计算方法(孙志忠)习题 第二章方程求根
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 方程求根
一、填空题
1、3 ()2510f x x x =−−=用二分法求方程在区间[1,3]内的根,进行
一步后根所在区间为( ),进行两步后根所在区间为( )。
2、解方程()0f x =的简单迭代法的迭代函数()x ϕ满足在有根区间内
( ),则在有根区间内任意取一点作为初始值,迭代解都收敛。
3、设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是( )。
二、问答题
1、用牛顿法求方程30()10 1.5f x x x x =−−==在附近的一个根,并精确到6位有效数字。
[]42,
11,2x x =−2.给定方程()试说明该方程在内有根;
(2)构造一个求此根的收敛的迭代法,并说明理由。
3、给定方程()(1)10x f x x e =−−= 1) 分析该方程存在几个根;
2) 用迭代法求出这些根,精确至5位有效数;
3) 说明所用的迭代格式是收敛的。