物理化学08章电解质溶液.ppt

合集下载

课件无机化学08 水溶液

课件无机化学08 水溶液

611
C
A
Tf 0
t/º C
拉乌尔证明: 难挥发非电解质稀溶液凝固点∆Tf (∆Tf=Tf*-Tf)下降,与溶液的质量摩尔浓 度呈正比。
T f K f m
Kf:溶剂凝固点降低常数 ; m:溶质的质量摩尔浓度。
一些常见溶剂的凝固点下降常数
溶 剂 水
0.0

5.5
乙酸
16.6 3.9

80.5 6.87
沸点上升实验也是测定溶质的摩尔质 量(相对分子质量)的经典实验方法之一, 但凝固点下降测得的数据更准确。
例:已知纯苯的沸点是 80.2 ℃,取 2.67 g萘(C10H8)溶于100g苯中,测 得该溶液的沸点为 80.731 ℃,试求 苯的沸点升高常数。 解: 萘的摩尔质量 128 g mol ,
所以,两种溶液的蒸汽压均为: p=2.33 kPa×0.991=2.31 kPa
溶液的质量摩尔数相同,蒸汽压也相同。
8-2-2 溶液的凝固点下降
凝固点:
在标准状况下,纯液体蒸气压和它 的固相蒸气压相等时的温度为该液体 的凝固点。
溶液的蒸气压总是低于纯溶剂的 蒸气压,所以溶液凝固点下降。
溶液的凝固点下降 ΔTf = Kf · b p/Pa B
Tb对m作图,所得直线斜率即为Kb。
一些常见溶剂的沸点上升常数
溶剂 tb/℃ 水 乙醇 丙酮 苯 乙酸 100 78.4 56.2 80.1 117.9 Kb/K· mol-1 kJ· 0.512 1.22 1.71 2.53 2.93 溶剂 氯仿 萘 硝基苯 苯酚 樟脑 tb/℃ 61.7 218.9 210.8 181.7 208 Kb/K· mol-1 kJ· 3.63 5.80 5.24 3.56 5.95

物理化学08章_电解质溶液

物理化学08章_电解质溶液

1、
当通电结束,阴、阳两极部溶液浓度相同, 但比原溶液各少了2mol,而中部溶液浓度不变。
2、 3
通电结束,阳极部正、负离子各少了3mol, 阴极部只各少了1mol,而中部溶液浓度仍保持不变。
3、离子的电迁移现象结果
1 向阴、阳两极迁移的正、负离子物质的量总和恰好 等 于通入溶液的总电量
1Au3 e 1Au
3
3
1 H O e 1O +H
22
42
(3) n(O2) 14n(13Au)
= 11.20 g
4.57103 mol
4 197.0 gmol1/3
Au3 3e Au
3 H O 3e 3O +H
22
42
(3) n(O2) 34n(Au) = 3 1.20 g 4.57103 mol 4 197.0 gmol1
( 2 CuSO4 )
7.17 103 S m2 mol1
二、电导的测定
R1 Rx R3 R4
若已知 l、A、c, 则可求得 、m
电导池常数
K cell
l A
1
R
R
25℃时在一电导池盛以c=0.02mol.dm-3的KCl溶液,测得其电阻为82.4Ω,若在同 一电导池中盛以c=0.0025 mol.dm-3的K2SO4 溶液,测得其电阻为326.0 Ω。已知 25℃0.02mol.dm-3的KCl溶液的电导率为0.2768s.m-1,试求:
2 4 c( K SO ) 2.799 10 s.m .mol
24
三、电导率和摩尔电导率与浓度的关系
强电解质:
浓度增加,电导率升高;
但达一最高点下降
弱电解质: 溶液电导率随浓度变化 不显著

物理化学下

物理化学下
I + r+ I- r–
根据迁移数的定义:
表明离子迁移的速率越大,所承担运载的电量的比例越大。 根据离子迁移率的定义,
t + = U + / (U + + U - ) t - = U- / (U + + U - ) t+ + t- =1 表明迁移数大的离子对运载电量的贡献越大。
离子的电迁移率反映出离子在一定电场条件下的定向移动的快慢程度; 迁移数反映出离子承担运载电量的比例; 离子的电迁移率越大,该离子的迁移数就越大; 总之:
§ 8.2 离子的电迁移率和迁移数
电解质溶液在电场中如何导电? 阴离子向阳极移动;阳离子向阴极移动。
离子的电迁移 离子在外电场作用下发生定向移动。
离子浓度在迁移过程中发生怎样的变化? 把电解质溶液分成本体区域和电极区域(阳极区域和阴极区域): 在溶液本体区域内任意位置无论正、负离子的迁移,都会有相邻位置
原电池
化学能
电能
电解池
溶液的导电性 ——— 第八章内容;
电极电势的产生 —— 第九章内容;
外加电动势与可逆的偏差——第十章内容
电化学在科学研究和国民经济中的重要作用
1、电化学测试 pH、电导、离子选择电极(直接测定离子浓度) 、 电位滴定、 电导滴定、极谱分析、库仑分析、电化学传感器
2、电化学工业 电解(冶炼、精炼)、电镀、化学电源(燃料电池、锂离子电池) 电催化、电合成反应
电导率:电阻率的倒数称为电导率,单位是 S • m-1 ( 或Ω-1 • m-1 ) κ = 1/ρ
G= κA/l 电导率的物理意义是指长 1m、截面积为 1m2 的导体的电导; 电导率值越大,说明该导体越容易导电。

物理化学电解质溶液

物理化学电解质溶液
影响电离平衡的因素
温度、浓度、同离子效应等。
02
电解质溶液的离子平衡
离子平衡的概念
离子平衡是指电解质溶液中正负离子浓度之间达 到相对稳定的状态。
在离子平衡状态下,正负离子的迁移速率相等, 溶液中不存在宏观电流。
离子平衡是动态平衡,当外界条件改变时,平衡 状态会发生改变。
离子平衡的建立
电解质溶解在水中后,正负离 子会受到水分子偶极的吸引,
02
电导率的计算公式为:K=σS/L ,其中K为电导率,σ为电导, S为横截面积,L为长度。
03
电导率的大小反映了电解质溶 液中离子迁移的速率和数量, 是电解质溶液的重要物理常数 之一。
电导率与浓度的关系
随着电解质浓度的增加,离子浓度也相应增加,导致电导 率增大。
在一定浓度范围内,电导率与浓度的关系呈线性关系,可 以用Arrhenius公式表示:K=K0exp(-Ea/RT),其中K0为 常数,Ea为活化能,R为气体常数,T为绝对温度。
202X-12-30
物理化学电解质溶液
汇报人:
目 录
• 电解质溶液的基本概念 • 电解质溶液的离子平衡 • 电解质溶液的导电性 • 电解质溶液的酸碱反应 • 电解质溶液的电化学性质
01
电解质溶液的基本概念
电解质的定义
电解质
在水溶液或熔融状态下能够导电 的化合物。
导电原理
电解质在水溶液中能够电离出自 由移动的离子,这些离子在电场 作用下定向移动,形成电流,使 电解质溶液具有导电性。
02
酸碱反应速率常数的大小反映了反应的快慢程度, 可以通过实验测定或计算得出。
03
酸碱反应的速率与浓度、温度等因素有关,可以通 过改变这些因素来调控反应速率。

物理化学:第08章_电解质溶液

物理化学:第08章_电解质溶液
阴离子迁向阳极,在 阳极上发生氧化作用
anion anode
返回
2020/11/12
1.电解质溶液的导电机理
在电解池中
阳极上发生氧化作用
-
- 电源 +
e-
+
e-
2Cl aq Cl2(g) 2e


阴极上发生还原作用


CuCl2
Cu2 aq 2e Cu(s)
电解池
上一内容 下一内容
回主目录
例题
解: 1 Au3+ e = 1 Au
3
3
OH
1 4
O2
1 2
H2O e
(1) Q zF 196500197.01.g20mgol-1 /3 Cmol1
= 1763 C
(2)
t
Q I
1763 C 0.025 A
7.05104
s
(3)
m(O2)
1 4
M
(O2)
=197.01g.20mgol1
返回
2020/11/12
1.电解质溶液的导电机理
在原电池中
阳离子移向阴极

负载电阻


e-
Zn

Cu e-
e-
阳 Zn2+ Cu2+ 阴
极 SO24-
SO24- 极
ZnSO4溶液 CuSO4溶液
在阴极上发生还原的是
Cu2 aq 2e Cu(s)
阴离子迁向阳极 在阳极上发生氧化的是
Danill电池
上一内容 下一内容 回主目录
返回
2020/11/12
2. 法拉第定律
人们把在数值上等于1 mol元电荷的电荷量称 为Faraday常数,用F表示。

物理化学-电化学部分课件电解质溶液—(2)

物理化学-电化学部分课件电解质溶液—(2)
1
1
1
+
m± = (m+ m− )
对1-1价电解质 对1-2价电解质
ν− ν
= [(ν + mB )ν + (ν − mB )ν − ]ν = (ν +ν ν −ν )ν mB
_
m± = mB
Na 2SO 4 (B)
3 ±
m± = 4mB mB 3 a± = 4 ⋅ γ ± m
3
2 γ ± = (γ + γ − )
弛豫效应(relaxation effect) 由于每个离子周围都有一个 离子氛,在外电场作用下,正负 离子作逆向迁移,原来的离子氛 要拆散,新离子氛需建立,这里 有一个时间差,称为弛豫时间。 在弛豫时间里,离子氛会变得不对称,对中心 离子的移动产生阻力,称为弛豫力。这力使离子迁 移速率下降,从而使摩尔电导率降低。
c
这个理论很好地解释了Kohlrausch的经验式:
∞ Λm =Λm − A
c
离子平均活度因子
γ±
±
def
ν + ν − 1ν (γ γ )
+ −
离子平均质量摩尔浓度 def (mν + mν − )1ν m
+ −
m± a± = γ ± m
aB
ν+ ν− =a a
+ −
= aν
±
m± ν = (γ ± ) m
从电解质B的 mB求
m+ = ν + mB
ν+
m± m− = ν − mB
离子强度
从大量实验事实看出,影响离子平均活度因子 的主要因素是离子的浓度和价数,而且价数的影响 更显著。 1921年,Lewis提出了离子强度的概念。当浓 度用质量摩尔浓度表示时,离子强度 I 等于:

物理化学中的电解质溶液理论

物理化学中的电解质溶液理论

物理化学中的电解质溶液理论电解质溶液理论是物理化学中的一个重要分支,在化学和生物化学领域中有着广泛的应用。

它主要研究电解质溶液中的离子、溶剂和溶液中的现象及其相互关系。

电解质溶液理论包括电离平衡、电导率、溶解热、渗透压、溶解度、活度系数等多个方面,涉及数学、化学和物理等多个学科知识。

1.电离平衡在电解质溶液理论中,电离平衡是非常重要的概念。

电离平衡指的是电解质在水中溶解时,电离成离子的平衡状态,通俗地说,就是离子和未离子的相对浓度保持不变的状态。

其中,离子浓度与本身浓度和电离程度有关,未电离部分的浓度则由溶解度决定。

电离平衡的两个特征是平衡常数和解离度。

平衡常数指的是在电解质溶液中,电离反应的反应速率相等时,浓度比例的平衡常数。

解离度是指溶液中一个电解质所能释放的带电粒子的数量。

2.电导率电导率是电解质溶液中电流通过的能力的物理性质。

在电解质溶液中,离子作为带电粒子,能够与电场发生作用,使电流通过。

电导率是指单位距离内所包含的电解质中离子数与电流比例的倒数。

电导率随着温度的变化而变化,一般来说,温度越高电导率越高。

3.溶解热和焓在电解质溶液中,溶解热是一个重要的物理化学概念。

溶解热是指让一个电解质固体溶解在水中所需的热量。

在溶解过程中,离子与离子之间相互作用会发生变化,当离子中的分子与溶剂中的分子之间相互作用能量足够大时,这种相互作用便会破坏把固体形态的离子转化为水溶液形态。

4.渗透压电解质溶液中的渗透压是指浓度梯度下流体的渗透行为,其大小取决于溶液中的溶质浓度和温度。

人体内的细胞,需要维持一定的细胞内环境平衡,而渗透压是影响细胞的一大因素。

如果渗透压梯度过大,代谢的正常运转就会受到影响。

5.溶解度和活度系数溶解度是指在一定温度下,溶液中能溶解的物质的最大量。

在电解质溶液中,溶解度是根据离解平衡的比例来计算的。

活度系数指的是在溶液中,一定浓度的溶质实际浓度与理论预期浓度的比值,它的大小是对离子化程度的度量。

物理化学8.3电解质溶液的热力学性质

物理化学8.3电解质溶液的热力学性质

B = ++ + --
电解质的活度 B B RT ln aB
正、负离子的活度
RT ln a
RT ln a
a+、a- 分别为正、负离子的活度
问题 • aB与a+、a-的关系?
B = ++ +
RT ln a
所包围,离子和离子氛成电中性; 3. 离子氛中的离子分布符合玻尔兹曼分布; 4. 离子之间的作用力仅是库仑力; 5. 实际溶液与理想溶液之间的差别是由库仑力引起的; 6. 中心离子是一个点电荷。
离子氛概念
① 选任意一个离子为中心离子 ② 中心离子周围的异号电荷 的分布密度大于同号电荷 ③ 中心离子周围异性电荷按球 形对称分布
例8-3. 计算0.1 mol·kg-1 Al2(SO4)3 水溶液的平均活度与 平均活度因子的关系
解:
Al2
SO4
3

2Al3+
+3SO24-
a a a 1/
a 2 0.1
a 30.1
a
[2 0.12 3 0.13 ]1/5
选任意一个离子为中心离子离子氛概念在中心离子周围存在有与中心离子电量相等符号相反的球体称为离子氛中心离子周围的异号电荷的分布密度大于同号电荷中心离子周围异性电荷按球形对称分布离子氛的离子不断的运动和变化每一个离子既是中心离子又是其他离子的离子氛离子之间的相互作用简化为中心离子和离子氛的作用离子氛概念中心离子与离子氛作为整体是电中性的a是与温度溶剂有关的常数在一定温度下对某一定溶剂为定值如如25h2o为溶剂时1120509molkga????izza??????lg离子平均活度因子的公式适用于很稀的强电解质溶液b0010001molkg1德拜?休克尔极限公式83电解质溶液的热力学性质1

第08章 电解质溶液的扩散

第08章  电解质溶液的扩散
第八章 电解质溶液的扩散
(Diffusion in Electrolytic Solution)
扩散是溶液的基本性质(1)
Applications:
1,测定微粒的分子量 2,估计胶体微粒的电荷 3,测定磨擦系数 4,测定溶解速度
School of Metallurgical Science and Engineering, Central South University
μi=μi0 + RTlnCi ;μF=μF0 + RTlnCf μi0 =μf0 (in dilute solution) 则两浓度面间的化学位差为: △μ=RTlnCf /Ci
School of Metallurgical Science and Engineering, Central South University
School of Metallurgical Science and Engineering, Central South University
(
x
) 2
x
2 Dt e y2 dy
2 Dt
0
如果是纯溶剂,C0’’=0,则:
c c0 ' [1 ( x )
2
2 Dt
反过来,D值为:
D
x2
1
在这一过程中所做的功为 W= △μ
若过程为一极微过程,则 δW= dμ
根据静电学基本理论:单位电荷在电场力作 用下,从x 处迁移到(x+dx)处所做功为:
δW= dφ
而电场所做的功是电场力和电荷 迁移距离 的积, 有:-Fdx = dφ

F d
在电场作用下, 离子迁移的推动力
dx 为电位梯度.

傅献彩第五版物理化学ppt课件08章 电解质溶液分解

傅献彩第五版物理化学ppt课件08章 电解质溶液分解
原电池和电解池
电化学主要是研究电能和化学能之间的 相互转化及转化过程中有关规律的科学。
电解
电能
化学能
电池
电化学的用途
⒈电解 精炼和冶炼有色金属和稀有金属 电解法制备各种化工原料、金属 复合材料和表面特种材料 电镀法保护和精饰金属 阳极钝化和氧化着色等
⒉ 电池 汽车、宇宙飞船、照明、通讯、生
化和医学等方面都要用不同类型的化学 电源。
在电解池中, 用惰性电极
-
- 电源 +
e-
+
e-
Pt
Pt
Na 2SO4
电解池
阳极上发生氧化作用
2H2Ol O2(g) 4H 4e
阴极上发生还原作用
2H aq 2e H2(g)
电极上的反应次序由 离子的活泼性决定
在电解池中,
阳极上发生氧化作用
都用铜作电极
-
- 电源 +
e-
+
e-
Cu
Cu
Cu(s,电极) Cu2 aq 2e
第二类导体的特点是:
A. 正、负离子作反向移动而导电 B. 导电过程中有化学反应发生 C. 温度升高,电阻下降 D. 导电总量分别由正、负离子分担 *固体电解质,如 AgBr、PbI2 等,也属于离子 导体,但它导电的机理比较复杂,导电能力不高, 本章以讨论电解质水溶液为主。
正极、负极、
正极: 电势高的极称为正极,电流从正极
⒊ 电化学分析
⒋ 生物电化学
能导电的物质称为导电体,通常分为两类: 第一类导体又称电子导体,如金属、石墨等 第一类导体的特点是:
A. 自由电子作定向移动而导电 B. 导电过程中导体本身不发生变化 C. 温度升高,电阻也升高 D. 导电总量全部由电子承担

物理化学中的电解质溶液理论

物理化学中的电解质溶液理论

物理化学中的电解质溶液理论电解质溶液是指在水或其他溶剂中,化学反应中不完全溶解的化合物,也称为弱电解质。

溶液中的化合物电离成正离子和负离子,因此具有电导性和电化学特性。

在物理化学领域,电解质溶液理论是研究电解质分子和离子在溶液中行为的重要基础。

电解质溶液的基本特性电解质溶液的性质取决于物种的浓度和成分,其中最重要的特征是电离度。

电离度指的是化合物分子在溶液中变为正离子和负离子的度量,通常用β表示。

在一个离子稀释度很高的溶液中,溶解度小的离子分子通常被认为具有完全电离。

但是,在高浓度下,电离度会像理想的电解质那样,显著降低。

这类似于质量作用的逆变化。

对于非理想性溶液,电离度通常用Debye-Hückel理论来解释。

这个理论基于溶液中电荷的相互作用和远距离效应。

Debye-Hückel理论Debye-Hückel理论是20世纪早期开发的一种描述准简笔化电解质溶液的理论,通常应用于低浓度溶液。

它基于溶液中离子和分子的相互作用,并构建了电离的自由能与密度的关系。

这个理论是基于1941年出版的书Quantum Chemistry的量子化学理论,与20世纪60年代开发的量子电荷动力学方法是相似的。

Debye-Hückel理论表明,在弱电解质含量较低时,离子与分子之间的相互作用可以在溶液中造成离子的不同电荷分离,使得电离度大大降低。

因此,在低浓度时,电离度接近完全,而在高浓度时,离子的电离度则随着浓度的增加而降低。

此外,该理论涉及到溶液组成和温度的影响,以及离子速度和电导率等物理化学参数。

普朗克-巴西娅-克朗门–方程普朗克-巴西娅-克朗门–方程描述了电解质溶液的离子时空动态行为,这对于研究电离度、离子传输速率、热力学属性和光谱学是至关重要的。

该方程基于三个主要假设:离子在溶液中是相对自由的、电力线是均匀的和场量子论基础可以用来描述离子的行为。

普朗克-巴西娅-克朗门–方程是以下方程的组合:∇^2ψi(r,t)= −(zi/eϵr)+ (D/RT) ∑j≠i(ci,cj) zi(F(r)−F(r))/(rij),其中︰ψi是带电离子i在时间t的电势;∇^2是Laplace算子;zi是离子i的电荷;e是元电荷(即最小电荷单元);ϵ是相对介电常数的电容率;r是位置向量;D是离子扩散系数;c是离子浓度以及热力学条件的一部分;R是普朗克常数,T是温度;F(r)是离子在时间t的处于r的离子荷场能;rij是i到j的距离。

第八章 电解质溶液

第八章 电解质溶液

电位梯度 V• m-1
uB为单位电位梯度(1V• m-1)时的运动 速率,与离子本性(半径、电荷、水化 程度)和溶剂的性质(如粘度)有关。
表8.1 298.15 K无限稀水溶液中离子淌度
U 10 正离子 m 2 s -1 V -1 负离子
8
U 10 2 -1 -1 m s V
定Q
1 1 3 n(Au) ? n( Au ) ? n( O 2 ) 4 3 3 1 1 ? n( O 2 ) 电流效率 3 4
理论电量 100% (物质的量一定) 实际电量
实际产物质量 100%(电量一定) 理论产物质量
§8.2 离子的电迁移率和迁移数
一、离子的电迁移现象 + 阳 极+++++ +++++ +++++ ----- ----- ----阴 +极 + + + -
I 原电池 原电池
e
+2e PbO2
PbSO4
H2SO4
PbSO4
思考题:
下列说法正确的是: (A)原电池的正极就是阳极 (B)原电池的负极发生还原反应 (C)电解池的阴极发生氧化反应 (D)电解池的阳极发生氧化反应
二、 Faraday电解定律 通电量与各电极上发生氧化或还 原反应的物质的量之间的定量关系。 法拉第常数 F
设电解质为Mv+Nv,
m
= v+ m,+ + v m,


——Kohlrausch 离子独立移动定律
由于无限稀释时的导电能力取决于离子本性,而与共 存的其他粒子的性质无关,因此在一定溶剂和T条件下, 任何离子的m 为定值,可查表。

物理化学电解质溶液

物理化学电解质溶液
由于溶液中导电物质的量已给定为1mol,所以,当浓度降低 ,所以, 由于溶液中导电物质的量已给定为 粒子之间相互作用减弱, 负离子迁移速率加快, 时,粒子之间相互作用减弱,正、负离子迁移速率加快,溶液 摩尔电导率必定升高。 的摩尔电导率必定升高。 浓度很稀的强电解质溶液
Λm = Λ (1−β C)
∞ m
1 ⋅ Λm/(S⋅m2 ⋅ mol-1)
NaCl NaAc HAc
-----科尔劳乌施公式 科尔劳乌施公式 将直线外推至C→0, 将直线外推至 , 得到无限稀释摩尔电导率
c1/2 电解质水溶液Λ 图5-6电解质水溶液 m与c的关系 电解质水溶液 的关系
5.2.4 离子独立运动定律及离子摩尔电导率
无限稀释时,负离子的导电能力亦与共存的正离子无关。 无限稀释时,负离子的导电能力亦与共存的正离子无关。
例一: 例一: 通电于Au(NO3)3溶液,析出 溶液,析出Au(s)=1.20g。已知 通电于 。已知M(Au)=197.0g/mol。 。 求通入电量。 求通入电量。
解:
Au +3e →Au(s)
q =∆n Z F 1.20g = ×3×96500Cm −1 =1763.45C . ol 197.0g / m ol
def
qB / q
qB—B种离子传输的电量 种离子传输的电量 q—通过溶液的总电量 通过溶液的总电量
对于只含有一种正离子和一种负离子的电解质溶 液而言, 液而言,正、负离子的迁移数分别为
t+ = q+ q+ + q− t− = q− q+ + q−
t+ + t- = 1
U+ t+ = U+ + U− U− t− = U+ + U−
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若反应进度为 时需通入的电量为
Q( ) z+ F
若通入任意电量Q时,阴极上沉积出金属B的物
质的量 nB 和质量 mB 分别为:
nB
Q z+ F
Q mB z+ F M B
这就是Faraday电解定律的数学表达式
根据电学上的计量关系
I dQ / dt
t
Q 0 Idt
若电流强度是稳定的的,则
Q I t
Anion Anode
在电解池中
-
- 电源 +
e-
+
e-




CuCl2
电解池
阳极上发生氧化作用
2Cl aq Cl2(g) 2e
阴极上发生还原作用
Cu2 aq 2e Cu(s)
在原电池中

负载电阻

极 eZn
Cu 极e-
e-
阳 Zn2+ Cu2+ 阴
极 SO24-
SO24- 极
ZnSO4溶液 CuSO4溶液
阴极 Au3+ (aq) 3e Au(s)
阳极
3 2
H2O(l)
3 4
O2
(g)
3H+
3e
析出1.20g Au(s)时的反应进度为
1.20 g 197.0 g mol1
6.09 103 mol
解2 若电极反应表示为
阴极 阳极
Au3+ (aq) 3e Au(s)
3 2
H2O(l)
3 4
O2
转化及转化过程中有关规律的科学。
电解
电能
化学能
电池
电化学的用途
⒈电解 精炼和冶炼有色金属和稀有金属 电解法制备各种化工原料、金属 复合材料和表面特种材料 电镀法保护和精饰金属 阳极钝化和氧化着色等
⒉电池 汽车、宇宙飞船、照明、通讯、生 化和医学等方面都要用不同类型的化学 电源。
⒊ 电化学分析 ⒋ 生物电化学
2H aq 2e H2(g)
电极上的反应次序由 离子的活泼性决定
在电解池中,
阳极上发生氧化作用
都用铜作电极
-
- 电源 +
e-
+
e-
Cu
Cu
Cu(s,电极) Cu2 aq 2e
阴极上发生还原作用
Cu2 aq 2e Cu(s)
CuSO4
电解池
电极有时也可发生反应
Faraday电解定律
Faraday 归纳了多次实验结果,于1833
Danill电池
阳离子迁向阴极 在阴极上发生还原的是
Cu2 q 2e Cu(s)
阴离子迁向阳极 在阳极上发生氧化的是
Zn s Zn2(aq) 2e
在电解池中, 用惰性电极
-
- 电源 +
e-
+
e-
Pt
Pt
Na 2SO4
电解池
阳极上发生氧化作用
2H2Ol O2(g) 4H 4e
阴极上发生还原作用
(g)
3H+
3e
(1) Q zF 3 965 00 C mol1 6.09103 mol 1 763 C
能导电的物质称为导电体,通常分为两类: 第一类导体又称电子导体,如金属、石墨等 第一类导体的特点是:
A. 自由电子作定向移动而导电 B. 导电过程中导体本身不发生变化 C. 温度升高,电阻也升高 D. 导电总量全部由电子承担
第二类导体又称离子导体,如电解质溶液、熔融电 解质等
第二类导体的特点是: A. 正、负离子作反向移动而导电 B. 导电过程中有化学反应发生 C. 温度升高,电阻下降 D. 导电总量分别由正、负离子分担
F Le 6.0221023 mol1.602 21019C 96 484.6 C mol1 96 500 C mol1
如果在电解池中发生如下反应:
Mz ze M(s)
电子得失的计量系数为 z+,欲从阴极上沉积
出1 mol M(s),即反应进度为1 mol 时,需通入的电
量为 Q
Q( 1) z+eL z+ F
例题:
通电于 Au(NO3 )3 溶液,电流强度 I 0.025 A
阴极上析出 Au(s)=1.20 g 已知 M (Au)=197.0 g mol1, M (O2 ) 32.0 g mol1
求:⑴ 通入电荷量 Q
⑵ 通电时间 t
⑶ 阳极上放出氧气的质量
解1 阴极 阳极
若电极反应表示为
1 Au3+ e 1 Au(s)
e
(1) Q zF 1 96500 C mol1 0.0183 mol=1 766 C
(2)
t
Q I
176 0.025
6C C s1
7.06104
s
(3)
m(O2
)
0.0183
mol
1 4
M
(O2
)
0.0183 mol 1 32.0 g mol1 0.146 g
4
解2 若电极反应表示为
*固体电解质,如 AgBr、PbI2 等,也属于离子 导体,但它导电的机理比较复杂,导电能力不高, 本章以讨论电解质水溶液为主。
正极、负极
正极: 电势高的极称为正极,电流从正极
流向负极。
负极: 电势低的极称为负极,电子从负极
流向正极。
阴极、阳极
阴极: 发生还原作用的极称为阴极。
在原电池中,阴极是正极;在
(Cathode)
电解池中,阴极是负极。
阳极: 发生氧化作用的极称为阳极。
(Anode)
在原电池中,阳极是负极;在
电解池中,阳极是正极。
在电解池中
-
- 电源 +
e-
+
e-




电解质溶液
电解池
阳离子迁向阴极,在 阴极上发生还原作用
Cation Cathode
阴离子迁向阳极,在 阳极上发生氧化作用
3
3
1 2
H2O(l)
1 4
O2
(g)
H
+
e
析出1.20g Au(s)时的反应进度为
1.20 g
1.20 g
0.0183 mol
M (1 Au) 1 197.0 g mol-1
3
3
解1 阴极 阳极
若电极反应表示为
1 Au3+ e 1 Au(s)
3
3
1 2
H2O(l)
1 4
O2
(g)
H+
第八章 电解质溶液
电解
电能
电池
化学能
第八章 电解质溶液
§8.1 电化学中的基本概念和电解定律 §8.2 离子的电迁移率和迁移数 §8.3 电解质溶液的电导 §8.4 电解质的平均活度和平均活度因子 §8.5 强电解质溶液理论简介
2020/10/16
§8.1 电化学中的基本概念和电解定律
1. 原电池和电解池 电化学主要是研究电能和化学能之间的相互
年总结出了电解定律
⒈ 在电极界面上发生化学变化物质的量与 通入的电荷量成正比。
⒉ 通电于若干个电解池串联的线路中,当 所取的基本粒子的荷电数相同时,在各个电 极上发生反应的物质,其物质的量相同,析 出物质的质量与其摩尔质量成正比。
人们把在数值上等于1 mol元电荷的电量称为 Faraday常数。
已知元电荷电量 e 为 1.60221019 C
相关文档
最新文档