列方程解应用题分类练习卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题分类练习卷
一、列方程解应用题的一般步骤
(1)审题:弄清题意,明确有哪些已知量,有哪些未知量,求什么,量与量之间有哪些相互关系.
(2)找出相等关系:找出题目能够全包含在内的相等关系.
(3)设未知数,列方程;设未知数后,用未知数的式子表示其他未知量, 并根据相等关系列出方程.
(4)解方程:解所列方程,求出未知数的值.
(5)检验并写出答案:检测未知数的值是否有实际意义,并写出答案,答案中应说明单位.
二、常见的应用题型
三、注意问题
(1)探求相等关系时,首先应认真审题,仔细分析,把问题归结为某一题型, 并借助表格
或确各种示意图帮助分析理解,从中揭示已知与未知的关系,找到相等关系.
(2)在设题中要求的量为未知数很难列出方程或列出的方程很繁琐时,应设间接未知数.
(3)求出方程的解后应检验其是否有实际意义.
(4)列方程时,特别注意统一单位.
(5)应用题有解有答,不能忘了作答.
劳力调配问题举例
1.甲、乙两个运输队,甲队32人,乙队28人,从乙队调走x人到甲队,(1)若甲队人数与乙队人数恰好相等,则所列方程是_________________;(2)若甲队人数恰好是乙队人数的2倍,则所列方程是_______________;(3)若甲队人数比乙队人数的4倍还多5人,则所列方程是_______________.
2.甲队劳动的有29人,在乙处劳动的有17人,现要赶工期,总公司另调20 人去支援,使甲处的人数为乙处人数的2倍,应分别调往甲处、乙处各多少人?
3.甲工厂有某种原料120吨,乙工厂有同样的原料96吨,甲厂每天用原料15吨,乙厂每天用原料9吨,问多少天后,两工厂剩下的原料相等?
4.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍。”乙回答说:“最好还是把你的羊给我1只,这样我们的羊就一样多了。”两个牧童各有几只羊?
配套问题举例
1.某车间22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000 个螺母,一个螺钉配两个螺母,为了使每天的产品刚好配套,应该安排工人生产?
2.用铝片做听装饮料瓶,每张铝片可制作瓶身16个或制作瓶底43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张铝片制瓶身,多少张铝片制瓶底可以正好制成配套的饮料瓶?
等积变形问题举例
1.将棱长为0.5m 的正方体钢锭,熔解成长、宽、高分别为0.4m 、0.2m 、0.1m 的长方体钢锭.至少可铸成多少个?
2.用一根直径为12cm 的圆柱形铝柱,铸造10只直径为12cm 的铅球,问应截取多长的铝柱?(球的体积V=343
r ,R 为球的半径)
数字问题举例
1.用式子表示下列两位数或三位数:
(1)一个两位数,个位数字是a,十位数字是b:____________
(2)一个两位数,个位数字是a,十位数字比个位数字小1:__________
(3)一个两位数,个位数字是a,比十位数字小1:__________
(4)一个两位数,十位数字是a,个位数字比十位数字的2倍多3;____________
(5)一个三位数,十位数字是a,比百位数字大1,比个位数字少1.____________
2.一个两位数,个位上的数字比十位上的数字大2, 个位与十位上的数字之和是10,求这个两位数.
3.一个两位数,个位上的数字与十位上的数字之和是7, 若把个位与十位数字对调,则所得的两位数比原两位数大27,求这个两位数.
4.有一列数,按一定规律排列成1,-2,4,-8,16,-32……,其中某三个相邻数的和是-96,这三个数各是多少?
5.下图是本月的日历,用如图所示的“十字架”去框其中的五个数,若这五个数的和是60,你知道框住的是哪五个数吗?在图中画出来,并用方程的知识进行说明.
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
行程问题举例:路程=速度×时间V顺=V静+V水V顺=V静-V水
1.甲、乙两人登一座高山,甲每分钟登高10米,且先出发30分钟, 乙每钟登高15米,两人同时到达山顶.甲用多少时间登山?这座山有多高?
2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程, 最后以8米/秒的速度冲刺激到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?
3.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加20千米,只需5小时即可到达,求甲、乙两地的路程.
4.小明原计划骑车以12千米/时的速度,由A地去B地, 这样便可在规定时间到达B地,但因故将原计划出发时间推迟了20分钟,只好以15千米/时的速度前进, 结果比规定时间早4分钟到达B地,求A、B两地的距离.
5.一架飞机在两城之间飞行,风速为24千米/时,顺风飞行需要2小时50分, 逆风飞行需要3小时,求无风时的飞机的航行速度和两城之间的路程.
6.A、B两地相距480千米,一列慢车以每小时60千米的速度从A地开出,一列快车以65千米/时的速度从B地开出.(1)若两车同时开出,相向而行,多少时间相遇?(2)若慢车先开出1小时,两车同向而行,快车开出多少小时追上慢长?(3)右两车同时开出,相背而行,多少小时后两车相距620千米?(4)若慢车先开出1小时,相向而行,慢车开出多少小时后两车相距620千米?
工程问题举例:工作量=工作效率×工作时间=人均工效×工时×人数
1.食堂有煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备, 耗煤量改为原来的一半,结果多烧了10天,求原存煤量.
2.一项工程,甲工程队单独做40天可以完成,乙工程队单独做80天可以完成, 现由甲先单独做10天,然后与乙共同完成余下的工程,问甲工程队一共做了多少天?
3.某工程,甲、乙、丙单独做分别要10天、12天、20天完成。现甲独做2天后, 由乙独做若干天后,然后甲、乙、丙又合作2天才能把全部工程干完, 问乙一共做了多少天?
4.某水池有一进水管和一放水管.若单独开进水管6小时可注满水池, 若单独开放水管,8小时可放完一池水,若同时开两小管,那么多少小时可注满水池的一半?
5.一项工作,由1人做要40小时完成.现计划由一部分人先做4小时,再增加2人一起做8小时,完成这项工作的7
,假设
10
这些人的工作效率相同, 具体应先安排多少人工作?
销售盈亏问题举例:销售额=单价×销售量,商品利润=售价-进价=利润率×进价
1.某商品售价为900元一件,为了适应市场竞争,商场按九折降价并让利40 元销售,仍可获利10%,求这种商品进价为多少元?