列方程解应用题分类练习卷
列方程解应用题综合练习题100道

列方程解应用题综合练习题100道1. 一个数的5倍减去12等于32,求这个数是多少?解法:设这个数为x,则可以列出方程5x - 12 = 32。
解这个方程后可得x = 8。
2. 一个数的四分之三加上15等于30,求这个数是多少?解法:设这个数为x,则可以列出方程(3/4)x + 15 = 30。
解这个方程后可得x = 20。
3. 两个数的和是35,其中一个数是另一个数的3倍,求这两个数是多少?解法:设其中一个数为x,则另一个数为3x。
可以列出方程x + 3x= 35。
解这个方程后可得x = 7,因此两个数分别为7和21。
4. 某种商品原价100元,现在打七折出售,求出售后的价格是多少?解法:打七折即为原价乘以0.7。
因此出售后的价格为100 * 0.7 =70元。
5. 某种商品原价x元,现在打八五折出售,求出售后的价格是多少?解法:打八五折即为原价乘以0.85。
因此出售后的价格为x * 0.85元。
6. 已知一个长方形的宽度是x,长度是y,周长等于36,求长和宽各是多少?解法:周长等于两倍的长加两倍的宽,因此可以列出方程2x + 2y = 36。
解这个方程后可得x = 9,y = 9。
7. 一个长方形的周长是24,宽是x-2,求长度x是多少?解法:周长等于两倍的长加两倍的宽,因此可以列出方程2x + 2(x-2) = 24。
解这个方程后可得x = 8,因此长度x为8。
8. 一个水果店卖苹果和橙子,已知苹果的单价是3元,橙子的单价是2元,现在有10个苹果和8个橙子一共卖了38元,求苹果的个数。
解法:设苹果的个数为x,则可以列出方程3x + 2 * 8 = 38。
解这个方程后可得x = 6,因此苹果的个数为6个。
9. 一个数的六分之一加上8等于16,求这个数是多少?解法:设这个数为x,则可以列出方程(1/6)x + 8 = 16。
解这个方程后可得x = 48。
10. 一个数的三分之一加上五等于十,求这个数是多少?解法:设这个数为x,则可以列出方程(1/3)x + 5 = 10。
(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例 1 图书馆买回来 60 本文艺书和科普书,其中文艺书的本数是科普书的 3 倍,文艺书有多少本?例 2 一个果园有荔枝、龙眼和芒果这三种果树 108 棵,其中荔枝的棵树是龙眼的 3 倍,芒果的棵树是龙眼的 2 倍,这三种果树各有多少棵?例 3 一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的 3 倍。
水池里有 16吨水,打开两管 5 小时能把水排完,甲管每小时排水量多少吨?例 4 某粮店全天卖出大米、面粉和玉米面 11520 千克,卖出大米的千克数是面粉的 6 倍,面粉的千克数是玉米免的 5 倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例 1 甲粮仓有 510 吨大米,乙粮仓有 1170 吨大米,每天从乙粮仓调 30 吨大米到甲粮仓,多少天今后甲粮仓大米的吨数是乙粮仓的 6 倍?例2 图书馆买回来故事书、科普书和连环画 236 本,若是故事书增加 10 本,就是科普书本数的 2 倍,科普书减少 12 本,就是连环画本数的一半,买回来的故事书有多少本?例 3 甲数与乙数的和是 30,甲数的 8 倍与乙数的 3 倍的和是 160.甲数、乙数各是多少?例 4 甲站和乙站相距 299 千米,一辆大客车从甲站开往乙站, 1.5 小时后一辆小轿车从乙站开往甲站,行驶速度是客车的 3 倍,小轿车行驶 2.5 小时碰到大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。
列方程解差倍问题,可以吧问题中的一个未知数量用 x 表示,再依照问题中的“差”或“倍”的关系,把其他未知数量用含有 x 的式子表示,再找出数量之间的等量关系列方程。
在设未知数x 时,平时把倍的关系中作为 1 的数量设为 x 较好。
例 1 一张办公桌的价格是一把椅子的 4 倍,办公桌的定价比椅子贵 138 元,一张办公桌的价格是多少钱?例 2 一个书厨基层放的书的本数是上层的 3 倍,若是从基层取 43 本数放到上层,两层的书的本数同样,这个书厨一共方有多少本书?例 3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的 2 倍,第二天售出的千克数是第三天的 1.5 倍,第三天售出的比第一天少 88 千克,这批西瓜共有多少千克?例 4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的 3 倍,每次取走同样的个数的黑棋子和白棋子,取了若干次后,白棋子还剩 8 个,黑棋子还剩 94 个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例 1 有两根同样长的绳子,第一根绳子剪去 10 米,第二根绳子剪去 28 米,第一根绳子剩下的长度是第二根的 4 倍。
小学五年级列方程解应用题练习50题附答案

小学数学列方程解应用题练习50题附答案(1)A、B两地相距780千米,甲、乙两列火车分别从A、B两地相对开出,6.5小时相遇,已知甲车每小时行62.8千米,乙车每小时行多少千米?(2)爸爸的体重是75千克,比洋洋体重的3倍多15千克,洋洋的体重是多少千克?(3)池塘里有鸭子30只,比岸上鸭子只数的3倍少12只,岸上有多少只鸭子?(用方程解答)(4)灯具厂计划生产灯具18万只,前5天生产1.2万只,剩下的要求8天完成,平均每天要生产多少万只?(5)果园里有苹果树1500棵,苹果树的棵数比梨树棵数的4倍多60棵。
梨树有多少棵?(6)加工车间要加工875个零件,已经加工了3.5小时,每小时加工50个。
剩下的平均每小时加工56个,还要几小时完成任务?(7)今年妈妈的年龄比小明大22岁,是小明年龄的3倍,小明今年几岁?(8)两个工程队共同修一条200千米的公路,各从一端相向施工,50天就完成了任务。
甲队平均每天修2.5千米,乙队平均每天修多少千米?(9)妈妈在商场买了3条毛巾和3个杯子,共花了21.6元。
其中杯子每个2.5元,毛巾每条多少元?(10)某工厂的甲、乙两个车间共有工人160人,如果从甲车间调8人到乙车间,两个车间的人数正好相等。
甲、乙两个车间原来各有多少人?(11)某小学举行数学竞赛,共15道题,评分标准是做对1题得8分,做错或不做1题倒扣4分,小明最后得72分,他做对了几道题?(12)生产一批零件,计划20天完成任务,由于实际每天比原计划多生产150个,结果提前5天完成任务,这批零件有多少个?(13)实验小学有2800名学生,比实验幼儿园人数的6倍少20人,实验幼儿园有多少人?(14)四年级同学种向日葵,如果每人播4粒种子,就多17粒种子;如果每人播6粒种子,就少3粒种子。
你能求出有多少个小朋友,多少粒向日葵种子吗?(15)同学们去植树,五年级植了84棵,比三年级植的2倍少16棵,三年级植了多少棵?(16)小明和小花共收集邮票225张,小明的邮票是小花的4倍,小明和小花各有多少张邮票?(17)学校开展课外活动,书法班有54人,比音乐班人数的2倍还多6人,音乐班有多少人?(18)工程队修一条公路,原计划每天修0.6千米,实际每天多修0.04千米,结果提前一天完成任务,这条公路有多长?(19)甲乙两书架共有书1175本,如果从两个书架上各拿出150本,甲书架剩下的书正好是乙书架剩下的书的1.5倍,甲乙两书架原来各有书多少本?(20)工地上有两堆黄沙,第一堆重6.4吨,比第二堆的2倍多0.8吨,第二堆黄沙有多少吨?(21)小吴买了3本故事书和4本漫画书,共用去15.1元,每本故事书2.9元,每本漫画书多少元?(22)王师傅给一家公司运200块玻璃,每块运费0.6元,如果打破一块,除不得运费外,还需赔偿4元,结果该公司付给王师傅106.2元运费,问:打破了几块玻璃?(23)小红、小明各买了一本练习题集,利用暑假做习题。
(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?例3一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。
水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米免的5倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例1甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?例2 图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?例3 甲数与乙数的和是30,甲数的8倍与乙数的3倍的和是160.甲数、乙数各是多少?例4 甲站和乙站相距299千米,一辆大客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。
列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。
在设未知数x时,通常把倍的关系中作为1的数量设为x较好。
例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共方有多少本书?例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?例4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的3倍,每次取走相同的个数的黑棋子和白棋子,取了若干次后,白棋子还剩8个,黑棋子还剩94个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例1 有两根同样长的绳子,第一根绳子剪去10米,第二根绳子剪去28米,第一根绳子剩下的长度是第二根的4倍。
【方程应用题】五年级数学上册-简易方程应用题分类大全

五年级上册数学一、和倍问题1.某商场暑假期间卖出的冰箱和空调共572台,卖出的空调数量是冰箱的1.2倍,卖出冰箱和空调各多少台?(用方程解答)2.一幅画框用了2.4米的木条,这幅画的长是宽的2倍。
这幅画的长、宽分别是多少?(列方程解决)3.某学校实践基地有桃树和荔枝树共1400棵,桃树的棵数是荔枝树的2.5倍,基地里有桃树、荔枝树各多少棵?(列方程解答)这个公司去年第四季度销售小汽车和面包车各多少辆?(列方程解)二、差倍问题5.火箭的速度是超音速飞机的9倍,火箭每秒比超音速飞机飞行快4千米,火箭和超音速飞机每秒分别飞行多少千米?(列方程解答)6.某学校的四年级学生比五年级少80人,五年级人数是四年级的1.4倍。
四、五年级各有学生多少人?7.三个植树队共植树1800棵,甲队植树的棵数是乙队的2倍,乙队植树的棵数比丙队少200棵,三队各植树多少棵?8.学校新进了一批童话书和科技书,童话书的本数是科技书的4倍,科技书比童话书少630本。
学校新进童话书和科技书各多少本?(用方程解)三、一个数的几倍多/少多少9.图书室有文艺书180本,比科技书的2倍多20本,科技书有多少本?(用方程解答)10.书架下层有图书130本,比上层的1.4倍少3本,书架上层有多少本图书?(列方程解答)11.学校图书馆有文艺书480本,比科技书的3倍还多60本。
科技书有多少本?12.学校图书馆有150本科技书,科技书的本数比漫画书的3倍少36本,漫画书有几本?(用方程解答)13.圆明园曾是我国清朝著名的皇家园林之一,1860年被英法联军洗劫、焚毁。
它占地面积520万平方米,比故宫的面积的5倍少10万平方米。
故宫的面积是多少万平方米?(列方程解)四、和差问题果比每千克橘子贵1.5元,每千克苹果和橘子各多少元?15.花园里桂花、月季花、杜鹃花共235棵。
桂花比月季花多20棵,桂花比杜鹃花少15棵。
三种花各有多少棵?16.张大伯家的果园有桃树120棵,比梨树少15棵。
列方程解应用题专项练习

列方程解应用题专项练习1、某工地调来96人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才能使挖出的土能够及时运走而不窝工。
2、小明爸爸前年存了年利率为2.43%的二年期定期储蓄.今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?3、小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程时,估计继续乘公共汽车将会在火车开车后半小时到达火车站.根据随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?4、甲、乙两个团体共120人去某风景区旅游,风景区规定超过80人的团体可购买团体票,已知每张团体票比个人票优惠20%,而甲、乙两个团体人数均不足80人,两团体决定合起来买团体票,共优惠了480元,你能知道团体票每张多少元?5、某广告公司需制作一块广告牌,请来两名工人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做1天,再二人合作,完成后共付给报酬450元。
若按各人完成的工作量付给报酬,应如何分配?6、国家规定个人发表文章、出版图书获得的稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元而不超过4000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元的应缴纳全部稿费的11%的税。
今知李教授获得一笔稿费,并缴纳个人所得税420元。
问:李教授获得的这笔稿费有多少元?7、某牛奶加工厂现有鲜奶9t,若在市场上直接销售鲜奶,每吨可获利润500元;制成酸奶销售,每吨可获利润1200元;制成奶片销售,每吨可获利润2000元。
该工厂的生产能力是:如制成酸奶,每天可加工3t;制成奶片,每天可加工1t。
受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。
人教版七年级上册《一元一次方程》应用题分类练习(一)

《一元一次方程》应用题分类练习(一)一.行程问题:1.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.2.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.3.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?4.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?5.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?二.配套问题:6.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?7.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?三.数字问题:8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.四.数轴问题:10.如图,A,B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP+OQ=5时的运动时间t的值.11.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.五.积分问题:12.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 88D14 6 64E10 10 40(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?13.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进14 10 4 24光明14 9 5 23远大14 m n22卫星14 4 10 a钢铁14 0 14 14 请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.六.方案问题:14.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.15.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).2.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.3.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.4.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.5.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.6.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.7.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.10.解:(1)A、B两点之间的距离是:4﹣(﹣12)=16.故答案为16;(2)分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP+OQ=5,∴12﹣5t+4﹣2t=5,解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP+OQ=5,∴5t﹣12+3(t﹣2)=5,∴t=,综上所述,当OP+OQ=5时的运动时间t的值为或.11.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.12.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.13.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.14.解:(1)设乙工程队要刷x天,由题意得:240x=160(x+20),解得:x=40,240×40=9600(间),答:这个小区共有9600间房间;(2)设甲工程队的工作时间为y天,则乙工程队的工作时间(2y+4)天,由题意得:160y+240y+240(1+25%)×(2y+4﹣y)=9600,解得:y=12,2y+4=2×12+4=28(天),答:乙工程队共粉刷28天;(3)方案一:由甲工程队单独完成,时间:40+20=60(天),60×1600=96000(元);方案二:由乙工程队单独完成需要40天,费用:40×2600=104000(元);方案三:按(2)问方式完成,时间:28天,费用:12×(1600+2600)+(28﹣12)×2600=92000(元),∵28<40<60,且92000<96000<104000,∴方案三最合适,答:选择方案三既省时又省钱的粉刷方案.15.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。
最新小升初系列222列方程解应用题专题训练(小六(最牛经典)1

列方程解应用题一、“鸡兔同笼问题”例1、苹果和梨共14筐,总重520千克,其中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?练习:1、鸡兔共36个头,118只脚,问鸡兔各多少只?2、某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?3、工人搬运100只玻璃杯,搬运一只得3角,损坏一只赔5角,搬运完共得到26元。
损坏了多少只?二“盈亏问题”例2、六年级同学分苹果,如果每人分18个,苹果还剩2个,如果每人分20个,还差18个,一共多少人?练习:1、小雅去买一种练习本,如果买4本还剩1元,如果买6本就还差2元。
每本练习本多少钱?2、少先队颁奖,如果每人发4枝,则剩10枝,如果每人发6枝,则剩2枝。
有多少人获奖?三、分数应用题例3、一根钢管,第一次截去3米,第二次截去余下的1/3,这时还剩12米,钢管原长多少米?练习:汽车从A城市开往B城市,第一天行了全程的1/4,第二天行了剩下的2/5,这时离B城市还有90千米。
A、B两城市相距多少千米?例4、某校有学生465人,女生2/3比男生的4/5少20人。
该校有男生多少人?练习:1、两根铁丝共长44米,若把第一根截去1/5,第二根接上2.8米,则两根长度一样。
两根铁丝各长多少米?2、甲乙两数的差为10,甲数的1/7比乙数的2/9少20,求甲数。
3、甲乙两桶植物油,甲桶中的油比乙桶中的少120千克。
若果从乙中取出70千克放入甲中,则甲中的油比乙中的多1/8,原来乙桶中有油多少千克?四、其它综合应用题例5、成都一电视机厂接到一批任务,计划每天生产120台就可按时完成任务,实际每天比原计划多生产10台,结果提前4天完成任务。
这批电视机共多少台?练习:同学列队出操,站成方阵。
每行站15人时的行数比每行站18人时的行数要多6行。
一共有学生多少人?例6、一艘轮船所带的燃料最多可用12小时,驶出时顺水,速度是30千米/小时;返回时逆水,速度是顺水速度的4/5.这艘轮船最多行驶多远就应返航?例7、加工一批零件,甲乙合作24天可以完成。
五年级上学期方程解决问题专项练习

用方程解决问题专题训练一、差倍问题1、食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。
买来西红柿多少千克?2、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?3、学校数学小组的人数是写作小组人数的1.4倍,如果从数学小组调4人到写作小组,两个小组的人数就相等了。
写作小组和数学小组各有多少人?二、求一倍数问题4、五(1)班有45人参加了兴趣小组,是五(2)班的1.5倍,五(2)班一共多少人参加了兴趣小组?5、共有1428个网球,每5个装一筒,装完后还剩3个。
一共装了多少筒?6、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。
住宅每层高多少米?三、和倍问题7、地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。
地球上的海洋面积和陆地面积分别是多少亿平方千米?8、某工厂共有职工800人,其中女职工人数比男职工人数的2倍少40人,这个工厂的男、女职工各有多少人?9、一个长方形的周长是72厘米,长是宽的2倍,求长方形的长和宽各是多少厘米?四、和差问题10、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?五、鸡兔同笼问题11、今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡腿和兔腿共94只。
问:鸡、兔各有多少只?12、鸡兔同笼,共有100个头,350只脚。
鸡兔各多少只?13、鸡和兔的数量相同,两种动物的腿加起来共有48条。
鸡和兔各有多少只?六、工程问题14、五(2)班同学到工地去搬砖,共搬砖1100块。
男同学有20人,每人搬砖25块。
女同学有30人,每人搬砖多少块?15、工程队修一条600米的公路,修了8天后还剩下120米没修完。
平均每天修多少米?16、录音机厂上月计划组装录音机5800台,实际工作20天就超过计划440台,实际平均每天组装多少台?17、师徒合做180个零件。
(10)列分式方程解应用题专项练习60题(有答案)ok

列分式方程解应用题60题(有答案)1.A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.2.轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.3.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程.已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?4.甲,乙两组学生去距学校4.5km的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少.5.甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、乙两队单独完成此项工程各需多少天?6.某校师生为爱心基金捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天多50人,且两天人均捐款数相等.问这两天共有多少人捐款?人均捐款额是多少?7.甲做90个零件所用的时间和乙做120个零件所用的时间相同,又知每小时甲、乙两人共做35个机器零件.求甲、乙每小时各做多少个零件.8.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务.甲、乙两队独做各需几天才能完成任务?9.甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.10.甲乙两地相距360km,新修的高速公路开通后,在甲乙两地行驶的汽车的平均速度提高了50%,而从甲地到乙地的时间缩短了2h.求汽车提速后的平均车速?11.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,问原来每天装配机器有多少台?12.一个工人生产奥运会吉祥物“福娃欢欢”,计划30天完成,若每天多生产5个,则在26天完成且多生产了14个.则这个工人原计划每天生产多少个福娃欢欢?13.孙明与李丽共同帮助校图书馆清点图书,李丽平均每分钟比孙明多清点10本.已知孙明清点完200本图书所用的时间与李丽清点完300本所用的时间相同,求孙明平均每分钟清点图书多少本.14.某人骑自行车的速度比步行的速度每小时多走8千米,已知步行12千米所用的时间和骑自行车36千米所用的时间相等,这个人步行每小时走多少千米?15.甲、乙两班同学参加“绿化祖国”植树活动,已知乙班每小时比甲班多种2棵,甲班种60棵树所用的时间与乙班种66棵所用的时间相等,问:甲、乙两班每小时各种多少棵树?16.甲、乙合打一份稿件,4小时后,甲有事离去,由乙继续打6小时完成.已知甲打4小时的稿件乙需5小时完成.求甲、乙独打这份稿件各需多少小时?17.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?18.甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙两人的速度.19.一项工程要在限期内完成,如果第一组单独做,恰好按规定日期完成,如果第二组单独做,超过规定日期4天才能完成,如果两组合做3天后剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?20.某货车在发生交通事故后,沿一条小路向高速公路逃离,交警巡逻车立即沿另一公路向高速追击,在货车刚进入高速公路路口时,将它截住.已知警车的速度比货车快40千米/时,警车驶到高速公路行驶的路程是货车的2倍,求警车的速度.21.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤所需的时间相同.问现在平均每天采煤多少吨?22.甲、乙两人从学校出发,前往距学校12千米的新华书店.甲每小时比乙多走2千米,乙比甲提前1小时出发,结果两人同时到达.求甲、乙两人每小时各走多少千米?23.甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?25.某工程要在规定日期内完成.若由甲单独做,则刚好如期完成;若由乙单独做,则要超过3天完成,现在先由甲、乙合做2天,剩下的工程由乙单独做,结果刚好按时完成.求规定的天数.26.“要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?27.2010年春季我国西南五省持续干旱,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划生产1500桶纯净水支援灾区人民,在生产了300桶纯净水后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天生产多少桶纯净水?28.小颖和几位同学去文具店购买练习本,该文具店规定,如果购买达到一定的数量,则可以按批发价购买,于是他们凑到60元钱以批发价购买,这样购得的练习本数量比用零售价购得的练习本数量多30本,若每本练习本的批发价是零售价的,问每本练习本的零售价是多少元?29.某工厂引进新技术后,平均每小时比原来多生产30个零件.若现在生产900个零件所需时间与原来生产600个零件所需时间相等,现在平均每小时生产多少个零件?30.为了帮助灾区重建家园,学校号召同学们自愿捐款.已知第一次捐款总数为4 800元,第二次捐款总数为5 000元,第二次捐款人数比第一次捐款人数多20人,且恰好相等.问第一次捐款人数是多少?31.某公园在2008年北京奥运花坛的设计中,有一个造型需要摆放1800盆鲜花,为奥运作奉献的精神促使公园园林队的工人们以原计划1.2倍的速度,提前一小时完成了任务,工人们实际每小时摆放多少盆鲜花?32.某顾客第一次在商店买若干件小商品花去4元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,购买一打以上可以拆零买,这样,第二次花去4元买同样小商品的件数量是第一次的1.5倍.问他第一次买的小商品是多少件?33.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?34.某工厂加工495件产品,在加工了90件后进行了技术改造,使每天生产的产品数量是原来的1.5倍,结果共用了12天圆满完成了任务,问原来每天加工多少件产品?35.阅读下面一段文字:高圆带了9元去商店买笔记本,她想买一种软面抄,正好需付9元,但售货员建议她买另一种质量更好的硬面抄,只是这种笔记本的价格比软面抄要高出一半,因此她只能少买一本笔记本.请你根据以上信息确定:这种软面抄和硬面抄的价格各是多少?高圆原来打算买多少本笔记本?36.为加强防汛工作,市工程队准备对长江堤岸一段长为2500米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加固的长度是多少米?37.甲、乙两名志愿者为灾后重建搬运物资.已知甲、乙两人每小时共搬运1500 kg物资,且甲搬运300 kg物资的时间与乙搬运200 kg物资所用的时间相同.求甲每小时比乙多搬运多少物资?38.今年全国“助残日”期间,某中学学生踊跃捐款,奉献自己的一份爱心、其中八年级一班学生共捐款450元,二班学生共捐款390元.已知一班平均每人捐款金额是二班平均每人捐款金额的1.2倍,且二班比一班多2人,那么这两个班各有多少人?39.一件工程甲单独做15天可以完成,乙单独做12天可以完成,甲,乙,丙三人合作4天可以完成,那么丙单独做,几天可以完成?40.2009年12月,相距1050公里的A、B两市的高速铁路建成通车,高速铁路上的旅客列车时速是原普通铁路的3.5倍,运行在两市间的旅客列车运行时间因此缩短7.5小时,求高速铁路的时速.41.应用题:已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?42.某市教育局向一贫困山区县赠送3600个学生用的科学记算器以满足学生学习的需要、现用A,B两种不同的包装箱进行包装,单独用B型包装箱比单独用A型包装箱少用15个,已知每个B型包装箱装计算器的个数是A型包装箱的1.5倍,求A,B两种包装箱每个各能装计算器多少个?43.某市为处理污水需要铺设一条长为3000米的管道、为了尽量减少施工对交通所造成的影响,实际施工时每天铺设管道的长度为原计划的1.5倍,结果提前25天完成任务,求实际施工时每天铺设管道的长度.44.今年我国西南地区遭受严重旱灾,受灾人口达6130多万.为了帮助灾区重建家园,某学校号召师生自愿捐款,第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数.45.甲乙两站相距480千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车的2.5倍,结果客车比货车早6小时到达乙站,求两种车的速度各是多少?46.某养鱼专业户要想估计鱼塘里大概有多少条鱼,他进行了如下操作:先从鱼塘里捞上来200条鱼,分别做上记号后,又放回鱼塘,一段时间后,他又从鱼塘捞上来200条鱼,发现有4条是做了记号的,由此他就知道了鱼塘大概有多少条鱼,请你说明其中的道理,并求出该鱼塘里大概多少条?47.1罐咖啡甲、乙两人一起喝10天喝完,甲单独喝则需12天喝完,1包茶叶甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完,假如甲在有茶叶的情况下决不喝咖啡,而乙在有咖啡的情况下决不喝茶,问两人一起喝完1包茶叶和1罐咖啡需要多少天?48.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.49.某商店销售一种书包,七月份的销售额为6000元.为了让附近的孩子们在新学期能背上新书包,店主决定让利销售,在八月份将每个书包按原价的8折销售,结果销售量比七月份增加了50个,销售额比七月份增加了800元.求七月份每个书包的售价.50.“我国水资源形势非常严峻”,为了节约用水.某市今年3月1日起调整居民用水价格,每立方水费上涨25%.已51.某小组学生准备外出春游,预计共需费用120元,临出发时,有2人因故不能参加,但总费用不变,这样春游的学生人均费用增加,问原计划每人付费多少元?52.某厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合,其平均价值比甲种原料每斤少3元,比乙种原料每斤多1元,问混合后的单价每斤多少元?53.先锋中学九年级学生由距江南10km的学校出发前往参观,一部分同学骑自行车先走,过了20min后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(1)设骑车同学的速度为xkm/h,利用速度,时间,路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程,并求出问题的解.速度(千米/时)所用时间(时)所走的路程(千米)骑自行车x 10乘汽车1054.阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.55.2008年初,我国南方地区遭受雪灾,为保持道路畅通,市政府决定用铲雪机铲去扬威大道上的积雪.如果只用﹣台A型铲雪机单独工作,需要10小时才能全部铲完,在该铲雪机工作2小时后,一台B型铲雪机加入合作,然后一起工作了3小时将扬威大道上的积雪全部铲完,求B型铲雪机单独工作需要多少小时铲完?56.北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心.无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:信息一:(1)班共捐款540元,(2)班共捐款480元.请你根据以上三条信息,求出八(1)班平均每人捐款多少元?57.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系;(2)原计划若干天卸载完这批货物,但由于后一批货物要提前2天到达,则实际每天卸货数量比原计划每天多20%,恰好按时卸载完毕,求原计划每天卸载多少货物?58.2008年夏季奥运会的主办国于2001年7月13日揭晓.当时,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000千米处会合,并同时向北京进发,绿队走完2000千米时,红队走完1800千米,随后红队的速度比原来提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两队的速度比.(2)问红绿两支车队能否同时到达北京并说明理由.(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京求出第一支车队到达北京时,两支车队的距离.(单位:千米)59.列方程或方程组解应用题:某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元商场第二个月共销售多少件?60.阅读并解答:先阅读下列计算方法:某商店将甲乙两种糖果混合销售,并按以下公式确定混合糖果的单价:单价=(元/千克),其中m1、m2分别为甲乙两种糖果的重量(千克),a1、a2分别为甲乙两种糖果的单价(元/千克).再解答下列问题:已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克.(1)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,已知混合糖果的单价为18.4元/千克,问:这箱甲种糖果有多少千克?(2)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再出售时,混合糖果的单价为17.5元/千克.问:这箱甲种糖果有多少千克?参考答案:1.解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时2.解:设船在静水中的速度是x千米/时.由题意得:.解得:x=21.经检验:x=21是原方程的解.答:船在静水中的速度是21千米/时3.解:设乙队单独完成所需天数x 天,则甲队单独完成需x天,由题意,得即=1 解得x=6 经检验,x=6是原方程的根x=6时,x=4答:甲、乙两队单独完成分别需4天、6天4.解:设甲组速度为xkm/小时,则乙组速度为3xKm/小时.列方程:.解得:x=6.经检验:x=6是方程的解.∴3x=18.答:步行速度为6km/小时,骑自行车的速度为18km/小时5.解:设甲队单独完成此项工程需2x天,则乙队需要3x天.由题意得:.解之得:x=2.经检验;x=2是所列分式方程的根.∴2x=2×2=4,3x=3×2=6.答:甲队单独完成需4天,乙队需6天6.解:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程.解得x=200.检验:当x=200时,x(x+50)≠0,∴x=200是原方程的解.两天捐款人数x+(x+50)=450,人均捐款=24(元).答:两天共参加捐款的有450人,人均捐款24元7.解:设甲每小时做x个零件,则乙每小时做(35﹣x)个零件.根据题意列方程得:.解得:x=15.经检验,x=15是原方程的解.答:甲每小时做15个零件,乙每小时做20个零件8.解:设甲独做需要x天完成任务,根据题意得:×9+(﹣)×(9+21)=1,解得:x=24,经检验:x=24是方程的解,∴1÷(﹣)=48,答:甲、乙两队独做分别需要24天和48天完成任务9.解:设步行速度为x千米/时,那么骑车速度是4x千米/时,10.解:设提速前的平均车速为x km/h,根据题意得:﹣=2 解得:x=60 经检验:x=60是原方程的解,所以,(1+50%)x=90(km/h)答:汽车提速后的平均车速为90km/h.11.解:设原来每天装配机器x台,依题意得:,解这个方程得:x=6,经检验:x=6是原方程的解,答:原来每天装配机器6台12.解:设原计划每天生产x个零件.依题意可列:,解得x=29.经检验,x=29是原方程的根.答:这个工人原计划每天生产29个福娃欢欢13.解:设孙明平均每分钟清点图书x本.根据题意得:.解这个方程得:x=20.经检验:x=20是原方程的解.答:孙明平均每分钟清点图书20本14.解:设这个人步行每小时走x千米.依题意得:=.方程两边同乘以x(x+8)得:12(x+8)=36x.解得:x=4.经检验:x=4是原分式方程的解.(6分)答:这个人步行每小时走4千米.15.解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵,根据题意得:,解这个方程得:x=20,经检验:x=20是原方程的根.所以当x=20时,x+2=20+2=22.所以甲班每小时种20棵树,乙班每小时种22棵树16.解:设甲单独打这份稿件需要4x小时,则乙单独打这份稿件需要5x小时.依题意,列方程:()×=1.解方程得:x=3.经检验:x=3符合题意.∴4x=12,5x=15.答:独打这份稿件,甲需12小时,乙需15小时.17.解:设大队的速度是x千米/时,先遣队的速度是1.2x千米/时,由题意得,解得x=5,经检验,x=5是原方程的解,∴1.2x=6,答:先遣队和大队的速度分别是6千米/时,5千米/时18.解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.答:甲的速度为4.5千米/时,乙的速度为6千米/时19.解:设规定日期是x天.根据题意得:+=1.解这个分式方程得:x=12.经检验:x=12是原方程的解,并且符合题意.由题意得:=.解之得:x=80.经检验:x=80是原方程的解.答:警车的速度为80千米/时21.解:设现在平均每天采煤x吨,依题意得,解得x=1100经检验,x=1100是方程的解.答:现在平均每天采煤1100吨22.解:设甲每小时走x千米,根据题意列方程得:=﹣1 整理得:x2﹣2x﹣24=0(3分)解这个方程得:x1=6x2=﹣4 经检验,x1x2是原方程的解,但x2<0不符合题意舍去,取x=6∴x﹣2=4(1分)答:甲每小时走6千米,乙每小时走4千米.(1分)23.解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解 1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时24.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件25.解:设规定天数为x天,依题意得,2×(+)+(x﹣2)×=1,解得:x=6,经检验x=6是原方程的解,答:规定的天数是6天26.解:设原来车辆的平均速度为x千米/小时.由题意可得:.解这个方程得:x=60.经检验:x=60是原方程的解.答:原来车辆的平均速度为60千米/小时27.解:设原来每天生产x桶纯净水,依题意得:,解这个方程,得x=100,经检验,x=100是原方程的解.答:原来每天生产100桶纯净水.28.解:设每本练习本的零售价是x元,则每本练习本的批发价是x,根据题意得:,解得x=0.5.将x=0.5代入检验得是方程的解.答:每本练习本的零售价是0.5元.29.解:设现在平均每小时生产x个零件,依题意得:解得:x=90 经检验,x=90是方程的解且符合题意.答:现在平均每小时生产90个零件.30.解:设第一次捐款人数是x,则第二次捐款人数是(x+20).依题意得:.解方程得:x=480.经检验:x=480是原方程的解.答:第一次捐款人数是48031.解:设工人原计划每小时摆放x盆鲜花,则实际每小时摆放1.2x盆鲜花.依题意得:=+1,解这个方程得:x=300.经检验:x=300是原方程的解.∴1.2x=360.答:工人们实际每小时摆放360盆鲜花32.解:设他第一次买的小商品是x 件.﹣=,解得:x=20,经检验x=20是原方程的解.答:他第一次买的小商品是20件33.解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.答:现在平均每天生产200台机器.34.解:设:原来每天加工x件,则进行技术改造后,每天生产的产品数量为1.5x件.依题意列出方程:=12,解得:x=30,经检验,x=30是原分式方程的解.答:原来每天加工30件产品35.解:设每本软面抄的价格为x元,则每本硬面抄的价格为1.5x元.由题意得:.解之得:x=3.∴1.5×3=4.5(元),9÷3=3(本).答:软面抄单价3元/本,硬面抄单价4.5元/本,高原原计划买3本笔记本36.解:设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=米列方程:∴x=100 经检验:x=100是原方程的解.所以x(1+50%)==150米答:现在每天加固的长度是150米37.解:设甲、乙每小时搬运物资分别为xkg和(1500﹣x)kg,由题意得,解得x=900,经检验x=900是原方程的解,也符合实际意义.由900﹣(1500﹣900)=300(千克∕小时),知甲比乙每小时多搬运300kg物资38.解:设一班有x 人,根据题意得,解得:x=50,经检验,x=50是原分式方程的解,答:一班有50人,二班有52人39.解:设丙单独做x天可以完成.依题意列方程得:4(++)=1.解得:x=10.经检验,x=10是方程的根,也符合题意.答:丙单独做10天可以完成40.解:设普通列车时速为x公里/时,则,解之得:x=100,经检验:x=100是原方程的解,∴3.5x=350.答:高速铁路的时速为350公里/时41.解:设江水每小时的流速是x千米.根据题意,得,解得x=4.经检验,x=4是原方程的根.则江水每小时的流速是4千米42.解:设每个A型包装箱能够装x个计算器,则B型包装箱能装1.5x个计算器,依题意有:解这个方程,得x=80,经检验x=80是原方程的根,∴1.5x=120,答:每个A型包装箱能装80个计算器,每个B型包装箱能装120个计算器.43.解:设原计划施工时每天铺设管道xm,则实际施工时每天铺设管道1.5xm.据题意得:=25 解得x=40.经检验x=40是原方程的解. 1.5x=60答:实际施工时每天铺设管道60m.44.解:设第一次捐款人数为x,则解得x=400 经检验x=400是方程的解,答:第一次捐款人数为40045.解:设货车的速度为x千米/时,则客车的速度为2.5x千米/时,根据题意可列关于时间的方程式:﹣=6,解得:x=48(千米/时)故可知,货车的速度为48千米/时,客车的速度是120千米/时46.解:设该鱼塘里大概有x条鱼,依题意得,解之得:x=10000,经检验x=10000是方程的解,答:该鱼塘里大概有10000条鱼47.解:设甲单独喝茶叶的时间为x天,乙单独喝咖啡的时间为y天,根据题意列方程得,,解得y=60;,解得x=30.因此30天后甲喝完茶叶而乙只喝完咖啡的一半(),故剩下的咖啡变成两人合喝,由题意可知,他们两人还能喝÷()=5天.所以两人用30+5=35天才全部喝完.答:两人一起喝完1包茶叶和1罐咖啡需要35天48.解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人由题意得:解这个方程,得x=480 经检验,x=480是原方程的解∴x+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人49.解:设7月份每个书包售价为x元,则8月份每个书包售价为0.8x元,根据题意得﹣=50,解得x=50(元),经检验:x=50是所列方程的根且符合题意,答;7月份每个书包售价为50元。
列方程解应用题(分类)

利用解方程解决下面各题1、学校食堂进回大米比面粉多750千克,运回大米是面粉的2.5倍,进回大米和面粉各多少千克?2、母亲和女儿的年龄和为48岁,母亲的年龄是女儿年龄的3倍,母亲和女儿各是多少岁?3、学校购买一批篮球和足球,篮球的个数是足球的3倍,足球比篮球少24个,篮球和足球各是多少个?4、一个两层书架共有书360本,上层书的本书是下层书本数的3倍,上、下层各有书多少本?5、一个两层书架共有书360本,上层书的本书是下层书本数的26倍,上、下层各有书多少本?6、一块长方形菜地,周长是264米,长是宽的3倍,这块菜地的长和宽各是多少米?7、校园里的杨树和柳树共有36棵,杨树的棵树是柳树棵树的2倍,杨树和柳树各有多少棵?8、小红家养了一些兔子,其中白兔的只数是黑兔的3倍,白兔比黑兔多12只,白兔和黑兔各有多少只?9、买一张桌子的价钱是一把椅子价钱的2倍,老师买了6张桌子和5把椅子共用了1600元,一张桌子和一把椅子各多少元?10、师徒共同加工525个零件,5天完成,已知师傅每天加工75个,徒弟每天加工多少个?11、学校办公室买来20套办公桌椅,共用去4300元,已知椅子每把50元,桌子每张多少元?12、妈妈买了三块肥皂和四条毛巾共用了26.5元,肥皂每块售价1.5元,毛巾每条售价多少元?13、一条毛巾的价钱是一块肥皂的1.5倍,王叔叔买了4条毛巾和5块肥皂公用30.8元,一块肥皂多少元?14、看一本126页的故事书,看了33天后,还剩下45页,平均每天看多少页?15、少年宫举办夏令营活动有156人参加,把他们分成7组,还剩下23人,每组分了多少人?16、王叔叔买了大米15千克,面粉8千克,付了50元,找回6.85元,已知面粉每千克13元,大米每千克多少元?17、利民超市运来238千克苹果,每千克装一袋还剩下3千克,一共装了多少袋?18、10箱苹果比10箱梨重15千克,每箱梨重18.5千克,每箱苹果重多少千克?19、、五年级有7个班,每班指出32盆花,用来美化校园后,还剩下36盆。
列方程解应用题练习(附答案)

小学列方程解应用题1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
2、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.3、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.4、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?6、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?9、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?10、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.11、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?12、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?13、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.14、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.15、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?16、25除以一个数的2倍,商是3余1,求这个数.17、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.18、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.19、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.答案:1、解:设乙有书x本,则甲有书3x本X+3X=82×22、解:设下层有书X本,则上层有书3X本3X-60=X+603、解:设乙缸有X条,则甲缸有1/2X条X-9=1/2X+94、解:设计划时间为X小时60×(X-1)=40×(X+1)5、解:设四年级种树X棵,则五年级种(3X-10)棵(3X-10)-X=626、解:设原计划生产时间为X天40×(X+6)=60×(X-4)7、解:设X天后,乙仓存粮是甲仓的2倍(32+4X)×2=57+9X8、解:设直尺每把x元,小刀每把就是(1.9—x)元4X+6×(1.9—X)=99、解:设原来每个粮仓各存粮X吨X-130=(X-230)×310、解:设两人各加工X个零件X/(50-40)=X/50+5-111、解:设橘子每千克X元,则苹果每千克(X+2.2)元2.5×(X+2.2)+2X=13.612、解:设钢笔每支X元,则圆珠笔每支2X/34X+9×2X/3=2413、解:设十位上数字为X,则个位上的数字为2X,这个原两位数为(10X+2X)10×2X+X=(10X+2X)+3614、解:设个位数字为X,则十位数字为(X-1)X+(X-1)=[X+10×(X-1)] ×0.215、解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x—2)个、(x+2)个、(x÷2)个、2x 个(x—2)+ (x+2)+ (x÷2)+ 2x=4516、解:设这个数为X(25-1)÷2X=317、解:设甲车速度为X小时/小时(X-48)×1.5=1818、解:设A、B两地的距离为X千米(X-30×2)/30=X/4519、解:设师傅每小时加工X个零件6X=12×(3+6)20、解:设甲桶原来有X升油,则乙桶原来有(X-15)升油X+15+145=3X21、解:设细木工每人得X元(200×6+X)/(6+1)=X-30。
列方程解应用题综合练习题(50道)

列方程解应用题综合练习题(50道)1. 题目: 列方程解应用题综合练习题(50道)1. 在一个庆典上,甲、乙、丙三人共卖出了200张门票。
甲卖出的门票数是乙的一半,丙卖出的门票数是甲的一半。
请问甲、乙、丙三人分别卖出了多少张门票?2. 一家公司生产两种产品A和B,产品A每个单位可以卖出100元,产品B每个单位可以卖出150元。
每天生产产品A需要100个单位的原材料,而生产产品B需要200个单位的原材料。
公司每天有50000个单位的原材料可用。
为了获得最大的利润,应生产多少个单位的产品A和产品B?3. 小明想要买一部手机,商店A和商店B都在打折,但他只能在一个商店购买。
商店A的原价是3000元,现在打7折;商店B的原价是3500元,现在打85折。
小明希望以最低价格购买手机,请问他应该在哪个商店购买?4. 甲乙两人一起修剪草地,甲每小时可以修剪3/4个草地,乙每小时可以修剪1/2个草地。
如果他们一起工作4小时,他们一共修剪了多少个草地?5. 甲乙两人一起修建一条路,如果只有甲一个人修建,需要10天完成;如果只有乙一个人修建,需要15天完成。
请问他们一起工作需要多少天才能完成?---------------------------------------------------------1. 在一个庆典上,甲、乙、丙三人共卖出了200张门票。
甲卖出的门票数是乙的一半,丙卖出的门票数是甲的一半。
请问甲、乙、丙三人分别卖出了多少张门票?解题思路:假设甲卖出的门票数为x张,乙卖出的门票数为y张,丙卖出的门票数为z张。
根据题目条件可以得到以下方程:- x + y + z = 200- x = 1/2y- z = 1/2x解题步骤:将x代入第二个方程得到:x = 1/2(2z) = z将x代入第一个方程得到:z + y + z = 200,化简得到:2z + y = 200将y代入第三个方程得到:z = 1/2z,即z=0然而上述结果不满足实际情况,因此该方程无解。
列方程解应用题分类练习卷(2)-

列方程解应用题分类练习卷(2)行程问题举例:路程=速度×时间 V顺=V静+V水 V顺=V静-V水1.甲、乙两人登一座高山,甲每分钟登高10米,且先出发30分钟, 乙每钟登高15米,两人同时到达山顶.甲用多少时间登山?这座山有多高?2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程, 最后以8米/秒的速度冲刺激到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?3.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加20千米,只需5小时即可到达,求甲、乙两地的路程.4.小明原计划骑车以12千米/时的速度,由A地去B地, 这样便可在规定时间到达B地,但因故将原计划出发时间推迟了20分钟,只好以15千米/时的速度前进, 结果比规定时间早4分钟到达B地,求A、B两地的距离.5.一架飞机在两城之间飞行,风速为24千米/时,顺风飞行需要2小时50分, 逆风飞行需要3小时,求无风时的飞机的航行速度和两城之间的路程.6.A、B两地相距480千米,一列慢车以每小时60千米的速度从A地开出,一列快车以65千米/时的速度从B地开出.(1)若两车同时开出,相向而行,多少时间相遇?(2)若慢车先开出1小时,两车同向而行,快车开出多少小时追上慢长?(3)右两车同时开出,相背而行,多少小时后两车相距620千米?(4)若慢车先开出1小时,相向而行,慢车开出多少小时后两车相距620千米?工程问题举例:工作量=工作效率×工作时间=人均工效×工时×人数1.食堂有煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备, 耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.一项工程,甲工程队单独做40天可以完成,乙工程队单独做80天可以完成, 现由甲先单独做10天,然后与乙共同完成余下的工程,问甲工程队一共做了多少天?3.某工程,甲、乙、丙单独做分别要10天、12天、20天完成。
小学六年级应用题分类练习620题

小学六年级应用题分类练习620题篇一:小学六年级列方程解应用题练习(附答案)小学列方程解应用题1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
解:设乙有书某本,则甲有书3某本某+3某=82某22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书某本,则上层有书3某本3某-60=某+603、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.解:设乙缸有某条,则甲缸有1/2某条某-9=1/2某+94、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.解:设计划时间为某小时60某(某-1)=40某(某+1)5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵解:设四年级种树某棵,则五年级种(3某-10)棵(3某-10)-某=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为某天40某(某+6)=60某(某-4)7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍解:设某天后,乙仓存粮是甲仓的2倍(32+4某)某2=57+9某8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元解:设直尺每把某元,小刀每把就是(1.9—某)元4某+6某(1.9—某)=99、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨解:设原来每个粮仓各存粮某吨某-130=(某-230)某310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工某个零件某/(50-40)=某/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元解:设橘子每千克某元,则苹果每千克(某+2.2)元2.5某(某+2.2)+2某=13.612、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元解:设钢笔每支某元,则圆珠笔每支2某/34某+9某2某/3=2413、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.解:设十位上数字为某,则个位上的数字为2某,这个原两位数为(10某+2某)10某2某+某=(10某+2某)+3614、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位数字为某,则十位数字为(某-1)某+(某-1)=[某+10某(某-1)]某0.215、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球解:设现在每只盒子中各有某个球,原来各盒中球的个数分别为(某—2)个、(某+2)个、(某÷2)个、2某个(某—2)+(某+2)+(某÷2)+2某=4516、25除以一个数的2倍,商是3余1,求这个数.解:设这个数为某(25-1)÷2某=317、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.解:设甲车速度为某小时/小时(某-48)某1.5=1818、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.解:设A、B两地的距离为某千米(某-30某2)/30=某/4519、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:设师傅每小时加工某个零件6某=12某(3+6)20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.解:设甲桶原来有某升油,则乙桶原来有(某-15)升油某+15+145=3某21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.解:设细木工每人得某元(200某6+某)/(6+1)=某-30篇二:人教版六年级上册数学分类应用题练习分数百分数1、甲厂职工人数是乙厂人数的7/12,乙厂有职工48人,甲厂有职工多少人?2、甲厂职工人数是乙厂人数的6/11,甲厂有职工48人,乙厂有职工多少人?3、一包茶叶重600克,用去35,用去多少克?4、一包茶叶重600克,用去35,还剩多少克?5、一包茶叶用去35,刚好是600克,这包茶叶有多重?6、一包茶叶用去35,还剩下600克,这包茶叶有多重?7、修一条长2400米的公路,第一天修了全长的1/5,第二天修了全长的1/4,两天一共修了多少个米?8、修一条长2400米的公路,第一天修了全长的1/5,第二天修了全长的1/4,第二天比第一天多修了几米9、修一条路,第一天修了全长的1/5,第二天修了全长的1/4,两天一共修了900米,这条路总共有多长?10、修一条路,第一天修了全长的1/5,第二天修了全长的1/4,第二天比第一天多修500米,这条路总共有多长?11、一台彩电,原价1800元,现在的价钱比原来降低了16,现在的售价是多少元?12、一台彩电,现价1800元,比原来降低了16,现在的售价是多少元?13、某工厂去年计划产值2400万元,采用新设备后,实际产值比计划增长60%,实际产值多少万元?14、某工厂去年实际产值2400万元,比计划增长60%,计划产值多少万元?15、某化肥厂四月份生产化肥800吨,如果以后每一个月都比前一个月增产8%,六月份生产化肥多少吨?六月份比四月份增加了百分之几?(变化幅度是多少?)91页16、某种商品4月的价格比3月降了20%,5月的价格比4月又涨了20%,5月的价格和3月的比是涨了还是降了?变化幅度是多少?其他例题1、小华有50元钱,买书用去15元后,用余下的15%买了一枝笔,这枝笔是多少元?2、从甲地到乙地180千米,某人骑车从甲地到乙地去办事,行了全程的2/5,这时离乙地还有多少千米?3、工地运来50吨黄沙,第一周用去50%,第二周用去的相当于第一周的50%,第二周用去多少吨?4、一堆煤共150吨,甲车运了总数的1/4,乙车运了剩下的1/4,这堆煤还剩下多少吨?4、红旗小学五年级和六年级学生栽树,六年级学生栽260棵,五年级植的树比六年级的75%多12棵,五年级学生栽树多少棵?练习题1、一个篮球120元,一个排球的价钱是一个篮球的4/5,是一个足球的3/4。
简易方程列方程解应用题专项练习按题型分类(全)

简易方程应用题专项练习题型一:几倍/几倍多几/少几——直接设未知数1.爸爸的体重是76.5千克,是小明体重的2.5倍,小明的体重是多少千克?2.水果店卖出西瓜180千克,比卖出苹果的3倍多30千克。
卖出苹果多少千克?3.服装厂有男工67名,男工人数比女工人数的4倍多3人,这个服装厂有女工多少名?4.上海“东方明珠”电视塔高468米,比一座普通住宅楼的31倍还高3米,这座普通住宅楼高多少米?5.池塘边栽杨树84棵,比柳树的2倍多6棵,池塘边栽柳树多少棵?6.宜兴横山水库生态环境优良,库区总面积达1070公顷,比油车水库占地面积的3.5倍还多20公顷。
油车水库占地面积是多少公顷?7.杨扬现在的体重是43千克,比他出生时体重的13倍还多1.4千克。
他出生时体重是多少千克?8.一只大雁每分钟大约飞行1420米。
比蝙蝠每分钟飞行米数的3倍少80米。
蝙蝠每分钟飞行多少米?9.学校篮球社团有24人,比乒乓球社团人数的3倍少6人。
学校乒乓球社团有多少人?10.2013年底通车的马鞍山长江大桥总投资大约71亿,是安徽省第一座跨江公路大桥——铜陵长江大桥总投资的12倍少1亿元,铜陵长江大桥总投资大约多少亿元?11.哥哥有55本科技书和一些故事书,科技书的本数比故事书的3倍还少14本。
哥哥有故事书多少本?题型二:和倍/差倍问题——直接设未知数一、和倍问题1.希望小学女教师一共有84人,比男教师的5倍还多14人。
希望小学的男教师有多少人?2.一个两层书架共有书360本,上层书的本数是下层书的本数的3倍。
上、下层各有书多少本?3.学校2020元旦举行书画竞赛,四、五年级共有60人获奖,其中五年级获奖人数是四年级的1.5倍,四、五年级各有多少人获奖?4.五(1)班共有学生50人,其中男生人数是女生的1.5倍。
男、女生各有多少人?5.李大叔共养白山羊和灰山羊168只,已知白山羊的只数是灰山羊的5倍,白山羊和灰山羊各有多少只?6.某工厂共有职工800人,其中女职工人数比男职工人数的2倍少40人,这个工厂的男、女职工各有多少人?7.小敏的爸爸比妈妈大3岁,小敏爸爸和妈妈的年龄之和是89岁,小敏的爸爸今年多少岁?8.水果店运来15筐桔子和12筐苹果,一共重600千克。
小学数学列方程解应用题分类练习

列方程解应用题类型一(简单的一步方程)1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)类型二(几倍多多少/少多少):1、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?类型三(买东西和卖东西):1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。
其中《科学家》这本书买了4本,《发明家》买了多少本?3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?类型四(和倍问题 / 差倍问题):1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?类型五(相遇问题、追及问题、鸡兔同笼)1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
七年级期末试题分类列方程解应用题范朝辉

十五、列方程解应用题:1、(昌平14年期末)21.列方程解应用题:某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?2、(2014年门头沟期末)8. 元旦来临,各大商场都设计了促进消费增加利润的促销措施,“物美”商场把一类双肩背的书包按进价提高50%进行标价,然后再打出8折的优惠价,这样商场每卖出一个书包就可盈利8元.这种书包的进价是()元.A. 40B. 35C. 42D. 383、(2014年门头沟期末)2.甲班有45人,乙班有39人. 现在需要从甲、乙班各抽调一些同学去参加歌咏比赛. 如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍. 请问从甲、乙两班各抽调了多少参加歌咏比赛?4、(2014年平谷期末)9.“a的3倍与b的相反数的差” 用代数式表示为__ ___ ;5、(2014年平谷期末)23.为保护环境,平谷中学组织部分学生植树.如果每组6棵,则缺树苗20棵;如果每组5棵,则树苗正好用完.平谷中学共需要购进多少棵树苗?6、(2014年平谷期末)24. 某商店需要购进甲、乙两种羽绒服共200件,其进价和售价如下表:(注:获利=售价-进价)若商店计划销售完这批商品后能获利24000元,问甲、乙两种羽绒服应分别购进多少件?7、(2014石景山期末)22.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.求商店购进篮球,排球各多少个?8095解:8、(2014石景山期末)24.如图,小区规划在一个长56米,宽26米的长方形场地上修建三条同样宽的甬道,使其中两条与AB平行,另一条与BC平行,场地的其余部分种草,甬道的宽度为x 米.(1)用含x 的代数式表示草坪的总面积S= ;(2)如果每一块草坪的面积都相等,且甬道的宽为2米, 那么每块草坪的面积是多少平方米?9、(2014年延庆期末)32. 国家规定个人发表文章、出版图书所得稿费的纳税计算方法是: ①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税; ③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,试根据上述纳税的计算方法作答:(1)如果王老师获得的稿费为2400元,那么应纳税________元, 如果王老师获得的稿费为4000元,那么应纳税________元。
列方程解应用题(专题训练)

列方程解应用题(专题训练)1、世界第一河尼罗河全长6670 km,比亚洲第一河长江还长 371km ,长江长多少千米?2、少年宫舞蹈队有 24 人,比合唱队少34 人,合唱队有多少人?3、某化肥厂三月份生产化肥 935 吨,比四月份生产少 76 吨,四月份生产化肥多少吨?4、五年级有 32 个同学参加数学兴趣小组,是参加体育小组人数的 2 倍,参加体育小组有多少人?5、地球赤道长约 400076km ,约是地球直径的 3.14 倍,地球直径大约有多长?6、幼儿园大班小朋友做 32 朵红花,送给小班 11 朵后,两班的花数相等,小班原有红花多少朵?7、学校饲养小组今年养兔子 25 只,比去年养的只数的 3 倍少 8 只,去年养兔子多少只?8、地球绕太阳一周要用 365 天,比水星绕太阳一周所用的时间的 4 倍少 13 天。
水星绕太阳一周要用多少天?9、一个等腰三角形的周长是 86 厘米,底是 38 厘米,它的腰是多少厘米?10、两个火车站相距 425 千米。
甲、乙两列火车同时从两站相对开出,经过2.5 小时相遇,甲车每小时行90千米,乙车每小时行多少千米?11、两个工程队共同开凿一条117米长的隧道,各从一端相向施工,13天打通。
甲队每天开凿4米,乙队每天开凿多少米?12、有36米布,正好裁成10件大人衣服和8件儿童衣服。
每件大人衣服用布 2.4 米,每件儿童衣服用布多少米?13、李晖买了一支铅笔和一本练习本,一共花了 0.48 元,练习本的价钱是铅笔价钱的2 倍,铅笔和练习本的单价各是多少钱?14、小强妈妈的年龄是小强的 4 倍,小强比妈妈小 27 岁,他们两人的年龄各是多少?15、有两袋大米,甲袋大米的重量是乙袋大米的 3 倍,如果再往乙袋大米装 5 千克大米,两袋大米就一样重,原来两袋大米各有多少千克?16、一块长方形菜地的面积是 180 平方米,它的宽是 12 米,长是多少米?17、爸爸的体重是 66 千克,比小军的2 倍轻 24 千克,小军的体重是多少千克?18、北京和上海相距 1200km 两列直快火车同时从北京和上海相对开出,两车速度相同,6 小时后两车相遇,它的速度是多少?19、幼儿园大班小朋友做了 32 朵花,其中红花朵数是黄花朵数的 3 倍,做红花和黄花各多少朵?20、学校的足球场宽21.5m 的长方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题分类练习卷
一、列方程解应用题的一般步骤
(1)审题:弄清题意,明确有哪些已知量,有哪些未知量,求什么,量与量之间有哪些相互关系.
(2)找出相等关系:找出题目能够全包含在内的相等关系.
(3)设未知数,列方程;设未知数后,用未知数的式子表示其他未知量, 并根据相等关系列出方程.
(4)解方程:解所列方程,求出未知数的值.
(5)检验并写出答案:检测未知数的值是否有实际意义,并写出答案,答案中应说明单位.
二、常见的应用题型
三、注意问题
(1)探求相等关系时,首先应认真审题,仔细分析,把问题归结为某一题型, 并借助表格
或确各种示意图帮助分析理解,从中揭示已知与未知的关系,找到相等关系.
(2)在设题中要求的量为未知数很难列出方程或列出的方程很繁琐时,应设间接未知数.
(3)求出方程的解后应检验其是否有实际意义.
(4)列方程时,特别注意统一单位.
(5)应用题有解有答,不能忘了作答.
劳力调配问题举例
1.甲、乙两个运输队,甲队32人,乙队28人,从乙队调走x人到甲队,(1)若甲队人数与乙队人数恰好相等,则所列方程是_________________;(2)若甲队人数恰好是乙队人数的2倍,则所列方程是_______________;(3)若甲队人数比乙队人数的4倍还多5人,则所列方程是_______________.
2.甲队劳动的有29人,在乙处劳动的有17人,现要赶工期,总公司另调20 人去支援,使甲处的人数为乙处人数的2倍,应分别调往甲处、乙处各多少人?
3.甲工厂有某种原料120吨,乙工厂有同样的原料96吨,甲厂每天用原料15吨,乙厂每天用原料9吨,问多少天后,两工厂剩下的原料相等?
4.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍。
”乙回答说:“最好还是把你的羊给我1只,这样我们的羊就一样多了。
”两个牧童各有几只羊?
配套问题举例
1.某车间22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000 个螺母,一个螺钉配两个螺母,为了使每天的产品刚好配套,应该安排工人生产?
2.用铝片做听装饮料瓶,每张铝片可制作瓶身16个或制作瓶底43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张铝片制瓶身,多少张铝片制瓶底可以正好制成配套的饮料瓶?
等积变形问题举例
1.将棱长为0.5m 的正方体钢锭,熔解成长、宽、高分别为0.4m 、0.2m 、0.1m 的长方体钢锭.至少可铸成多少个?
2.用一根直径为12cm 的圆柱形铝柱,铸造10只直径为12cm 的铅球,问应截取多长的铝柱?(球的体积V=343
r ,R 为球的半径)
数字问题举例
1.用式子表示下列两位数或三位数:
(1)一个两位数,个位数字是a,十位数字是b:____________
(2)一个两位数,个位数字是a,十位数字比个位数字小1:__________
(3)一个两位数,个位数字是a,比十位数字小1:__________
(4)一个两位数,十位数字是a,个位数字比十位数字的2倍多3;____________
(5)一个三位数,十位数字是a,比百位数字大1,比个位数字少1.____________
2.一个两位数,个位上的数字比十位上的数字大2, 个位与十位上的数字之和是10,求这个两位数.
3.一个两位数,个位上的数字与十位上的数字之和是7, 若把个位与十位数字对调,则所得的两位数比原两位数大27,求这个两位数.
4.有一列数,按一定规律排列成1,-2,4,-8,16,-32……,其中某三个相邻数的和是-96,这三个数各是多少?
5.下图是本月的日历,用如图所示的“十字架”去框其中的五个数,若这五个数的和是60,你知道框住的是哪五个数吗?在图中画出来,并用方程的知识进行说明.
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
行程问题举例:路程=速度×时间V顺=V静+V水V顺=V静-V水
1.甲、乙两人登一座高山,甲每分钟登高10米,且先出发30分钟, 乙每钟登高15米,两人同时到达山顶.甲用多少时间登山?这座山有多高?
2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程, 最后以8米/秒的速度冲刺激到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?
3.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加20千米,只需5小时即可到达,求甲、乙两地的路程.
4.小明原计划骑车以12千米/时的速度,由A地去B地, 这样便可在规定时间到达B地,但因故将原计划出发时间推迟了20分钟,只好以15千米/时的速度前进, 结果比规定时间早4分钟到达B地,求A、B两地的距离.
5.一架飞机在两城之间飞行,风速为24千米/时,顺风飞行需要2小时50分, 逆风飞行需要3小时,求无风时的飞机的航行速度和两城之间的路程.
6.A、B两地相距480千米,一列慢车以每小时60千米的速度从A地开出,一列快车以65千米/时的速度从B地开出.(1)若两车同时开出,相向而行,多少时间相遇?(2)若慢车先开出1小时,两车同向而行,快车开出多少小时追上慢长?(3)右两车同时开出,相背而行,多少小时后两车相距620千米?(4)若慢车先开出1小时,相向而行,慢车开出多少小时后两车相距620千米?
工程问题举例:工作量=工作效率×工作时间=人均工效×工时×人数
1.食堂有煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备, 耗煤量改为原来的一半,结果多烧了10天,求原存煤量.
2.一项工程,甲工程队单独做40天可以完成,乙工程队单独做80天可以完成, 现由甲先单独做10天,然后与乙共同完成余下的工程,问甲工程队一共做了多少天?
3.某工程,甲、乙、丙单独做分别要10天、12天、20天完成。
现甲独做2天后, 由乙独做若干天后,然后甲、乙、丙又合作2天才能把全部工程干完, 问乙一共做了多少天?
4.某水池有一进水管和一放水管.若单独开进水管6小时可注满水池, 若单独开放水管,8小时可放完一池水,若同时开两小管,那么多少小时可注满水池的一半?
5.一项工作,由1人做要40小时完成.现计划由一部分人先做4小时,再增加2人一起做8小时,完成这项工作的7
,假设
10
这些人的工作效率相同, 具体应先安排多少人工作?
销售盈亏问题举例:销售额=单价×销售量,商品利润=售价-进价=利润率×进价
1.某商品售价为900元一件,为了适应市场竞争,商场按九折降价并让利40 元销售,仍可获利10%,求这种商品进价为多少元?
2.某商品因换季准备打折出售,如果按标价的七五折出售将赔25元,若按标价的九折出售将赚20元,问这种商品的标价是多少元?
3.一种产品,每件成本价为400元,销售价为510元,为了进一步扩大市场,决定降低售价的同时降低生产成本,预计每件售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本应降低多少元?
方案优选题举例
1.学校准备组织教师和优秀学生去大洪山春游,其中教师22名,现有甲、乙两家旅行社,两家定价相同,但优惠方式不同:甲旅行社表示教师免费,学生按八折优惠; 乙旅行社表示教师和学生一律按七五折优惠,学校领导经过核算后认为甲、乙旅行社的收费一样,请你算出有多少学生参加春游.
2.全球通手机卡收费每分钟0.20元,月租每月20元;神州行手机卡没有月租费, 每分钟0.4元,
(1)当一个月通话时间多少分钟时,使用这两种手机的费用相同?
(2)针对这两种手机卡,从经济角度考虑,你应如何选择?
4.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听和书包的单价之和为452元,且随身听的单价比书包的单价的4倍少8元.
(1)求该同学看中的随身听和书包的单价各是多少?
(2)某一载该同学上街,恰好赶上商家促销,超市A所有的商品打八折销售, 超市B全场购物满100元返购物券20元(不足100元不返购物券,购物券全场通用)但他只带了400元钱,如果他只在一家超市购买看中的两样物品, 你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
其它题型举例
1.(年龄问题)小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄?
2.(均额问题).某班48名同学去湖上划船,一共乘坐10条船,大船坐5人, 小船坐3人,正好全部坐满,问大船、小船各有几条?
3.(均额问题).有一些相同的房间需要粉刷,一天3名一级技工去粉刷8个房间, 结果其中有50m2墙面未来得及刷;同样时间内5名二级技工粉刷了10个房间之外, 还多刷了另外的40m2墙面.每名一级技工比二级技工每天多刷10m2墙面,求每个房间需要粉刷的墙面.
4.(盈不足)课外活动中,一些同学分组参加活动,原来每组8人, 后来由于器材不够重新编组,每组12人,这样比原来少2组,求该班人数.
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。