高一数学直线与方程同步单元测试题
(新课标版)高中数学《直线与方程》单元测试题及答案
![(新课标版)高中数学《直线与方程》单元测试题及答案](https://img.taocdn.com/s3/m/4c44d81e767f5acfa1c7cda6.png)
《直线的方程》单元测试题一、选择题1. 直线l 经过原点和点(11)-,,则它的倾斜角是( ) A.34π B.54π C.4π或54π D.4π- 2. 斜率为2的直线过(3,5),(a ,7),(-1,b )三点,则a ,b 的值是( ) A.4a =,0b = B.4a =-,3b =-C.4a =,3b =- D.4a =-,3b = 3. 设点(23)A -,,(32)B --,,直线过(11)P ,且与线段AB 相交,则l 的斜率k 的取值范围是( ) A.34k ≥或4k -≤ B.344k -≤≤ C.344k -≤≤ D.以上都不对 4. 直线(2)(1)30a x a y ++--=与直线(1)(23)20a x a y -+++=互相垂直,则a =( ) A.1- B.1 C.1± D.32- 5. 直线l 过点()12A ,,且不过第四象限,那么直线l 的斜率的取值范围是( ) A.[]02, B.[]01, C.102⎡⎤⎢⎥⎣⎦, D.102⎛⎫ ⎪⎝⎭, 6. 到两条直线3450x y -+=与512130x y -+=的距离相等的点()P x y ,必定满足方程( ) A.440x y -+= B.740x y +=C.440x y -+=或4890x y -+= D.740x y +=或3256650x y -+=7. 已知直线3230x y +-=和610x my ++=互相平行,则它们之间的距离是( ) A.4 21351326713268. 已知等腰直角三角形ABC 的斜边所在的直线是320x y -+=,直角顶点是(32)C -,,则两条直角边AC ,BC 的方程是( )A.350x y -+=,270x y +-= B.240x y +-=,270x y --=C.240x y -+=,270x y +-= D.3220x y --=,220x y -+=二、填空题9. 已知三点(23)-,,(43),及(5)2k ,在同一条直线上,则k 的值是 . 10. 在y 轴上有一点m ,它与点(31),连成的直线的倾斜角为120度,则点m 的坐标为 .11. 设点P 在直线30x y +=上,且P 到原点的距离与P 到直线320x y +-=的距离相等,则点P 坐标是 .2. 直线l 过直线240x y -+=与350x y -+=的交点,且垂直于直线12y x =,则直线l 的方程是 .三、解答题13. 过点(3,4)p 的直线l ,求l 在两个坐标轴上截距相等的方程。
苏教版高中数学选择性必修第一册第1章 直线与方程 单元测试卷(含答案)
![苏教版高中数学选择性必修第一册第1章 直线与方程 单元测试卷(含答案)](https://img.taocdn.com/s3/m/8bf4ca2900f69e3143323968011ca300a7c3f61a.png)
苏教版高中数学选择性必修第一册第1章直线与方程单元测试卷(满分150分,时间120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两平行线x +y -1=0与2x +2y -7=0之间的距离是()A .32B .322C .542D .62.已知直线l 经过点P (2,1),且与直线2x +3y +1=0垂直,则直线l 的方程是()A .2x +3y -7=0B .3x +2y -8=0C .2x -3y -1=0D .3x -2y -4=03.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是()A .1B .-1C .-2或-1D .-2或14.直线x cos α+3y +2=0的倾斜角的取值范围是()A .π6,,5π6B .0,π6∪5π6,C .0,5π6D .π6,5π65.若直线x +ny +3=0与直线nx +9y +9=0平行,则实数n 的值为()A .3B .-3C .1或3D .3或-36.若直线y =kx +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A -12,B -16,C D -12,+∞7.已知直线l :x -y -1=0,直线l 1:2x -y -2=0.若直线l 2与直线l 1关于直线l 对称,则直线l 2的方程是()A .x -2y +1=0B .x -2y -1=0C.x+y-1=0D.x+2y-1=08.数学家欧拉在其所著的《三角形几何学》一书中提出:“任意三角形的外心、重心、垂心在同一条直线上.”后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(4,0)或(-4,0)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.截距相等的直线都可以用方程xa+ya=1表示B.方程x+my-2=0(m∈R)能表示与y轴平行的直线C.经过点P(1,1)且倾斜角为θ的直线方程为y-1=tanθ(x-1)D.经过点P1(x1,y1),P2(x2,y2)的直线方程为(y2-y1)(x-x1)-(x2-x1)(y-y1)=010.若直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直,则实数a的值是() A.-3B.1C.-1D.311.光线自点(2,4)射入,经倾斜角为135°的直线l:y=kx+1反射后经过点(5,0),则反射光线还经过()A B.点(14,1)C.点(13,2)D.点(13,1)12.下列m的值中,不能使三条直线4x-y=4,mx-y=0和2x+3my=4构成三角形的有()A.4B.-6C.-1D.23三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分、第二个空3分.13.若直线l的倾斜角α满足4sinα=3cosα,且它在x轴上的截距为3,则直线l的方程是________________.14.无论实数k取何值,直线(k+2)x+(k-3)y+k-3=0都恒过定点,则该定点的坐标为________.15.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和直线l 2:x -3y +10=0截得的线段的中点恰好为P ,则直线l 的方程为________,此时被截得的线段长为________.16.已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且点Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)有下列3个条件:①l ′与l 平行且过点(-1,3);②l ′与l 垂直,且l ′与两坐标轴围成的三角形的面积为4;③l ′是l 绕原点旋转180°而得到的直线.从中任选1个,补充到下面的问题中并解答.问题:已知直线l 的方程为3x +4y -12=0,且________,求直线l ′的方程.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知△ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求△ABC 的面积.19.(12分)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 不经过第二象限,求实数a 的取值范围;(2)若直线l 与x 轴、y 轴分别交于点M ,N ,求△MON (O 为坐标原点)面积的最小值及此时直线l 的方程.20.(12分)已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 是直角梯形(点A ,B ,C ,D 按逆时针方向排列).21.(12分)在平面直角坐标系中,点A (2,3),B (1,1),直线l :x +y +1=0.(1)在直线l 上找一点C 使得AC +BC 最小,并求这个最小值和点C 的坐标;(2)在直线l 上找一点D 使得|AD -BD |最大,并求这个最大值和点D 的坐标.22.(12分)已知直线l 1:2x -y +a =0(a >0),直线l 2:-4x +2y +1=0,直线l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求实数a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5?若能,求点P 的坐标,若不能,请说明理由.参考答案与解析综合测试第1章直线与方程1.C 提示方程x +y -1=0可化为2x +2y -2=0,所以两平行线之间的距离为|-2-(-7)|22+22=5422.D 提示由题意知k l =-1-23=32,故直线l 的方程为y -1=32(x -2),即3x -2y -4=0 3.D 提示由题意知a ≠0.当x =0时,y =a +2;当y =0时,x =a +2a .因此a +2a=a +2,解得a =-2或a =14.B 提示直线的斜率k =-33cos α∈-33,33.设直线的倾斜角为θ,则-33≤tan θ≤33,所以0≤θ≤π6或5π6≤θ<π5.B 提示由题意知1n =n9,解得n =±3.当n =3时,3x +9y +9=0,即x +3y +3=0,两直线重合(舍去)6.B 提示=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.因为直线y =kx +2k +1与直线y=-12x +20,0,解得-16<k <127.B 提示因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知点(0,-2)在l 1上,设其关于l的对称点为(x ,y )-y -22-1=0,1,=-1,=-1,所以点(1,0),(-1,-1)在l 2上,从而可得l 2的方程为x -2y -1=08.A提示设C (m ,n ).由重心坐标公式得△ABC线的方程得2+m 3-4+n3+2=0,整理得m -n +4=0①.易得边AB 的中点为(1,2),k AB =4-00-2=-2,所以边AB 的垂直平分线的方程为y -2=12(x -1),即x -2y +3=0.-2y +3=0,-y +2=0,=-1,=1,所以△ABC 的外心为(-1,1),则(m +1)2+(n -1)2=32+12=10,整理得m 2+n 2+2m -2n =8②.联立①②解得m =-4,n=0或m =0,n =4.当m =0,n =4时,点B ,C 重合,应舍去,所以顶点C 的坐标是(-4,0)9.BD 提示对于A ,若直线过原点,横、纵截距都为0,则不能用方程x a +ya =1表示,所以A 不正确;对于B ,当m =0时,与y 轴平行的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设P (x ,y )是经过点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,根据P 1P 2∥P 1P 可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确.故选BD 10.AB 提示若两直线垂直,则a (a -1)+(1-a )(2a +3)=0,即a 2+2a -3=0,解得a =-3或a =1.故选AB 11.AD提示由题意得k =tan135°=-1.设点(2,4)关于直线l :y =-x +1的对称点为(m ,n ),则1,=-m +22+1,=-3,=-1,所以反射光线所在直线的方程为y =0-(-1)5-(-3)·(x -5)=18(x -5).当x =13时,y =1;当x =14时,y =98.故反射光线过点(13,1)12.ACD 提示①当l 1:4x -y =4平行于l 2:mx -y =0时,m =4;②当l 1:4x -y =4平行于l 3:2x +3my =4时,m =-16;③当l 2:mx -y =0平行于l 3:2x +3my =4时,3m 2+2=0,无解;④当三条直线经过同一个点时,把直线l 1与l 22x +3my =4中得84-m +12m 24-m -4=0,解得m =-1或23.综上,满足条件的m 为4或-16或-1或2313.3x -4y-9=0提示因为4sin α=3cos α,所以tan α=34,从而直线l 的方程为y =34(x -3),即3x -4y -9=014.(0,-1)提示方程(k +2)x +(k -3)y +k -3=0可化为k (x +y +1)+2x -3y-3=0x -3y -3=0,+y +1=0,解得=0,=-115.x +4y -4=0217提示设l 1与l 的交点为A (a,8-2a ),则由题意知点A 关于点P 的对称点B (-a,2a -6)在l 2上,把点B 的坐标代入l 2的方程中得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.易求得两交点分别为(-4,2),(4,0),所以截得的线段长为21716.94提示因为动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0.又点Q (4,0)到动直线l 0的最大距离为3,所以(4-1)2+(0+m )2=3,解得m =0,所以a +c =2.又a >0,c >0,所以12a +2c =12(a +c+c 2a +=94,当且仅当c =2a =43,即c =43,a =23时等号成立17.选择条件①:因为直线l :3x +4y -12=0,所以k l =-34.因为l ′∥l ,所以k l ′=k l =-34,从而直线l ′:y =-34(x +1)+3,即3x +4y -9=0选择条件②:因为l ′⊥l ,所以k l ′=43.设l ′在x 轴上的截距为b ,则l ′在y 轴上的截距为-43b .由题意可知S =12|b |·|-43b |=4,解得b =±6,所以直线l ′:y =43(x +6)或y =43(x -6)选择条件③:因为l ′是l 绕原点旋转180°而得到的直线,所以l ′与l 关于原点对称.任取点(x 0,y 0)在l 上,设其在l ′上的对称点为(x ,y ),所以x =-x 0,y =-y 0,从而-3x -4y -12=0,因此直线l ′:3x +4y +12=018.(1)因为k BC =7-(-1)3-(-1)=2,所以k AD =-12,从而边BC 上的高AD 所在直线的方程为y -5=-12(x +1),即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为y -35-3=x -1-1-1,即y =-x +4(3)由题意知边BC 所在直线的方程为y -(-1)7-(-1)=x -(-1)3-(-1),即2x -y +1=0,BC =(3+1)2+(7+1)2=45,所以点A 到直线BC 的距离h =|2×(-1)-5+1|22+1=655,从而△ABC 的面积=12BC ·h =1219.(1)直线l 的方程可化为y =-(a +1)x +a +2.因为l 不过第二象限,所以(a +1)≥0,+2≤0,解得a ≤-2,从而a 的取值范围为(-∞,-2](2)直线l 的方程可化为y =-(a +1)x +a +2,所以OM =|a +2a +1|,ON =|a +2|,从而S △MON =12OM ·ON =12(a +2)2|a +1|=|a +1|+2,当且仅当|a +1|=1|a+1|,即a =0时等号成立,因此△MON 面积的最小值为2,此时直线l 的方程为x +y -2=0(第20题)20.设所求点D 的坐标为(x ,y ).如图,由于k AB =3,k BC =0,所以k AB ·k BC =0≠-1,即AB 与BC 不垂直.①若BC ⊥CD ,AD ⊥CD .因为k BC =0,所以直线CD 的斜率不存在,从而有x =3.又k AD =k BC ,所以y -3x =0,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3).②若AD ⊥AB ,AD ⊥CD .因为k AD =y -3x,k CD =y x -3,又AD ⊥AB ,所以y -3x ·3=-1.又AB∥CD ,所以yx -3=3.=185,=95,此时AD与BC 不平行,故所求点D综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)21.(1)设点A 关于直线l 的对称点为A ′(x ,y )1,+y+32+1=0,=-4,=-3,即A ′(-4,-3),所以直线A ′B 的方程为y +31+3=x +41+44x -5y +1=0.当C 为直线4x -5y +1=0与直线x +y +1=0的交点时,AC +BCx -5y +1=0,+y +1=0,=-23=-13所以-23,-AC +BC 的最小值为A ′B =(1+4)2+(1+3)2=41(2)由题意知直线AB 的方程为y -31-3=x -21-2,即2x -y -1=0.当D 为直线2x -y -1=0与直线x +y +1=0的交点时,|AD -BD |x -y -1=0,+y +1=0,=0,=-1,所以D (0,-1),从而|AD -BD |的最大值为AB =(2-1)2+(3-1)2=522.(1)直线l 2的方程可化为2x -y -12=0,所以两条平行线l 1与l 2间的距离d =7510,即|a +12|5=7510,亦即|a +12|=72.又a >0,解得a =3(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·|c +12|5,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y0+4=0或3x 0+2=0.由于点P 在第一象限,所以3x 0+2=0x 0-y 0+132=0,0-2y 0+4=0,0=-3,0=12(舍去);联立x 0-y 0+116=0,0-2y 0+4=0,0=19,0=3718.所以存在点P。
2020年高一下学期人教版必修二第三章 直线与方程(单元检测)含答案
![2020年高一下学期人教版必修二第三章 直线与方程(单元检测)含答案](https://img.taocdn.com/s3/m/d15cdd57d5bbfd0a7856732b.png)
第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .23.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .234.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=05.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3D .⎝⎛⎭⎫-12,-3 6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=07.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .5268.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=09.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-3410.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A.-4 B.-2 C.0 D.211.如图1,已知点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程为()图1A.210 B.10C.2 3 D.3 312.直线l过点P(1,3),且与x,y轴正半轴围成的三角形的面积等于6的直线方程是()A.3x+y-6=0 B.x+3y-10=0C.3x-y=0 D.x-3y+8=0二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知点A(2,1),B(-2,3),C(0,1),则△ABC中,BC边上的中线长为________.14.直线l与直线y=1,x-y-7=0分别交于A,B两点,线段AB的中点为M(1,-1),则直线l的斜率为________.15.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为________.16.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l的倾斜角为135°,且经过点P(1,1).(1)求直线l的方程;(2)求点A(3,4)关于直线l的对称点A′的坐标.18.((本小题满分12分)已知两条直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,当m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图221. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°【答案】D [由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.] 2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .2【答案】A [由-2-33-(-2)=m +212-3,得m =12.选A.]3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .23【答案】B [两直线平行,斜率相等,所以-a2=3,所以a =-6.选B.]4.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=0【答案】B [因为3x -4y +6=0的斜率为34,所以与其垂直的直线的斜率为-43.故所求方程为y +1=-43(x -4),即4x +3y -13=0.]5.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3 D .⎝⎛⎭⎫-12,-3 【答案】D [直线2x -my +1-3m =0可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3.即当m 变动时,所有直线都通过定点⎝⎛⎭⎫-12,-3. 选D.]6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=0【答案】D [k AB =4-32-3=-1,故直线l 的斜率为1,AB 的中点为⎝⎛⎭⎫52,72, 故l 的方程为y -72=x -52,即x -y +1=0.]7.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .526【答案】C [5x +12y +3=0可化为10x +24y +6=0.由平行线间的距离公式可得d =|6-5|102+242=126.]8.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=0【答案】A [因为点(x ,y )关于x 轴对称的点的坐标为(x ,-y ),所以只需将已知直线中的变量y 变为-y 即可,即为3x +5y +4=0.]9.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-34【答案】C [如图.计算得:k P A =43,k PB =34,由题意得34≤k ≤43.]10.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2【答案】B [因为l 的斜率为tan 135°=-1,所以l 1的斜率为1,所以k AB =2-(-1)3-a =1,解得a =0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2.]11.如图1,已知点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程为( )图1A .210B .10C .2 3D .3 3【答案】A [设点P 关于直线AB 的对称点为P 1,点P 关于y 轴的对称点为P 2,则|P 1P 2|即为所求路程.又直线AB 的方程为x +y -4=0,所以P 1(4,2),P 2(-2,0),故|P 1P 2|=210.]12.直线l 过点P (1,3),且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0【答案】A [设直线方程为x a +yb =1(a >0,b >0),由题意有⎩⎪⎨⎪⎧ab =12,1a +3b=1,∴⎩⎪⎨⎪⎧a =2,b =6.∴x 2+y6=1.化为一般式为3x +y -6=0.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 【答案】10 [BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10.]14.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________. 【答案】-23 [设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1), ∴k AB =-3-14-(-2)=-23.]15.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.【答案】2x +3y -2=0 [由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A (-2,2),因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23,由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.]16.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 【答案】(2,4) [设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 即为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M (2,4).]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 【答案】(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ),则⎩⎪⎨⎪⎧b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18. (本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2: (1)相交;(2)平行;(3)重合.【答案】当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m 23m ,得m =-1或m =3,由1m -2=62m ,得m =3.故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5. 【答案】设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为d . 由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5.由已知易得,直线AB 的方程为x -2y +3=0, 所以d =|a +3|1+(-2)2=25, 解得a =7或a =-13(舍去), 所以点P 的坐标为(7,0).20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图2【答案】由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3, 所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.21. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.【答案】(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为y -2=x -3, 即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.【答案】如图,作点M 关于直线l 的对称点M 1,再作点M 关于y 轴的对称点M 2,连接M 1M 2,M 1M 2与直线l 及y 轴分别交于P ,Q 两点,由轴对称及平面几何的知识,知这样得到的△MPQ 的周长最小. 由点M (3,5)及直线l ,可求得点M 1的坐标为(5,1), 点M 关于y 轴的对称点M 2的坐标为(-3,5), 可得直线M 1M 2的方程为x +2y -7=0. 令x =0,得M 1M 2与y 轴的交点Q ⎝⎛⎭⎫0,72. 解方程组⎩⎪⎨⎪⎧x +2y -7=0,x -2y +2=0,得交点P ⎝⎛⎭⎫52,94. 综上,点P ⎝⎛⎭⎫52,94,Q ⎝⎛⎭⎫0,72即为所求.。
高一数学第三章直线与方程单元测试题及答案
![高一数学第三章直线与方程单元测试题及答案](https://img.taocdn.com/s3/m/eb5399868662caaedd3383c4bb4cf7ec4afeb68d.png)
必修2第三章《直线与方程》单元测试题(时间:90 满分:120分)班别 座号 姓名 成绩一、选择题(本大题共10小题;每小题5分;共50分)1.若直线过点(1;2);(4;2+3);则此直线的倾斜角是( ) A 30° B 45° C 60° D 90° 2.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A. B. C. D.-2;-33. 如果直线ax+2y+2=0与直线3x-y-2=0平行;则系数a=A 、 -3B 、-6C 、23- D 、324.点P (-1;2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )275.以A(1;3);B(-5;1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2;1)的直线与X轴;Y轴分别交于P;Q两点;且|MP|=|MQ|; 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点;则该点的坐标是 A (-2;1) B (2;1) C (1;-2) D (1;2)8. 直线0202=++=++n y x m y x 和的位置关系是 (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1;直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3;则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1;2)、B (-1;4)、C (5;2);则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0选择题答题表 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共4小题;每小题5分;共30分)11线过原点且倾角的正弦值是54;则直线方程为 . 12已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 13过点P(1;2)且在X轴;Y轴上截距相等的直线方程是 . 14直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 15原点O在直线L上的射影为点H(-2;1);则直线L的方程为 . 16mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为 . 三、解答题(本大题共3小题;每小题10分;共40分) 17若N a ∈;又三点A(a ;0);B (0;4+a );C (1;3)共线;求a 的值.18直线062=++y ax 和直线0)1()1(2=-+++a y a a x 垂直;求a 的值.19 ①求平行于直线3x+4y-12=0;且与它的 距离是7的直线的方程;②求垂直于直线x+3y-5=0; 且与点P(-1;0)的距离是1053的直线的方程.20线x+m 2y+6=0与直线(m-2)x+3my+2m=0没有公共点;求实数m 的值.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11. x y 34±=;12.x+y-3=0或2x-y=0;14261; 15.-y+5=0; 16.mn21 17.点共线说明AC AB k k =;即可求出a18.示:斜率互为负倒数;或一直线斜率为0;另一直线斜率不存在 19.(1)(2)3x-y+9=0或3x-y-3=0. 20.0或m=-1;。
人教版数学高一第三章直线与方程单元测试精选(含答案)3
![人教版数学高一第三章直线与方程单元测试精选(含答案)3](https://img.taocdn.com/s3/m/400d61dd3b3567ec102d8acc.png)
d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积
为
.
【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;
新课标高一数学必修2直线与方程同步单元测试题_(1)
![新课标高一数学必修2直线与方程同步单元测试题_(1)](https://img.taocdn.com/s3/m/a3dded8879563c1ec5da71ed.png)
新课标数学必修2第三章直线与方程测试题一、选择题(每题5分,共50分)1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213, B.--213, C.--123, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )(A )2x -3y =0; (B )x +y +5=0;(C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=04.直线x=3的倾斜角是( ) A.0 B.2π C.π D.不存在 5.点(-1,2)关于直线y = x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2) 6.点(2,1)到直线3x -4y + 2 = 0的距离是(A )54 (B )45 (C )254 (D )425 7.直线x - y + 3 = 0的倾斜角是( )(A )30° (B )45° (C )60° (D )90°8.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为(A )3x +4y -5=0 (B )3x +4y +5=0(C )-3x +4y -5=0 D )-3x +4y +5=09.设a 、b 、c 分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( )(A )平行; (B )重合; (C )垂直;(D )相交但不垂直10.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )(A )-;31B )-3; (C );31 (D )3 一、填空题(每题4分,共16分)11.直线,31k y kx =+-当k 变动时,所有直线都通过定点12.直线过原点且倾角的正弦值是54,则直线方程为 13.直线mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为14.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的值是15.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ), 当l 2是l 1绕l 1与l 2交点旋转θ得到的直线,⎪⎭⎫ ⎝⎛∈120πθ,时,则a 的取值范围为三、解答题C ABP 16.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值17. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线的方程。
高一数学直线与方程同步单元测试题
![高一数学直线与方程同步单元测试题](https://img.taocdn.com/s3/m/0b59352749649b6649d747d1.png)
新课标数学必修 2 第三章直线与方程测试题一、选择题(每题 3 分,共 36 分)1.直线 x+6y+2=0 在 x 轴和 y 轴上的截距分别是( )A.2,1B.2, 1C.1, 3D.-2,- 33322.直线 3x+y+1=0 和直线 6x+2y+1=0 的地点关系是()A.重合B. 平行C.垂直D. 订交但不垂直3.直线过点 (- 3,- 2)且在两坐标轴上的截距相等,则这直线方程为()(A ) 2x - 3y = 0;(B ) x + y + 5= 0;(C ) 2x - 3y = 0 或 x +y + 5= 0 ( D )x + y + 5 或 x - y + 5= 04.直线 x=3 的倾斜角是( )A.0B.2 C.D. 不存在5.圆 x 2+y 2+4x=0 的圆心坐标和半径分别是()A.( - 2,0),2B.( - 2,0),4C.(2,0),2D.(2,0),46.点( 1, 2)对于直线 y = x 1 的对称点的坐标是(A )( 3, 2)( B )( 3, 2)( C )( 3,2) (D )( 3, 2)7.点( 2,1)到直线3x 4y + 2 = 0 的距离是(A )4(B )5(C )4(D )25542548.直线 xy 3 = 0 的倾斜角是()(A ) 30° ( B ) 45°( C ) 60°( D ) 90°9.与直线 l : 3x -4y + 5=0 对于 x 轴对称的直线的方程为(A ) 3x + 4y - 5= 0 (B ) 3x + 4y + 5= 0(C )- 3x + 4y - 5= 0 (D )- 3x + 4y + 5=10.设 a 、 b 、 c 分别为ABC 中 A 、 B 、 C 对边的边长,则直线xsinA + ay + c = 0 与直 线 bx - ysinB + sinC = 0 的地点关系()(A )平行;( B )重合;(C )垂直;(D )订交但不垂直11.直线 l 沿 x 轴负方向平移 3 个单位,再沿 y 轴正方向平 1 个单位后,又回到本来地点,那么 l 的斜率为()(A )- 1;( B )- 3;(C ) 1;3 3(D )312.直线 kxy 1 3k , 当 k 改动时,全部直线都经过定点()( A )( 0,0)( B )( 0,1)( C )( 3, 1)( D )( 2,1)一、填空题(每题4 分,共 16 分)13.直线过原点且倾角的正弦值是4,则直线方程为514.直线 mx+ ny=1( mn≠ 0)与两坐标轴围成的三角形面积为15.假如三条直线mx+y+3=0,x y 2=0,2x y+2=0 不可以成为一个三角形三边所在的直线,那么 m 的一个值是 _______...16.已知两条直线l1: y= x;l 2: ax-y= 0( a∈R),当两直线夹角在(0,)改动时,12则 a 的取值范围为三、解答题(共48 分)17.ABC 中,点A4, 1 ,AB的中点为M3,2 ,重心为P4,2 ,求边BC的长(6分).若a N ,又三点A(a ,,(,),C(,)共线,求 a 的值(6分)180) B0 a 4 1 319.已知直线 3 x+y—2 3 =0和圆x2+y2=4,判断此直线与已知圆的地点关系(7 分)20ax 2 y 60和直线x a(a1) y(a21)0垂直,求 a 的值(7分).若直线21.已知圆过点A(1 , 4), B(3 ,— 2),且圆心到直线AB 的距离为10,求这个圆的方程(10 分)22.如图,在ABC 中,C=90 O, P 为三角形内的一点,且S PAB S PBC S PCA,求证:│PA│2+│PB│2=5│PC│2(12 分)BPCA答案:一、二、 13.y 4x 14.115. - 1 16.(3,1)(1,3)3 2 mn3三、 17.提示:由已知条件,求出B、 C 两点的坐标,再用两点距离公式18.提示:三点共线说明k AB k AC,即可求出 a19.提示:比较圆的半径和圆心到直线的距离 d 的大小,进而可判断它们的地点关系20.提示:斜率互为负倒数,或向来线斜率为0,另向来线斜率不存在21.提示:经过已知条件求出圆心坐标,再求出半径,即可,所求圆的方程为:(x+1 )2+y2=20 或( x— 5)2+( y— 2)2=2022.提示:以边C A 、 CB 所在直线分别为 x 轴、 y 轴成立直角坐标系,,设 A (a,0)、 B(0, b), P 点的坐标为( x, y),由条件可知S PAB S PBC1SPCA=SABC,可求出1a ,y=13x=b,再分别用两点距离公式即可33。
人教版高一(上)数学 直线与方程 单元质量检测题
![人教版高一(上)数学 直线与方程 单元质量检测题](https://img.taocdn.com/s3/m/312d100d3b3567ec102d8abc.png)
学年人教版高一(上)数学直线与方程单元质量检测题(时间120分钟满分150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.经过A(2,0),B(5,3)两点的直线的倾斜角为()A.45°B.135°C.90°D.60°解析:选A∵A(2,0),B(5,3),∴直线AB的斜率k=3-05-2=1.设直线AB的倾斜角为θ(0°≤θ<180°),则tan θ=1,∴θ=45°.故选A.2.点F(3m+3,0)到直线3x-3my=0的距离为()A. 3B.3mC.3 D.3m解析:选A由点到直线的距离公式得点F(3m+3,0)到直线3x-3my=0的距离为3·3m+33m+3= 3.3.和直线3x-4y+5=0关于x轴对称的直线方程为()A.3x+4y+5=0 B.3x+4y-5=0C.-3x+4y-5=0 D.-3x+4y+5=0解析:选A设所求直线上的任一点为(x,y),则此点关于x轴对称的点的坐标为(x,-y),因为点(x,-y)在直线3x-4y+5=0上,所以3x+4y+5=0.4.如果直线l过(-2,-2),(2,4)两点,点(1 344,m)在直线l上,那么m的值为() A.2 014 B.2 015C.2 016 D.2 017解析:选D由两点式,得y+24+2=x+22+2,∴当x=1 344时,m=2 017,故选D.5.已知▱ABCD的三个顶点的坐标分别是A(0,1),B(1,0),C(4,3),则顶点D的坐标为() A.(3,4) B.(4,3)C .(3,1)D .(3,8)解析:选A 设D (m ,n ),由题意得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC ,∴⎩⎪⎨⎪⎧0-11-0=3-n4-m,n -1m -0=3-04-1,解得⎩⎪⎨⎪⎧m =3,n =4,∴点D 的坐标为(3,4).6.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( ) A .3x -y -13=0B .3x -y +13=0C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3, 由点斜式得,y -4=-3(x -3),即3x +y -13=0.7.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0)或(4,6) B .(2,0)或(6,4) C .(4,6)D .(0,2)解析:选A 设B 点坐标为(x ,y ),根据题意知⎩⎪⎨⎪⎧k AC ·k BC =-1,|BC |=|AC |,∴⎩⎪⎨⎪⎧3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得⎩⎪⎨⎪⎧ x =2,y =0或⎩⎪⎨⎪⎧x =4,y =6.8.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D 依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0,。
(完整版)直线与方程测试题(含答案)
![(完整版)直线与方程测试题(含答案)](https://img.taocdn.com/s3/m/a146b0b0af45b307e87197c5.png)
第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。
A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。
人教版数学高一第三章直线与方程单元测试精选(含答案)1
![人教版数学高一第三章直线与方程单元测试精选(含答案)1](https://img.taocdn.com/s3/m/5f93f843a36925c52cc58bd63186bceb19e8ed3b.png)
人教版高一第三章直线与方程单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.若三条直线2380x y ++=,10x y --=与直线0x ky +=交于一点,则k =()A .-2B .2C .12-D .12【来源】甘肃省武威市第十八中学2018届高一人教版数学必修二第三章直线与方程单元测试题【答案】C2.已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是().A .1或3B .1或5C .3或5D .1或2【来源】直线平行问题【答案】C3.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .B .C .6D .【来源】浙江省杭州市学军中学2018-2019学年高二上学期期中考试数学试题【答案】D4.已知(2,1),(0,5)A C -,则AC 的垂直平分线所在直线方程为()A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=【来源】广州市培正中学2018年高一第二学期数学必修二模块测试卷一【答案】A5.与直线:2l y x =平行,且到l A .2y x =B .25y x =±C .1522y x =-±D .122y x =-±【来源】2012-2013学年福建省晋江市季延中学高一下学期期中考试数学试题(带解析)【答案】B6.经过点()1,1M 且在两坐标轴上截距相等的直线是()A .2x y +=B .1x y +=C .2x y +=或y x =D .1x =或1y =【来源】高二人教版必修2第二章滚动习题(四)[范围1]【答案】C7.若直线310x ++=倾斜角是()A .30°B .120°C .60°D .150°【来源】甘肃省武威市第十八中学2018届高一人教版数学必修二第三章直线与方程单元测试题【答案】B8.等腰Rt △ABC 的直角顶点为C(3,3),若点A 的坐标为(0,4),则点B 的坐标可能是()A .(2,0)或(6,4)B .(2,0)或(4,6)C .(4,6)D .(0,2)【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】B9.直线ax +y +m =0与直线x +by +2=0平行,则()A .ab =1,bm ≠2B .a =0,b =0,m ≠2C .a =1,b =-1,m ≠2D .a =1,b =1,m ≠2【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(二)【答案】A10.直线30()x m m R ++=∈的倾斜角为()A .30°B .60︒C .120︒D .150︒【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】C11.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为()A .x y --1=0B .x y +1=0C .x --1=0D .x -y +1=0【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】C12.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点()A .(0,0)B .(17,27)C .(27,17)D .(17,114)【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】C13.直线l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到直线l 的距离为,则直线l 的方程是()A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0【来源】人教A 版高中数学必修二第三章章末检测卷【答案】C14.倾斜角为45°,在y 轴上的截距为-1的直线方程是()A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0【来源】人教A 版高中数学必修二第三章章末检测卷【答案】B15.若直线1l :60x ay ++=与2l :()2320a x y a -++=平行,则1l 与2l 间的距离为()A B .823C D .833【来源】2019届高考数学(理)全程训练:天天练31直线方程与两条直线的位置关系【答案】B16.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为()A .1B .2CD .【来源】人教A 版高中数学必修二综合学业质量标准检测2【答案】C17.若直线y =x +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A .(-52,12)B .(-25,12)C .[-52,-12]D .[-52,12]【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】A18.已知点A(2,3),B(-3,-2),若直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是()A .k ≥2或k ≤34B .34≤k ≤2C .k ≥34D .k ≤2【来源】2015-2016学年北大附中河南分校高一3月月考数学试卷(带解析)【答案】A19.若直线mx +ny +3=0在y 轴上的截距为-3,y -=的倾斜角的2倍,则()A .m =,n =1B .m =,n =-3C .m =,n =-3D .m =,n =1【来源】陕西省黄陵中学2018届高三(重点班)上学期期中考试数学(文)试题【答案】D20.已知直线10ax by ++=与直线4350x y ++=平行,且10ax by ++=在y 轴上的截距为13,则+a b 的值为()A .7-B .1-C .1D .7【来源】湖南省怀化市2018年上期高二期末考试文科数学试题【答案】A21.若两直线330x y +-=与610x my ++=平行,则它们之间的距离为()A .105B .2105C .51026D .【来源】青海省海东市平安区第二中学2019-2020学年高二上学期10月月考数学试题【答案】D22.若直线l 经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l 的条数为()A .1B .2C .3D .4【来源】2012年人教A 版高中数学必修二3.2直线的方程练习题(二)【答案】C23.已知直线l 1:x +y +1=0,l 2:x +y -1=0,则l 1,l 2之间的距离为()A .1BC D .2【来源】人教A 版高中数学必修二第三章章末检测卷【答案】B24.如果直线220ax y ++=与直线320x y --=平行,则a 的值为()A .3-B .6-C .32D .23【来源】2015-2016学年湖南省株洲市二中高一上学期期末数学试卷(带解析)【答案】B25.过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为()A .230x y --=B .230x y +-=C .430x y --=D .430x y +-=【来源】四川省绵阳南山中学2017-2018学年高二上学期期中考试数学(文)试题【答案】B26.已知直线l 的方程是y =2x +3,则l 关于y =-x 对称的直线方程是()A .x -2y +3=0B .x -2y =0C .x -2y -3=0D .2x -y =0【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】A评卷人得分二、填空题27.已知,,a b c 为直角三角形的三边长,c 为斜边长,若点(,)M m n 在直线:20l ax by c ++=上,则22m n +的最小值为__________.【来源】山东省烟台市2017-2018学年高一上学期期末考试数学试题【答案】428.已知直线l :mx +y +3m −3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=23,则|CD|=__________.【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版)【答案】429.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.【来源】浙江省诸暨中学2017-2018学年高一下学期期中考试数学试题【答案】352y x y x =-=-或30.若直线l 与直线1y =和70x y --=分别交于M ,N 两点,且MN 的中点为()1,1P -,则直线l 的斜率等于__________.【来源】高二人教版必修2第二章滚动习题(四)[范围1]【答案】23-31.过点(2,3)P ,且在两坐标轴上的截距互为相反数的直线方程是______.【来源】贵州省遵义市第四中学2018-2019学年高二上学期第一次月考数学(文)试题【答案】320x y -=或10x y -+=32.过点(1,2)M 且在两坐标轴上的截距相等的直线方程为____________.【来源】2011年浙江省苍南县三校高二上学期期中考试数学文卷【答案】x+y=3或y=2x33.已知点A(2,1),B(-2,3),C(0,1),则△ABC 中,BC 边上的中线长为________.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)34.当0<k<12时,两条直线kx -y =k -1,ky -x =2k 的交点在________象限.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(一)【答案】第二35.直线l 经过点P (3,2)且与x 轴、y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,则直线l 的方程为__________________.【来源】人教A 版高中数学必修二第三章章末检测卷【答案】2x +3y -12=036.过点P(3,4)在两坐标轴上截距相等的直线方程为______________.【来源】人教A 版高一年级必修二第3章章末综合测评2数学试题【答案】y=43x 或x+y-7=037.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值为________.【来源】2015-2016学年湖北省襄州一中等四校高二上学期期中理科数学试卷(带解析)【答案】-338.在极坐标系中,点π(2,6到直线πsin()16ρθ-=的距离是___________【来源】2018年秋人教B 版数学选修4-4模块综合检测试题【答案】1评卷人得分三、解答题39.如图,在平行四边形ABCD 中,边AB 所在直线的方程为220x y --=,点(2,0)C .(Ⅰ)求直线CD 的方程;(Ⅱ)求AB 边上的高CE 所在直线的方程.【来源】2011-2012学年福建师大附中高一上学期期末考试数学【答案】解:(Ⅰ)∵ABCD 是平行四边形∴//AB CD ∴2CD AB k k ==∴直线CD 的方程是2(2)y x =-,即240x y --=(Ⅱ)∵CE ⊥AB∴112CE AB k k =-=-∴CE 所在直线方程为1(2)2y x =--,220x y 即+-=.40.△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程;(2)求直线BC 的方程;(3)求△BDE 的面积.【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】(1)210x y -+=;(2)2370x y +-=;(3)11041.已知正方形的中心为()1,0G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(三)【答案】370,390,330x y x y x y ++=-+=--=.42.已知直线l 经过点P (-2,5),且斜率为3-4(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.【来源】黑龙江省大庆市大庆中学2019-2020学年高二上学期期中数学(文)试题【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0.43.已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=.(1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程;(2)若坐标原点O 到直线m m 与n 的位置关系.【来源】山西省晋中市榆社中学2017-2018学年高二期中考试数学(理)试卷【答案】(1)370x y -=或120x y -+=;(2)//m n 或m n⊥44.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.【来源】2014届高考数学总复习考点引领技巧点拨第九章第3课时练习卷(带解析)【答案】(1)a =2,b =2(2)2{2a b ==-或2{32a b ==45.已知三条直线l 1:2x-y+a=0(a>0),直线l 2:4x-2y-1=0和直线l 3:x+y-1=0,且l 1和l 2的距离是7510.(1)求a 的值.(2)能否找到一点P ,使得P 点同时满足下列三个条件:①P 是第一象限的点;②P 点到l 1的距离是P 点到l 2的距离的12;③P 点到l 1的距离与P 点到l 3若能,求出P 点坐标;若不能,请说明理由.【来源】陕西省黄陵中学2017-2018学年高一下学期6月月考数学试题【答案】(1)a=3;(2)P(137,918).46.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.【来源】2013年全国普通高等学校招生统一考试数学(江苏卷带解析)【答案】(1)3y =或34120x y +-=;(2)12[0,]5.47.在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB .AD 边分别在x 轴.y 轴的正半轴上,A 点与坐标原点重合(如图所示)。
人教版数学高一第三章直线与方程单元测试精选(含答案)2
![人教版数学高一第三章直线与方程单元测试精选(含答案)2](https://img.taocdn.com/s3/m/71283dcbe45c3b3567ec8bcc.png)
【来源】高二人教版必修 2 第二章 1.2 直线的方程
【答案】A
20.两条平行直线 3x 4 y 12 0 与 ax 8 y 11 0 之间的距离为( )
23 A.
5
23
B.
10
C. 7
7
D.
2
【来源】广东省佛山市第一中学 2017-2018 学年高二上学期期中考试数学(文)试题
【答案】D
21.若直线经过点 A0,1, B 3, 4 两点,则直线 AB 的倾斜角为( )
()
A. 2x 3y 2 0
B. 2x 3y 2 0
C. 2x 3y 3 0
D. 2x 3y 3 0
【来源】高二人教版必修 2 第二章 滚动习题(四)[范围 1] 【答案】A
试卷第 3页,总 10页
16.已知直线 l1 的斜率为 0,且直线 l1 l2 ,则直线 l2 的倾斜角为( )
版必修 2)
【答案】D
4.已知直线 l1 的方程是 y ax b , l2 的方程是 y bx a(ab 0, a b) ,则下列各
图形中,正确的是( )
A.
B.
C.
D.
【来源】2011—2012 学年江西省南昌三中高二上学期期中考试理科数学试题(带解析)
【答案】D
5.以 A1,3 , B 5,1 为端点的线段的垂直平分线方程是(
【答案】A 8.设点 A(2,-3),B(-3,-2),直线 l 过 P(1,1)且与线段 AB 相交,则 l 的斜率 k 的 取值范围是( )
3
3
A.k≥ ,或 k≤-4 B.-4≤k≤
4
4
3
C.- ≤k≤4
4
D.以上都不对
高一数学下学期单元测试卷:直线与方程
![高一数学下学期单元测试卷:直线与方程](https://img.taocdn.com/s3/m/28baf22f590216fc700abb68a98271fe910eaf00.png)
高一数学下学期单元测试卷:直线与方程【】记得有一句话是这么说的:数学是一门描写数字之间关系的科学,是我们前进的阶梯。
关于高中学生的我们,数学在生活中,考试科目里更是尤为重要,因此小编在此为您公布了文章:高一数学下学期单元测试题:直线与方程期望此文能给您带来关心。
本文题目:高一数学下学期单元测试题:直线与方程一、选择题1.设直线的倾斜角为,且,则满足( )A. B.C. D.2.过点且垂直于直线的直线方程为( )A. B.C. D.3.已知过点和的直线与直线平行,则的值为()A. B. C. D.4.已知,则直线通过( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线的倾斜角和斜率分别是( )A. B.C. ,不存在D. ,不存在6.若方程表示一条直线,则实数满足( )A. B.C. D. ,,二、填空题1.点到直线的距离是________________.2.已知直线若与关于轴对称,则的方程为__________;若与关于轴对称,则的方程为_________;若与关于对称,则的方程为___________;3. 若原点在直线上的射影为,则的方程为____________________。
4.点在直线上,则的最小值是________________.5.直线过原点且平分的面积,若平行四边形的两个顶点为,则直线的方程为________________。
三、解答题1.已知直线,(1)系数什么缘故值时,方程表示通过原点的直线;(2)系数满足什么关系时与坐标轴都相交;(3)系数满足什么条件时只与x轴相交;(4)系数满足什么条件时是x轴;(5)设为直线上一点,证明:这条直线的方程能够写成.2.求通过直线的交点且平行于直线的直线方程。
3.通过点同时在两个坐标轴上的截距的绝对值相等的直线有几条?要求出这些直线的方程。
4.过点作一直线,使它与两坐标轴相交且与两轴所围成的三角形面积为.高一数学下学期单元测试题:直线与方程答案一、选择题1.D2.A 设又过点,则,即3.B4.C5.C 垂直于轴,倾斜角为,而斜率不存在6.C 不能同时为二、填空题4. 可看成原点到直线上的点的距离的平方,垂直时最短:5. 平分平行四边形的面积,则直线过的中点三、解答题1. 解:(1)把原点代入,得;(2)现在斜率存在且不为零即且;(3)现在斜率不存在,且不与轴重合,即且;(4) 且(5)证明:在直线上2. 解:由,得,再设,则为所求。
人教版高一数学第三章《直线与方程》单元测试题02
![人教版高一数学第三章《直线与方程》单元测试题02](https://img.taocdn.com/s3/m/72569f78b7360b4c2f3f640f.png)
第三章《直线与方程》单元测试题时间:90分钟;满分:100分;得分:一、选择题(36分,每小题3分)1、已知A (-1,0),B (5,6)C (3,4),则||||CB AC =( ) (A )、31;(B )、21;(C )、3;(D )、2。
2、直线0133=++y x 的倾斜角是( )(A )、300;(B )、600;(C )、1200;(D )、1350。
3、若三直线2x+3y+8=0,x -y -1=0和x+ky=0相交于一点,则k =( )(A )、-2;(B )、21-;(C )、2;(D )、21 。
4、如果AB >0,BC >0,那么直线Ax —By —C=0不经过的象限是( )(A )、第一象限;(B )、第二象限;(C )、第三象限;(D )、第四象限;5、已知直线L 1 和L 2夹角的平分线所在直线的方程为y=x,如果L 1的方程是)0(0>=++ab C by ax ,那么L 2的方程是( )(A )0=++c ay bx (B )0=+-c by ax (C )0=-+c ay bx (D )0=+-c ay bx6、以A (1,3),B (-5,1)为端点的线段的垂直平分线的方程是( )A 、083=+-y xB 、043=++y xC 、083=++y xD 、062=--y x 7、直线L 过点A (3,4)且与点B (-3,2)的距离最远,那么L 的方程为( )A 、0133=--y xB 、0133=+-y xC 、0133=-+y xD 、0133=++y x8、光线由点P (2,3)射到直线1-=+y x 上,反射后过点Q (1,1),则反射光线所在的直线方程为( )A 、0=+-y xB 、03154=+-y xC 、0154=+-y xD 、01654=+-y x9、已知点A (x,5)关于点(1,y )的对称点(-2,-3),则点P (x ,y )到原点的距离是( )A 、4B 、13C 、15D 、1710、已知直线024=-+y ax 与052=+-b y x 互相垂直,垂足为(1,c ),则c b a ++的值为( )A 、-4B 、20C 、0D 、2411、直线06:1=++ay x l 与023)2(:2=++-a y x a l 平行,则a 的值等于( )A 、-1或3B 、1或3C 、-3D 、-112、直线)12(++=m mx y 恒过一定点,则此点是( )A 、(1,2)B 、(2,1)C 、(1,-2)D 、(-2,1)13、如果两条直线的倾斜角相等,则这两条直线的斜率1k 与2k 的关系是( )A 、1k =2kB 、1k >2kC 、1k <2kD 、1k 与2k 的大小关系不确定14、直线是y=2x 关于x 轴对称的直线方程为( )(A )、x y 21-=;(B )、21=y x ;(C )、y = -2x ;(D )、y=2x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标数学必修2第三章直线与方程测试题
一、选择题(每题3分,共36分)
1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.21
3, B.--213, C.--12
3, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )
A.重合
B.平行
C.垂直
D.相交但不垂直
3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )
(A )2x -3y =0; (B )x +y +5=0;
(C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=0
4.直线x=3的倾斜角是( ) A.0 B.2
π C.π D.不存在 5.圆x 2+y 2+4x=0的圆心坐标和半径分别是( )
A.(-2,0),2
B.(-2,0),4
C.(2,0),2
D.(2,0),4
6.点(-1,2)关于直线y = x -1的对称点的坐标是
(A )(3,2) (B )(-3,-2) (C )(-3,2)
(D )(3,-2) 7.点(2,1)到直线3x -4y + 2 = 0的距离是
(A )54 (B )45 (C )254 (D )4
25 8.直线x - y + 3 = 0的倾斜角是( )
(A )30° (B )45° (C )60° (D )90°
9.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为
(A )3x +4y -5=0 (B )3x +4y +5=0
(C )-3x +4y -5=0 (D )-3x +4y +5=0
10.设a 、b 、c 分别为ρABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( )
(A )平行; (B )重合; (C )垂直;
(D )相交但不垂直
11.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )
(A )-;31
(B )-3; (C );3
1 (D )3 12.直线,31k y kx =+-当k 变动时,所有直线都通过定点( )
(A )(0,0) (B )(0,1)
(C )(3,1) (D )(2,1)
一、填空题(每题4分,共16分)
13.直线过原点且倾角的正弦值是5
4,则直线方程为
14.直线mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为
15.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的一个..
值是_______. 16.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ),当两直线夹角在(0,
12π)变动时,则a 的取值范围为
三、解答题(共48分)
17. ABC ∆中,点A (),1,4-AB 的中点为M (),2,3重心为P (),2,4求边BC 的长(6分)
18.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值(6分)
19.已知直线3x+y —23=0和圆x 2+y 2=4,判断此直线与已知圆的位置关系(7分)
20.若直线062=++y ax 和直线0)1()1(2=-+++a y a a x 垂直,求a 的值(7分)
21.已知圆过点A(1,4),B(3,—2),且圆心到直线AB 的距离为10,求这个圆的方程(10分)
22.如图,在∆ABC 中,∠C=90O ,P 为三角形内的一点,且PCA PBC PAB S S S ∆∆∆==,求证:│PA │2+│PB │2=5│PC │2(12分)
答案:一、1.B2.B3.C4.B5.A6.D7.A8.B9.B10.C11.A12.C
二、13.x y 34±= 14.mn 21 15.−1 16.(3
3,1)⋃(1,3) 三、17.提示:由已知条件,求出B 、C 两点的坐标,再用两点距离公式
18.提示:三点共线说明AC AB k k =,即可求出a
19.提示:比较圆的半径和圆心到直线的距离d 的大小,从而可判断它们的位置关系
20.提示:斜率互为负倒数,或一直线斜率为0,另一直线斜率不存在
21.提示:通过已知条件求出圆心坐标,再求出半径,即可,所求圆的方程为:
(x+1)2+y 2=20或(x —5)2+(y —2)2=20
22.提示:以边CA 、CB 所在直线分别为x 轴、y 轴建立直角坐标系,,设A (0,a )、B
(0,b ),P 点的坐标为(x ,y ),由条件可知PCA PBC PAB S S S ∆∆∆===31ABC S ∆,可求出x=
31a ,y=3
1b ,再分别用两点距离公式即可。