一个,每边插12个,那么一共插多少个?11、四年级同学排成了一个每边10人的中空方阵,共2层,求这个方阵总人数?12、在儿童公园的一次菊花展上,用120盆菊花摆成一个三层空心方阵,这个方阵最外层每边有多少盆花?13、一个中空方阵的队列,最外层每边18人,最内层每边10人。
这个队列共有多少人?14、用64枚棋子摆成一个两层中空方阵,如果想在外面再增加一层,问需要增加多少枚棋子?15、学校组织一次团体操表演,把男生排列成一个实心方阵,又在这个实心方阵四周站一排女生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数综合问题 第三讲 方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:1.总人数=最外层每边人数的平方(方阵问题的核心)2.外一层每边人数比内一层每边人数多2相邻两层之间,每层的总数相差8 3.最外层每边人数=(最外层总人数÷4)+1 最外层总人数 = (最外层每边人数-1) ×4 4.去掉一行、一列的总人数=去掉的每边人数×2-1 5. 中空方阵总个数=(每边个数一层数)×层数×4 例1:学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人? 解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列 的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)。
【巩固1】某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?【巩固2】晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?【巩固3】一个正方形的队列横竖各减少一排共27人,求这个正方形队列原来有多少人?【巩固4】小红摆成一个正方形实心方阵用棋子100枚,最外边的一层共多少枚棋子?例2:参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这 个正方形队列减少一行和一列,则要减少33人。
问参加团体操表演的运动员有多少人?解析:从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:去掉一行、一列的总人数=去掉的每边人数×2-1解 :方阵问题的核心是求最外层每边人数。
原题中去掉一行、一列的人数是33,则去掉的一行(或一列) 人数=172)133(=÷+ 人方阵的总人数为最外层每边人数的平方, 所以总人数为2891717=⨯(人)【巩固】 参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列, 如果去掉一行一列,请问:要去掉多少名学生?还剩下多少名学生?例3:解放军战士排成一个每边12人的中空方阵,共四层,求总人数?解法1:这样想:把中空方阵的总人数,看作中实方阵总人数减去空心方阵人数。
(1)中实方阵总人数:12×12=144(人)(2)第四层每边人数:12-2×(4-1)=6(人)(3)空心方阵人数:(6-2)×(6-2)=16(人)(4)中空方阵人数:144-16=128(人)答:总人数是128人。
小结:中空方阵总人数=外边人数×外边人数-(内边人数-2)×(内边人数-2)解法2:这样想:把中空方阵分成四个相等的长方形。
(1)每个长方形的长=外边人数-层数12-4=8(人)(2)每个长方形的宽是层数:4人(3)总人数:8×4×4=128(人)答:总人数是128人。
小结:中空方阵总人数=(每边人数-层数)×层数×4【巩固】学校开展联欢会,要在正方形操场四周插彩旗。
四个角上都插一面,每边插7面。
一共要准备多少面旗子?例4:一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?解析:①从已知条件中可以知道大三角形的边长是小三角形边长的2倍.又知道每个小三角形的边上均匀栽9株,则大三角形边上栽的棵数为:17129=-⨯(棵)。
②又知道这个大三角形三个顶点上栽的一棵花是相邻的两条边公有的,所以大三角形三条边上共栽花:483)117(=⨯-(棵)。
③.再看图中画斜线的小三角形三个顶点正好在大三角形的边上.再计算大三角形栽花棵数时已经计算过一次,所以小三角形每条边上栽花棵数为:729=-(棵)解:大三角形三条边上共栽花:483)1129(=⨯--⨯(棵)中间画斜线小三角形三条边上栽花:213)29(=⨯-(棵)整个花坛共栽花:692148=+(棵)答:大三角形边上共栽花48棵,整个花坛共栽花69棵。
【巩固】同学们做早操,排成一个正方形的方阵,从前、后、左、右数,小明都是第5个,这个方阵共有多少人?例5:小明用围棋子摆了一个五层中空方阵,一共用了200枚棋子,请问:最外边一层每边有多少枚棋子?解析1:利用“相邻两层之间,每层的总数相差8”的特点,可知最外层共有棋子数:(200+8+8×2+8×3+8×4)÷5=56(个)最外层每边的棋子数:56÷4+1=15(个)解析2:如练习中的图,把棋子分成相等的四部分。
每一部分的棋子数:200÷4=50(个)每一部分每排的棋子数:50÷5=10(个)最外层每边的棋子数:10+5=15(个)综合列式为:200÷4÷5+5=15(个)答:最外边一层每边有15枚棋子。
【巩固】游行队伍中,手持鲜花的少先队员在一辆彩车的四周围成每边三层的方阵,最外边一层每边12人,请问:彩车周围的少先队员共有多少人?课后作业 1、若干名同学排成中实方阵则多12人,若要将这个方阵改摆成纵横两个方向各增加1人的方阵则还差9人排满,请问:原有学生多少人?2、 有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?3、 小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样 一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少?4、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?5、正方形舞厅四周均匀的装彩灯,如果四个角都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏?6、“六一”儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵,请你求出最外面一层每边有鲜花多少盆?7、四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?8、明明用围棋子摆成一个三层中空方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少枚棋子?摆这个三层空心方阵共用了多少枚棋子?9、若干战士排成一个四层中空方阵,只知道最外一层每边有12人,请你求出总人数。
10、有若干盆鲜花摆成一个中空方阵,最外层共摆48盆,最内层共摆24盆,请问:共摆了多少盆鲜花?11、有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵?盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.解答盈亏问题的关键:弄清楚盈、亏与两次分配差的关系。
数量关系:(1)一盈一亏类型:份数=(盈+亏)÷两次分配差双盈类型:份数=(大盈-小盈)÷两次分配差双亏类型:份数=(大亏-小亏)÷两次分配差(2)总数量=每次分的数量×份数+盈总数量=每次分的数量×份数-亏.注意1.条件转换2.关系互换板块一、直接计算型盈亏问题例题1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?(双盈类型)解析:比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块),每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人).共有砖:4×9+7=43(块).巩固1、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?巩固2、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?巩固3、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?巩固4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多几只.例题2、幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?(双亏类型)-=(块),这是因为第一次与第二次分配中每人相由题意知:两次的分配结果相差:241212差:9-6=3(块),多少人相差12块呢?12÷3=4(人),糖果数是:6×4-12=12(块).巩固1、幼儿园老师将一筐苹果分给小朋友。
如果分给大班的学生每人5个缺3个;如果分给小班的学生每人8个缺12个。
已知大班比小班多3个学生,这筐苹果有多少个?巩固2、老师把一些铅笔奖给三好学生。
每人5支则少4支;每人7支则少10支。
老师有多少支铅笔?奖给多少个三好学生?例题3、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?(一盈一亏)本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5把,少买了7-5=2(把),而钱的差额为:110+30=140(元),即140元可以买2把小提琴,可见小提琴的单价是每把70元,王老师一共带了70×7-110=380(元).巩固1、某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?巩固2、智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?巩固3、秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?提升:工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?板块二、条件关系转换型盈亏问题例1、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11-10=1(条),由盈亏问题公式得,有小猫:8÷1=8(只),猫妈妈有8×10+8=88(条)鱼.巩固1、学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?巩固2、学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?巩固3、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?例2:幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5 粒就缺6 粒.如果分给小班的小朋友,每人4 粒就余4 粒.已知大班比小班少2 个小朋友,这袋糖果共有多少粒?如果大班增加2 个小朋友,大、小班人数就相等了,变为“每人5 粒缺16 粒,每人4 粒多4 粒”的盈亏问题.小班有(16+4)÷(5-4)=20(人).这袋糖果有4×20+4=84(粒).提升1:实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?提升2:甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?提升3:幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。