线性代数模试题试题库(带答案)
线性代数模试题试题库(带)
第一套线性代数模拟试题解答一、填空题 (每题 4 分,共 24 分 )1、 若 a 1i a 23a 35a 5 j a 44 是五阶队列式中带正号的一项,则i1 , j2 。
令 i1, j2 , (12354) (13524) 134 ,取正号。
2、 若将 n 阶队列式 D 的每一个元素添上负号获得新队列式D ,则 D = ( 1)n D。
即队列式 D 的每一行都有一个 (-1)的公因子,因此 D = ( 1)n D。
3、设 A1 1 , 则 A 100 = 1 100 。
0 1 0 1A21 1 1 11 2 , A31 21 11 3 01 0 1 0 1 0 1 010 , L 可得14、设 A 为 5 阶方阵,A5 ,则 5A5n 1。
由矩阵的队列式运算法例可知:5 A 5n A 5n 1 。
5、 A 为 n 阶方阵 , AA TE 且 A 0,则 A E。
由已知条件: AA TEAA T A A T2E1A 1, A1,A而:A E A AA TAE A TA A EA EA E0 。
2 0 06、设三阶方阵 A0 x y 可逆,则 x, y 应知足条件 3x2y 。
0 2 32 0 0可逆,则队列式不等于零:A0 x y 2 (3 x 2 y)3x2 y 。
0 2 3二、单项选择题 (每题4 分,共 24 分)a11a12a 13,则队列式2a 112a 122a 137、设a 21a 22a 23M0 2a 31 2a 322aA。
33a31a32a332a 212a 22 2a 23A . 8MB . 2MC . 2MD . 8M2a 11 2a 12 2a 13a11a12a 13a11a 12a132a31 2a 32 2a 332 3 aa32 a8 ( 1) aaa23 8M3133 21 22因为2a 212a 222a 23a21a22a23a31a32a338、设 n 阶队列式 D n ,则 D n0 的必需条件是D。
线性代数题库(含答案)
第一章随堂检测1.已知行列式333231232221131211a a a a a a a a a D = 展开式的六项中含有,则i+j=( )A.1B.2C.4D.6我的答案:D2.某二阶行列式的所有元素都是整数,则该行列式的结果( ) A.一定是整数 B.一定不是零 C.一定是正数 D.一定是负数 我的答案:A3.[单选题] 行列式=bb a a ( )A.0B.b a 22- C.b a 22+ D.2ab我的答案:A4.[单选题] 方程组⎩⎨⎧=-=+2121212x x x x 的解是( )A.⎩⎨⎧==0121x x B.⎩⎨⎧==1121x xC.⎩⎨⎧==1021x xD.⎩⎨⎧==0021x x 我的答案:A 5.[单选题] 行列式34-43的结果是( )A.0B.7C.10D.25我的答案:D6.[单选题] 某三阶行列式的所有元素都是4,则该行列式的值是( ) A.3 B.4 C.7 D.0我的答案:D7.[单选题] 关于三阶行列式说法正确的是( )A.若行列式的所有元素都等于零,则行列式的结果一定等于零B.若行列式的所有元素都等于零,则行列式的结果一定不等于零C.若行列式的所有元素都不等于零,则行列式的结果一定等于零D.若行列式的所有元素都不等于零,则行列式的结果一定不等于零 我的答案:A8.[单选题]行列式101010102( )A.0B.1C.2D.4我的答案:B9.[单选题] 一元一次方程1211x =的解是( )A.x=1B.x=2C.x=3D.x=4我的答案:A10.[单选题] 已知行列式,3333333331=D ,5555555552=D 则( )A.4B.2C.8D.0我的答案:D11.[单选题] 若a 、b 、c 、d 的绝对值都是1,则行列式dc ba 的最大值是( )A.1B.2C.3D.4我的答案:B12.[单选题] 若某二阶行列式的结果为零,则关于该行列式的以下说法正确的是( )A.至少有一行元素为零B.至少有一列元素为零C.至少有一个元素为零D.以上答案都不对 我的答案:D1.[单选题] 三级排列321的逆序数是( ) A.3 B.2 C.1 D.0我的答案:A2.[单选题] 以下四个4级排列中,逆序数为零的是( ) A.1234 B.4231 C.1324 D.1423我的答案:A3.[单选题] 一个偶排列的逆序数可能是( )A.1B.3C.4D.5我的答案:C4.[单选题] 已知由1、2、3、4、5组成的某个5级排列中,数字5排在最前面,则该排列的逆序数至少是( )A.1B.3C.4D.5我的答案:C5.[单选题] 关于逆序数说法正确的是( )A.相同的排列一定有相同的逆序数B.相同的排列一定有不同的逆序数C.不同的排列一定有相同的逆序数D.不同的排列一定有不同的逆序数我的答案:A6.[单选题] D是四阶上三角行列式,主对角线元素分别是1、2、3、4,则该行列式的值是( )A.2B.6C.10D.24我的答案:D7.[单选题] 某对角行列式结果等于1,说明该行列式( )A.主对角线上所有元素都等于1B.主对角线上所有元素都大于1C.主对角线上所有元素都小于1D.主对角线上所有元素乘积为1我的答案:D8.[单选题] D是四阶行列式,且结果不等于零,则该行列式的非零元素个数可能是( )A.1B.2C.3D.4我的答案:D9.[单选题] 若某四阶行列式所有元素都是奇数,则该行列式的结果( ) A.一定是奇数 B.可能是奇数 C.一定是正数 D.一定是偶数 我的答案:D10.[单选题] D 是五阶行列式,且位于前三数行和前三列交叉点处的9个元素都是0,而位于其它位置的16个元素都是1,该行列式的值是( ) A.4 B.16 C.25 D.0我的答案:D1.[单选题] 某三阶该行列式共有三个元素为零,则以下说法正确的是( ) A.该行列式的结果一定为零B.若三个零元素在同一行,则该行列式的结果为零C.若三个零元素都在主对角线上,则该行列式的结果为零D.若三个零元素都在副对角线上,则该行列式的结果为零 我的答案:B2.[单选题] 已知行列式13332312322211312111==a a a a a a a a a D 则==3332312322211312112a a a a a a a a a D ( )A.1B.2C.4D.6我的答案:A3.[单选题] 已知222112111a a a a D =,,121122212a a a a D =,且a D D ==21,则a=( )A.0B.1C.2D.4我的答案:A4.[单选题] 行列式ab bb a b a ab a b a ------+( ) A.0 B.b a 22- C.b a 22+ D.2ab我的答案:A5.[单选题] 已知行列式13332312322211312111==a a a a a a a a a D ,==333231223222121341241182a a a a a a a a a D ( ) A.1B.2C.4D.8我的答案:D6.[单选题] 行列式=11-1-111-111( )A.0B.2C.8D.4我的答案:D7.[单选题] 关于行列式说法正确的是( ) A.交换行列式的两行,行列式的结果不变 B.交换行列式的两列,行列式的结果不变C.交换行列式的两行,然后交换行列式的两列,行列式的结果不变D.交换行列式的两行,然后交换行列式的两列,行列式变号 我的答案:C8.[单选题] 行列式987654321=( )A.2B.0C.8D.4我的答案:B9.[单选题] 行列式30219910132121-1=( ) A.2 B.0 C.8 D.4我的答案:B10.[单选题] 若dc bD a =,则=D T( )A. B. C. D.我的答案:B1.[单选题] 在下列四个二阶行列式中,不满足a A ijij =(i,j=1,2,)的是( )A.1111B.111-1C.1001D.2002我的答案:A2.[单选题] 已知行列式,1333231232221131211==a a a a a a a a a D ,则=++231322122111a a a A A A ()A.1B.2C.3D.0我的答案:D3.[单选题] 对于二阶行列式D,中若a 2a 2112=,则有( )A.A 1212a =B.A 2121a =C.A 2A 2112=D.A 2A 1221=我的答案:D4.[单选题] 已知行列式1333231232221131211==a a a a a a a a a D ,则下列式子结果为1的是( )A.M a M a M a 232322222121++B.M a M a M a 333332323131++C.A a A a A a 131312121111++D.A a A a A a 131312121111+-我的答案:C5.[单选题] 对于二阶行列式D,中若a a 21211=,则有( )A.A 2A 1112=B.A 2A 1211=C.A1211A =D.以上都不对我的答案:D6.[单选题] 行列式300220111=D ,则A A A 131211++( )A.0B.2C.4D.6我的答案:D7.[单选题] 满足122211211====AAAA 的二阶行列式是( )A.1111B.1111----C.1111--D.1111--我的答案:D8.[单选题] 行列式694432111=( )A.2B.0C.8D.4我的答案:A9.[单选题] 行列式c b a D c ba 2221111=,)()()(1112222111111++++++=c b a D c b a ,则( )A.由D D 21=可得a+c=bB.由D D 21=可得a-c=bC.由D D 21=可得a ·c=bD.以上答案都不对我的答案:D10.[单选题] 若D 是二阶对角行列式,且202211=AA,则D=( )A.2B.1C.8D.4我的答案:A1.[单选题] 若b >a ,则线性方程组⎩⎨⎧=+=+c cax bx bx ax 2121解的情况与c 的关系是( )A.当等于零时,方程组无解B.当不等于零时,方程组无解C.当时,方程组无解D.在任何情况下,方程组都有解 我的答案:D2.[单选题] 若方程组⎪⎩⎪⎨⎧=++=++=++b x a x a x a b x a x a x a b x a x a x a 333323213123232221211313212111无解,则行列式==333231232221131211a a a a a a a a a D( ) A.1 B.2 C.3 D.0我的答案:D3.[单选题] 对于⎪⎩⎪⎨⎧=+=+=++000-42-622-53121321x x x x x x x )()()(λλλ有非零解,则不可能取的值是( ) A.5B.8C.2D.6我的答案:D4.[单选题] 方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 解的情况是( )A.一定有解B.一定无解C.可能无解D.当系数行列式为零时无解 我的答案:A5.[单选题] 若齐次线性方程组有一个非零解,则该方程组一定( ) A.有无穷多解 B.恰有两个非零解 C.没有零解 D.恰有三个解 我的答案:A6.[单选题] 在平面直角坐标系中,直线CB A Y X 1111:l =+与直线C B A Y X 2222:l =+相交,则线性方程组⎩⎨⎧=+=+C B A C B A Y X Y X 222111解的情况是( ) A.有无穷多解B.恰有一个解C.恰有两个解D.恰有三个解 我的答案:B7.[单选题] 关于X 、Y 、Z 的齐次线性方程组⎩⎨⎧=++=++0ey 0fz dx cz by ax 解的情况是( )A.无解B.有非零解C.没有零解D.只有零解 我的答案:B8. [单选题] 已知方程组⎩⎨⎧=+=+24622y x y ax 无解,则a=( )A.1B.2C.3D.0我的答案:C9.[单选题] 已知方程组⎩⎨⎧=++=+p y x p y 3225x 3的解满足x+y=2,则p=( )A.1B.2C.3D.4我的答案:D10.[单选题] 若cx a x 2bx )(f ++=,f(d)=f(e)=f(g)=0,且d 、e 、g 两两不等,则关于a 、b 、c 的取值情况是( ) A.a=0,b ≠0,c=0 B.a=0,b=0,c=0 C.a ≠0,b=0,c=0 D.a=0,b ≠0,c ≠0 我的答案:B作业1计算行列式 ____正确答案:132计算行列式 ____正确答案:13计算行列式 ____正确答案: 04计算行列式____正确答案:-275计算行列式____正确答案:06解方程,结果是____正确答案:47解方程,结果是或____正确答案:38解方程,结果是或____正确答案:-21在六阶行列式中,元素乘积应取什么符号____(本节课习题凡是涉及符号问题的,正号请在横线上填“+;正;正号;➕”,负号请在横线上填“-;负;负号;➖”)正确答案:+;正;正号;➕2在六阶行列式中,元素乘积应取什么符号____正确答案:-;负;负号;➖3在六阶行列式中,元素乘积应取什么符号____正确答案:+;正;正号;➕4在六阶行列式中,元素乘积应取什么符号____正确答案:-;负;负号;➖5项是不是五阶行列式中的一项____(是/不是),若是,它的符号是____.(若不是,第二个空不用填)正确答案:第一空:是第二空:+;正;正号;➕6项是不是五阶行列式中的一项____(是/不是),若是,它的符号是____.(若不是,第二个空不用填)正确答案:不是7项是不是五阶行列式中的一项____,若是,它的符号是____.(若不是,第二个空不用填)正确答案:第一空:是第二空:-;负;负号;➖8四阶行列式中乘积前应冠以什么符号? ____ 正确答案:-;负;负号;➖9计算行列式____正确答案:2410计算行列式____正确答案:1某三阶该行列式共有三个元素为零,则以下说法正确的是( )A、该行列式的结果一定为零B、若三个零元素在同一行,则该行列式的结果为零C、若三个零元素都在主对角线上,则该行列式的结果为零D、若三个零元素都在副对角线上,则该行列式的结果为零正确答案: B2已知行列式,则( )A、1B、2C、4D、6正确答案: A3已知,,且,则( )A、0B、1C、2D、4正确答案: A4行列式( )A、0B、C、D、正确答案: A5已知行列式,则( )A、1B、2C、4D、8正确答案: D6行列式( )A、0B、2C、8D、4正确答案: D7关于行列式说法正确的是( )A、交换行列式的两行,行列式的结果不变B、交换行列式的两列,行列式的结果不变C、交换行列式的两行,然后交换行列式的两列,行列式的结果不变D、交换行列式的两行,然后交换行列式的两列,行列式变号正确答案: C8行列式( )A、2B、0C、8D、4正确答案: B9行列式( )A、2B、0C、8D、4正确答案: B10若,则( )A、B、C、D、正确答案: B1用行列式的性质计算行列式的值____正确答案:40131002用行列式的性质计算行列式的值____正确答案:53用行列式的性质计算行列式的值____正确答案:84已知,求行列式的值____ 正确答案:125已知,求行列式的值____ 正确答案:-486计算行列式的值____正确答案:607计算行列式的值____正确答案:-218计算行列式的值____正确答案:09计算行列式的值____正确答案:n!10计算行列式的值____正确答案:-2(n-2)!1求行列式中元素-4的代数余子式(计算出结果).____正确答案:102若某四阶行列式第三行元素依次为,,,,对应的余子式依次为,,,,求此行列式的值.____正确答案:-113计算行列式的值____正确答案:44计算行列式的值____正确答案:435计算行列式的值____正确答案:-246计算行列式的值____正确答案:-277计算行列式的值____正确答案:278计算行列式的值____正确答案:481已知4阶行列式,则中的系数是____正确答案:-4;➖42设4阶行列式,则=____,其中为元素的代数余子式.正确答案:0;零3设4阶行列式,则第一列各元素的代数余子式之和____正确答案:0;零4设5阶行列式,则____ 和____,其中为的第四行第列元素的代数余子式.正确答案:第一空:-9;➖9第二空:185用克莱姆法则求解线性方程组的解为____ ,____,____ .正确答案:第一空: 1第二空: 2第三空: 36用克莱姆法则求解线性方程组的解为____ ,____,____ ,____ .正确答案:第一空:-8;➖8第二空: 3第三空: 6第四空:07用克莱姆法则求解线性方程组的解为____ ,____,____ ,____ .正确答案:第一空:0第二空: 2第三空:0第四空:08用克莱姆法则求解线性方程组的解为____ ,____,____ ,____ ,____ .正确答案:第一空: 1第二空:-1;➖1第三空: 1第四空:-1;➖1第五空: 19当____ 或____时,齐次线性方程组有非零解.(小数在前,大数在后)正确答案:第一空:-2;➖2第二空: 1二.判断题(共1题,10.0分)1判断:齐次线性方程组仅有零解( ) .正确答案:√1已知行列式展开式的六项中含有,则( )A、1B、2D、6我的答案:D2某二阶行列式的所有元素都是整数,则该行列式的结果( )A、一定是整数B、一定不是零C、一定是正数D、一定是负数我的答案:A3行列式( )A、0B、C、D、我的答案:A4方程组的解是( )A、B、C、D、我的答案:A5行列式的结果是( )A、0C、10D、25我的答案:D6某三阶行列式的所有元素都是4,则该行列式的值是( )A、3B、4C、7D、0我的答案:D7关于三阶行列式说法正确的是( )A、若行列式的所有元素都等于零,则行列式的结果一定等于零B、若行列式的所有元素都等于零,则行列式的结果一定不等于零C、若行列式的所有元素都不等于零,则行列式的结果一定等于零D、若行列式的所有元素都不等于零,则行列式的结果一定不等于零我的答案:A8行列式( )A、B、1C、2D、4我的答案:B9一元一次方程的解是( )A、B、C、D、我的答案:A10已知行列式,,则( )A、4B、2C、8D、0我的答案:D11若、、、的绝对值都是1,则行列式的最大值是( )A、1B、2C、3D、4我的答案:B12若某二阶行列式的结果为零,则关于该行列式的以下说法正确的是( )A、至少有一行元素为零B、至少有一列元素为零C、至少有一个元素为零D、以上答案都不对我的答案:D第二章随堂检测1【单选题】已知矩阵是二阶单位矩阵,则( )A、1B、2C、3D、0我的答案:A2【单选题】已知矩阵的四个元素中任意两个都互为相反数,则该矩阵是( )A、单位矩阵B、四阶矩阵C、负矩阵D、零矩阵我的答案:D3【单选题】下列四个矩阵中是单位矩阵的是( )A、B、C、D、我的答案:B4【单选题】关于矩阵说法正确的是( )A、该矩阵是3阶单位矩阵B、该矩阵是9阶单位矩阵C、该矩阵是27阶单位矩阵D、该矩阵不是单位矩阵我的答案:D5【单选题】关于矩阵的行数与列数说法正确的是( )A、四行八列B、八行四列D、两行三列我的答案:D6【单选题】下列关于单位矩阵、对角矩阵以及数量矩阵说法正确的是( )A、对角矩阵是单位矩阵B、单位矩阵是数量矩阵C、对角矩阵是数量矩阵D、以上说法都不对我的答案:B7【单选题】四阶单位矩阵所有元素的和等于( )A、1B、2C、4D、16我的答案:C8【单选题】下列关于零矩阵说法正确的是( )A、所有元素都是零B、未必所有元素都是零,但第一行的元素一定都是零C、未必所有元素都是零,但所有元素的和一定等于零D、未必所有元素都是零,但所有元素的乘积一定等于零我的答案:A9【单选题】一个3×4矩阵和一个4×3矩阵的共同点是( )A、行数相同B、列数相同C、行数及列数都相同D、所含元素的个数相同我的答案:D10【单选题】某方阵共有16个元素,则它的行数是( )A、2B、4C、8D、16我的答案:B1【单选题】在矩阵等式中,已知和都是二行三列,则是( )A、二行三列B、三行二列D、六行六列我的答案:A2【单选题】已知是非零常数,是非零矩阵,则是否是零矩阵( )A、一定是B、一定不是C、可能是D、不确定我的答案:B3【单选题】已知,,则( )A、B、C、D、我的答案:D4【单选题】矩阵不可能是( )A、两个单位矩阵的和B、两个上三角矩阵的和C、两个下三角矩阵的和D、两个对角矩阵的和我的答案:A5【单选题】已知是负数,是上三角矩阵,则是( )A、下三角矩阵B、上三角矩阵C、数量矩阵D、对角矩阵我的答案:B6【单选题】已知矩阵是六行九列,则矩阵是( )A、十八行二十七列B、两行三列C、六行九列D、九行六列我的答案:C7【单选题】当取何值时,矩阵等式成立( )A、1B、2C、3D、不论取何值,等式都不成立我的答案:D8【单选题】是二阶单位矩阵,则( )A、B、C、D、以上答案都不对我的答案:D1【单选题】,,则( )A、B、C、D、我的答案:D2【单选题】在矩阵等式中,若是上三角矩阵,是下三角矩阵,,则关于的说法正确的是( )A、一定是上三角矩阵B、一定是下三角矩阵C、一定是对角矩阵D、以上答案都不对我的答案:D3【单选题】二阶方阵乘以二阶方阵等于( )A、四阶方阵B、四行四列矩阵C、行数和列数相等且含有十六个元素的方阵D、二阶方阵我的答案:D4【单选题】在矩阵等式中,和的元素都是负数,则的元素符号( )A、都是正数B、都是负数C、正负交替出现D、不确定,与矩阵的行数与列数有关我的答案:A5【单选题】关于矩阵和,以下说法不正确的是( )A、若有意义,则必有的行数等于的行数B、若有意义,则必有的行数等于的列数C、若有意义,则必有的列数等于的行数D、若有意义,则必有的行数等于的列数我的答案:B6【单选题】某矩阵既是对称矩阵又是反对称矩阵,则关于该矩阵说法正确的是( )A、是上三角矩阵,但未必是对角矩阵B、是下三角矩阵,但未必是对角矩阵C、是对角矩阵,但未必是零矩阵D、是零矩阵我的答案:D7【单选题】已知矩阵等式成立,则有( )A、,B、,C、,D、,我的答案:A8【单选题】,,,,则在,,,四个矩阵中,对称矩阵的个数是( )A、1B、2C、3D、4我的答案:D9【单选题】是阶方阵,,则( )A、B、C、D、4我的答案:C10【单选题】如果,则( )A、B、C、D、我的答案:A11【单选题】如果是同阶方阵,则以下说法正确的是( )A、若,则B、若,则C、若,则D、若,则我的答案:D12【单选题】,,且第列的元素和是(,,),则( )A、B、C、D、我的答案:A13【单选题】矩阵的结果是零矩阵,说明( )A、的行数等于的列数B、的列数等于的行数C、和至少有一个是零矩阵D、我的答案:D1【单选题】和是同阶可逆矩阵,则( )A、若,则B、若,则C、若,则D、若,则我的答案:A2【单选题】若,则( )A、可逆,且B、可逆,且C、可逆,且逆矩阵不唯一D、未必可逆我的答案:A3【单选题】逆矩阵不唯一的三阶可逆矩阵有( )个A、0B、1C、2D、3我的答案:A4【单选题】若,且,则( )A、B、C、D、我的答案:A5【单选题】是可逆矩阵,且,若,则( ) A、B、C、D、我的答案:A6【单选题】、、是同阶可逆矩阵,且,则( )A、B、C、D、我的答案:A7【单选题】是阶矩阵,是的伴随矩阵,以下说法正确的是( )A、可逆时,也可逆B、可逆时,不可逆C、不可逆时,可逆D、可逆时,不可逆我的答案:A8【单选题】,则的伴随矩阵( )A、B、C、D、我的答案:B9【单选题】是阶方阵,以下说法正确的是( )A、当可逆时,有B、当是数量矩阵时,有C、当是对角矩阵时,有D、当不可逆时,有我的答案:B10【单选题】、是同阶可逆矩阵,则下列矩阵未必可逆的是( ) A、B、C、D、我的答案:B1【单选题】是3阶初等矩阵,则的值不可能是( )A、3B、2C、1D、0我的答案:D2【单选题】下列关于初等矩阵的说法正确的是( )A、初等矩阵一定是可逆矩阵B、可逆矩阵一定是初等矩阵C、初等矩阵的行列式可能为零D、初等矩阵可能是退化矩阵我的答案:A3【单选题】已知矩阵是一行三列,矩阵是三行四列,则的结果是( )A、矩阵的第一列B、矩阵的第一行C、矩阵的第一列D、矩阵的第一行我的答案:B4【单选题】方阵经过一次初等变换后得到方阵,且,则( )A、0B、1C、2D、不确定我的答案:D5【单选题】交换方阵的第一、二行得到矩阵,交换方阵的第一、二列得到矩阵,则下列说法正确的是( )A、与不等价,且B、与不等价,且C、与等价,且D、与等价,且我的答案:C6【单选题】,则( )A、B、C、D、我的答案:A7【单选题】,则的标准形是( )A、B、C、D、我的答案:D8【单选题】,且已知矩阵可以经过行初等变换得到矩阵,其中,,则( )A、B、C、D、我的答案:A9【单选题】某初等矩阵一共有三行,则该矩阵一共有( )列A、27B、9C、3D、1我的答案:C10【单选题】四阶方阵的标准形中含元素1的个数最多是( )个A、2B、4C、1D、3我的答案:B1【单选题】,,则矩阵方程的解是( ) A、B、C、D、我的答案:B2【单选题】,,则矩阵方程的解是( ) A、B、C、D、我的答案:A3【单选题】可逆,且,则( )A、B、C、D、我的答案:C4【单选题】是阶方阵,且,则有( )A、不可逆B、可逆且C、可逆且D、可逆且我的答案:B5【单选题】是三阶可逆方阵,且,,则矩阵方程的解( )A、B、C、D、我的答案:D1【单选题】A是n阶矩阵,是非零常数,则一定有( )A、B、C、D、我的答案:B2【单选题】A=,则有( )A、B、C、D、我的答案:C3【单选题】A是n阶可逆矩阵,则下列结论正确的是( )A、B、C、D、我的答案:D4【单选题】一个六行八列矩阵的秩可能是( )A、6B、8C、66D、88我的答案:A5【单选题】矩阵A是m行n列且,若,则( )A、1B、2C、3D、4我的答案:D6【单选题】A是一个矩阵,则“是零矩阵”是“”的( )条件A、充分不必要B、必要不充分C、充分必要D、不充分不必要我的答案:C7【单选题】A是n阶矩阵,,,则有( )A、B、C、D、以上答案都错我的答案:A8【单选题】k是常数,,则不可能是( )A、1B、2C、3D、4我的答案:B9【单选题】,则有( )A、B、C、D、我的答案:A10【单选题】矩阵经过3次初等变换得到矩阵,,则( )A、8B、2C、5D、15我的答案:C作业1已知矩阵,、是常数且,则____正确答案:第一空: 12已知,满足,则常数____正确答案:第一空: 43矩阵,(),且,则____正确答案:第一空:504矩阵,及常数,满足,则____正确答案:05,是常数,,是未知数,且矩阵方程组有无穷多组解,则常数____正确答案:101某数量矩阵第四行的非零元素是2,则该矩阵第二行的非零元素是4( ) 正确答案:×2对角矩阵主对角线上的元素都不等于零( )正确答案:×3既是上三角矩阵又是下三角矩阵的矩阵是零矩阵( )正确答案:×4非负矩阵的行数不超过列数( )正确答案:×5五阶方阵的每个元素不小于5( )正确答案:×6数量矩阵不可能是单位矩阵( )正确答案:×7上三角矩阵第一行的元素都不等于零( )正确答案:×8某矩阵共四行,且所有元素都是4,则该矩阵是四阶方阵( )正确答案:×9下三角矩阵的行数不等于列数( )正确答案:×10数量矩阵的所有元素都相等( )正确答案:×1已知矩阵,且,则____正确答案:32已知且,是方阵,则是____阶方阵正确答案:4;四3矩阵,,且,又,则主对角线上所有元素的和等于____正确答案:34矩阵是行3列矩阵,是3行列矩阵,且,则____正确答案:35、、、、、是六个矩阵,且,,, 则矩阵所有元素的和等于____正确答案:06,,其中是单位矩阵,,则____正确答案: 27是反对称矩阵,则____正确答案:08二阶方阵、满足,且,, 则____正确答案:109,,则____正确答案:010是矩阵,是矩阵,的行数与列数相等,则____正确答案:81已知矩阵,且是的逆矩阵,则____正确答案:12是反对称矩阵且可逆,则主对角线上元素的和等于____正确答案:03矩阵可逆且,,则____正确答案:24矩阵是8阶方阵,则是 ____阶方阵正确答案:8;八5,是退化矩阵,则常数____正确答案:26方阵不可逆,则____正确答案:07方阵,且可逆,则____正确答案:18方阵,则____正确答案:29可逆矩阵的逆矩阵,若,则____ 正确答案:410矩阵,且,则____正确答案:01方阵经过初等变换后得到方阵,且,则的值不可能是____正确答案:02是四阶方阵且,是的标准形,则____正确答案:13矩阵,若,则____正确答案:24矩阵与等价,且是3行5列,是行列,则____正确答案:85矩阵,,,,,则____正确答案:36矩阵,,,则____正确答案:7矩阵,,,则____正确答案:18、是同阶方阵且,,则将矩阵的第二行乘以____就能得到矩阵正确答案:29在、、,三个矩阵中,逆矩阵等于自身的有____个正确答案:310矩阵,且矩阵序列,实数序列。
大学数学线性代数期末复习模拟测试试卷(含答案)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。
线性代数模试题试题库
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555n n A A +==。
5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。
由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分)7、设0333231232221131211≠=M a a a a a aa a a ,则行列式 A 。
A . B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数期末试题
线性代数试题(附答案)一、填空题(每题2分,共20分)1.行列式0005002304324321= 。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。
3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。
4.A 为n n ⨯阶矩阵,且ο=+-E A A 232,则1-A 。
5. 321,,ξξξ和321,,ηηη是3R 的两组基,且32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。
7.设=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(,111012111,321212113AB tr AB B A 之迹则 。
8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--⨯A A 。
9.二次型x x x x x x f 23222132123),,(--=的正惯性指数为 。
10.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1042024λλA 为正定矩阵,则λ的取值范围是 。
二、单项选择(每小题2分,共12分)1.矩阵()==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。
A 、1B 、2C 、3D 、4 2. 齐次线性方程组⎩⎨⎧=--=++-02023214321x x x x x x x 的基础解系中含有解向量的个数是( )A 、1B 、2C 、3D 、43.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )A 、-1B 、-2C 、0D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( )A 、B=EB 、A=EC 、A=BD 、AB=BA5.已知=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或26.下列矩阵中与矩阵合同的是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5000210002( ) A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200020001 B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-500020003 C 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020002三、计算题(每小题9分,共63分)1.计算行列式),2,1,0(0000002211210n i a a c a c a c b b b a i nnnΛΛΛΛΛΛΛΛΛΛ=≠其中2.当⎪⎪⎩⎪⎪⎨⎧=+++=-++=+++=+++ax x x x x x x x x x x x x x x x a 4321432143214321710535105363132,线性方程组取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。
(完整版)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。
(A) 0 (B )1- (C) 1 (D) 25。
=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数模试题试题库(带答案)
,
A= 2−1
1 1
−2 −1
1
=
13
−1
3
2 3
1
3
解:
= A−1
= A01−1 A02−1
1
−2
0
0
−2 5 0 0
0 0 13 −1 3
0
0
2 3
1 3
四、证明题(每小题 5 分,共 10 分)
19、设 n 阶方阵 A 满足 ( A + E )3 = 0 ,证明矩阵 A 可逆,并写出 A 逆矩阵的表达式。
即行列式 D 的每一行都有一个(-1)的公因子,所以 D = (−1)n D 。
3、设
A
=
1 0
1 1 ,
则
A100
=
1 0
100
1
。
= A2
1 0
= 11 10 11
= 10 12 , A3
1 0
= 12 10 11
因为: A∗ =A A−1 =−2A−1 ⇒ 4A−1 + A∗ =4A−1 − 2A−1 =2A−1 =8 A−1 =−4 。
1 0 2 2、 A 为 5×3 矩阵,秩( A )=3, B = 0 2 0 ,则秩( AB )= 3 。
0 0 3 因为 B 可逆, AB 相当于对 A 作列初等变换,不改变 A 的秩。
C.5
D.6
1 2 1 0 1 2 1 0
通过初等变换,由秩为 2 可得: 3
−1 0
2
0
−7
−3
(完整版)线性代数试题和答案(精选版)
线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
自考考试:工程数学线性代数模拟试题及答案
自考考试:工程数学线性代数模拟试题及答案一、单选题(共15题,共30分)1.某人打靶3发,事件Ai表示“击中i发”,i=0,1,2,3.那么事件A=A1∪A2∪A3表示A.全部击中B.至少有一发击中C.必然击中D.击中3发正确答案:B2.对于任意两个随机变量X和Y,若E(XY)=E(X)E(Y),则有∙ A.X和Y独立∙ B.X和Y不独立∙ C.D(X+Y)=D(X)+D(Y)∙ D.D(XY)=D(X)D(Y)正确答案:C3.下列各函数中可以作为某个随机变量的概率密度函数的是∙ A.∙ B.∙ C.∙ D.正确答案:D4.设随机变量X~N(u,4²),Y~N(u,5²),P1=P{X≤u-4},P2=P{Y≥u+5},则有∙ A.对于任意的u,P1=P2∙ B.对于任意的u,P1<P2∙ C.只对个别的u,才有P1=P2∙ D.对于任意的u,P1>P2正确答案:A5.设X为随机变量,其方差存在,c为任意非零常数,则下列等式中正确的是∙ A.D(X+c)=D(X)∙ B.D(X+c)=D(X)+c∙ C.D(X-c)=D(X)-c∙ D.D(cX)=cD(X)正确答案:A6.设c为从原点沿y²=x至1+i的弧段,则∙ A.∙ B.∙ C.∙ D.正确答案:D7.设c为不经过点1与1的正向简单闭曲线,则∙ A.∙ B.∙ C.0∙ D.(A)(B)(C)都有可能正确答案:D8.设:c1:|z|为负向,c2:|z|3正向,则∙ A.-2πi∙ B.0∙ C.2πi∙ D.4πi正确答案:B9.设c为正向圆周|z|=2,则∙ A.-sin1∙ B.sin1∙ C.-2πi sin1∙ D.2πi sin1正确答案:C10.设c为正向圆周|z|=1/2,则∙ A.2π(3cos-sin1)∙ B.0∙ C.6paiicos1∙ D.-2πsin1正确答案:B11.设c为正向圆周|z|1/2,则∙ A.2π(3cos1-sin1)∙ B.0∙ C.6πicos1∙ D.-2πsin1正确答案:B12.设f(z)在单连通域B内处处解析且不为零,c为B内任何一条简单闭曲线,则积分∙ A.等于2πi∙ B.等于-2πi∙ C.等于0∙ D.不能确定正确答案:C13.设c为任意实常数,那么由调和函数u=x²-y²确定的解析函数f(z)=u+iv是∙ A.iz²+c∙ B.iz²+ic∙ C.z²+c∙ D.z²+ic正确答案:D14.下列命题中,正确的是∙ A.设v1,v2在区域D内均为u的共轭调和函数,则必有v1v2∙ B.解析函数的实部是虚部的共轭调和函数∙ C.若f(z)=u+iv在区域D内解析,则xu为D内的调和函数∙ D.以调和函数为实部与虚部的函数是解析函数正确答案:C15.设v(x,y)在区域D内为u(x,y)的共轭调和函数,则下列函数中为内解析函数的是∙ A.v(x,y)+iu(x,y)∙ B.v(x,y)-iu(x,y)∙ C.u(x,y)-iv(x,y)∙ D.正确答案:B二、填空题(共7题,共14分)16.设3阶矩阵A的特征值为-1,1,2,它的伴随矩阵记为A*,则|A*+3A –2E|=正确答案:917.设有3个元件并联,已知每个元件正常工作的概率为P,则该系统正常工作的概率为正确答案:1–(1–P)³18.设随机变量X的概率密度函数为f(x)=2x0<x<A,f(x)=0,则概率正确答案:3/419.设二维连续型随机变量(X,Y)的联合概率密度函数为,则系数k=正确答案:1220.设c为正向圆周|z|=3,则正确答案:6πi21.解析函数在圆心处的值等于它在圆周上的正确答案:平均值22.设u(x,y)的共轭调和函数为v(x,y),那么v(x,y)的共轭调和函数为正确答案:-u(x,y)三、问答题(共8题,共56分)23.发报台分别以概率0.6和0.4发出信号“1”和“0”。
线性代数模拟试题
四、(10分) 求解矩阵方程 、( 分 1 2 3 6 6 6 X 2 3 1 = 5 4 3 3 1 2 3 1 2 取何实值时, 、(15分 五、( 分) λ 取何实值时,线性方程 组 λ x1 − x 2 = λ λ − =λ x2 x3 λ x 3 − x4 = λ − x1 + λ x 4 = λ 有唯一解,无穷多解, 无解? 有唯一解,无穷多解, 无解?在有无穷多解的
α在基 β 1 , β 2 , β 3 下的坐标 . 、(15分 五、( 分) λ取何值时 线性方程组 取何值时,
( 2λ + 1) x 1 − λ x 2 + (λ + 1) x 3 = λ − 1 (λ − 2) x 1 + (λ − 1) x 2 + (λ − 2) x 3 = λ ( 2λ − 1) x + (λ − 1) x + ( 2λ − 1) x = λ 1 2 3
β 1 = 2α 1 + 3α 2 + 3α 3 , β 2 = 2α 1 + α 2 + 2α 3 , β 3 = α 1 + 5α 2 + 3α 3 .
1.证明 β 1 , β 2 , β 3 也是 R 3 的一个基; 2.求由基 β 1 , β 2 , β 3 到基 α 1 ,α 2 ,α 3 的过渡矩阵; 3.若向量 α在基 α 1 ,α 2 ,α 3 下的坐标为 (1,−2,0), 求
(1)由基(ΙΙ )到基(Ι )的过渡矩阵; ( 2)向量α在基(ΙΙ )下的坐标 .
模拟试题( 模拟试题(一)参考答案
1( 一、.B ); 2. ( B ); 3. (对 ); 4. (对 ); 5. (对 ). 1 2 二、.; ( −1) 2. ; 3. x = 0, y = −2; 4. t < 2 . 2
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数模拟题及答案
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
2022年线性代数试卷及答案6套
线性代数试卷及答案6套.试卷(一): 一. 填空题(每小题4分,共20分)1.已知正交矩阵P 使得⎪⎪⎪⎭⎫ ⎝⎛--=200010001AP P T ,则.________)(2006=+P A E A P T2.设A 为n 阶方阵,n λλ,,1 为A 的n 个特征值,则 ._________)det(2=A 3.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:._________4.若向量组T T T t )3,2,(,)1,3,2(,)2,4,0(===γβα的秩为2,则._____=t5.,27859453251151)(32--=x x x x D 则0)(=x D 的全部根为:_________.二. 选择题 (每小题4分,共20分)1.行列式001010100 ---的值为( ).A. 1B. -1C. 2)1()1(--n n D. 2)1()1(+-n n2. 对矩阵n m A ⨯施行一次行变换相当于( ).A. 左乘一个m 阶初等矩阵B. 右乘一个m 阶初等矩阵C. 左乘一个n 阶初等矩阵D. 右乘一个n 阶初等矩阵 3. 若A 为n m ⨯矩阵,{},,0|,)(n R X AX X M n r A r ∈==<= 则( ). A. M 是m 维向量空间 B. M 是n 维向量空间 C. M 是r m -维向量空间 D. M 是r n -维向量空间 4. 若n 阶方阵A 满足,,02=A 则下列命题哪一个成立 ( ).A. 0)(=A rB. 2)(n A r =C. 2)(n A r ≥D. 2)(nA r ≤5. 若A 是n 阶正交矩阵,则下列命题哪一个不成立( ). A. 矩阵T A 为正交矩阵 B. 矩阵1-A 为正交矩阵 C. 矩阵A 的行列式是1± D. 矩阵A 的特征值是1±三. 解下列各题(每小题6分,共30分)1. 若A 为3阶正交矩阵, *A 为A 的伴随矩阵, 求).det(*A2. 计算行列式.111111111111aa a a 3. 设,,100002020B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛=求矩阵.B4. 求向量组,)2,1,2,1(1T =α,)2,1,0,1(2T =α,)0,0,1,1(3T =αT )4,2,1,1(4=α的一个 最大无关组.5. 求向量T )1,2,1(=ω在基,)1,1,1(T =α,)1,1,0(T =βT )1,1,1(-=γ下的坐标. 四. (12分) 求方程组⎪⎩⎪⎨⎧=+--+=+++-=++-+631052372322543215432154321x x x x x x x x x x x x x x x的通解(用基础解系与特解表示).五.(12分) 用正交变换化下列二次型为标准型, 并写出正交变换矩阵3123222132122),,(x x x x x x x x x f -++= 六. 证明题(6分)设r ξξξβ ,,,021≠是线性方程组β=AX 对应的齐次线性方程组的一个 基础解系,η是线性方程组β=AX 的一个解, 求证ηηξηξηξ,,,,21+++r 线性无关.试卷(二):一.计算下列各题:(每小题6分,共30分)(1),180380162176380162225379162(2)求,3222E A A ++其中⎪⎪⎭⎫⎝⎛-=3112A(3)已知向量组T T T t ),2,1(,)3,3,2(,)3,2,0(321-===ααα线性相关,求.t (4) 求向量T )4,2,1(-=α在基T T T )1,2,1(,)1,1,0(,)1,0,1(321-===ααα下的坐标.(5) 设⎪⎪⎭⎫⎝⎛=5321A , 求A 的特征值.二.(8分) 设⎪⎪⎪⎭⎫ ⎝⎛=200002130A ,且,B A AB T +=求矩阵B.三. (8分) 计算行列式: 100200300321x c b a四. (8分) 设有向量组,)6,0,2,3,3(,)7,2,0,1,1(,)5,2,1,0,1(,)3,2,1,1,0(4321T T T T -=--===αααα 求该向量组的秩以及它的一个最大线性无关组.五. (8分) 求下列方程组的通解以及对应的齐次方程组的一个基础解系.⎪⎩⎪⎨⎧=--+=+-+-=-+-+.18257,432,1042354315432154321x x x x x x x x x x x x x x六. (8分) 求出把二次型323121232221222)(x x x x x x x x x a f -++++=化为标准形的正交变换,并求出使f 为正定时参数a 的取值范围.七. (10分) 设三阶实对称矩阵A 的特征值为3(二重根)、4(一重根),T )2,2,1(1=α是A 的属于特征值4的一个特征向量,求.A 八. (10分) 当b a ,为何值时,方程组⎪⎩⎪⎨⎧=++=++=++,233,1032,4321321321x bx x x bx x x x ax 有惟一解、无穷多解、无解?九.(10分) (每小题5分,共10分) 证明下列各题(1) 设A 是可逆矩阵, ,~B A 证明B 也可逆, 且.~11--B A (2) 设βα,是非零1⨯n 向量,证明α是n n ⨯矩阵T αβ的特征向量.试卷(三):一. 填空题(共20分)1. 设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有唯一解的充分必要条件是:2. 已知E 为单位矩阵, 若可逆矩阵P 使得11223,P AP P A P E --+= 则当E A -可逆时, 3A =3. 若t 为实数, 则向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3+t )的秩为:4. 若A 为2009阶正交矩阵,*A 为A 的伴随矩阵, 则*A =5. 设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1ni i i i E A λ=-∑ =二. 选择题(共20分)1. 如果将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵为)),(,(k i j P 将矩阵n m A ⨯的第i 列乘k 加到第j 列相当于把A :A, 左乘一个));(,(k j i P B ,右乘一个));(,(k j i PC . 左乘一个));(,(k i j PD ,右乘一个)).(,(k i j P2. 若A 为m ×n 矩阵,B 是m 维非零列向量,()min{,}r A r m n =<。
线性代数模拟试题及答案
班级: 姓名: 学号:131《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分)1.设为四阶行列式,若表示元素的余子式,表示元素的代数余子式,则+= .2.三阶行列式中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对阶行列式(填成立或不成立)。
3.设均为3维列向量,记矩阵记矩阵,若,则。
4.设矩阵,则。
5.设矩阵可逆,且矩阵,所以矩阵一定可以由矩阵经过(填行或列)初等变换而得到.6.设向量组,若 则一定可以由向量唯一的线性表示。
7.非齐次线性方程组有 唯一的解是对应的齐次方程组只有零解的充分但不必要条件。
8.设3阶矩阵的行列式 ,则矩阵一定有一个特征值。
9.阶矩阵有个特征值1,2,,阶矩阵与相似,则. 10.向量组: (填是或不是)向量空间一个规范正交基。
二、单项选择(本题10分,每小题2分)得分阅卷人班级: 姓名: 学号:132注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵为阶方阵,则关于非齐次线性方程组的解下列说法( )不正确 (A ) 若方程组有解,则系数行列式; (B ) 若方程组无解,则系数行列式;(C ) 若方程组有解,则或者有唯一解或者有无穷多解; (D) 系数行列式是方程组有唯一解的充分必要条件.2。
设为阶可逆矩阵,下列正确的是( ) (A ) ; (B) ; (C ) ;(D ) 。
3。
奇异方阵经过( )后,矩阵的秩有可能改变。
(A ) 初等变换; (B ) 左乘初等矩阵; (C ) 左、右同乘初等矩阵; (D ) 和一个单位矩阵相加。
4.设非齐次线性方程组的系数矩阵是矩阵,且的行向量组线性无关,则有( )。
(A) 的列向量组线性无关;(B) 增广矩阵的行向量组线性无关;(C) 增广矩阵的任意4个列向量组线性无关; (D) 增广矩阵的列向量组线性无关。
5.设是非奇异矩阵的一个特征值,则矩阵有一个特征值为 ( ) (A ) 4/3; (B) 3/4;(C ) 1/2; (D) 1/4。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫= ⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555nn A A +==。
5、A 为n 阶方阵,T AA E =且=+<E A A 则,0 0 。
由已知条件:211,1TTTAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0T T A E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分)7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。
A .M 8B .M 2C .M 2-D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
A .n D 中有两行(或列)元素对应成比例B .n D 中有一行(或列)元素全为零C .nD 中各列元素之和为零 D .以n D 为系数行列式的齐次线性方程组有非零解 9、对任意同阶方阵,A B ,下列说法正确的是 C 。
A .111)(---=B A AB B .B A B A +=+ C . T T T A B AB =)( D .AB BA =10、设,A B 为同阶可逆矩阵,0λ≠为数,则下列命题中不正确的是 B 。
A .11()A A --=B .11()A A λλ--=C .111()AB B A ---=D .11()()T T A A --=由运算法则,就有111()A A λλ--=。
11、设A 为n 阶方阵,且0A a =≠,则A *= C 。
A .a B .1aC .1n a -D .n a 因为11111n n n AA A A A A A A A AA--*-*--=⇒===⋅=。
12、矩阵12103102122a ⎛⎫⎪- ⎪ ⎪--⎝⎭的秩为2,则a = D 。
A . 2B . 3C .4D .5通过初等变换,由秩为2可得:12101210310207321220500a a ⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭:三、计算题(每小题7分,共42分)13、计算行列式:4111141111411114。
解:341117111111111111411741114110300========7=====7=73=18911417141114100301114711411140003⨯各列加到第一列提第一行乘-1到外面第一列上加到各行上。
14、计算行列式:443322110000000a b a b b a b a 。
解:先按第一行展开,再按第三行展开,有:44332211000000a b a b b a b a =22221333314142323441()()a b a b a b a b b a a a b b a a b b a b -=--。
15、问λ取何值时,齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解。
解:齐次线性方程组有非零解,则系数行列式为零:()()231321232(1)124034(1)0=231=====011+232,0,2,3111111r r r r λλλλλλλλλλλλλλ-----------=---⇒===-- 16、设矩阵2011,3125A B -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,计算2211()B A B A ---。
解:因为2,7A B ==-,所以都可逆,有22112212311152()()1425919B A B A B A A B B AB B A B -----⎛⎫⎛⎫⎛⎫-=-=-=-==⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭。
17、解矩阵方程AX B X +=,求X ,其中A =⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---350211,101111010B 。
解:1()()AX B X A E X B X A E B -+=⇒-=-⇒=--,102313()1231301313A E ---⎛⎫ ⎪⇒-=--⇒ ⎪ ⎪-⎝⎭ 131()2011X A E B --⎛⎫⎪=--= ⎪⎪-⎝⎭。
18、设5200210000120011A ⎛⎫ ⎪⎪= ⎪- ⎪⎪⎝⎭,利用分块矩阵计算1A -。
解:111111221111205212121323,021251113112002500000132300011AA A A A A A A ---------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⇒==== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎪-⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎪-⎝⎭四、证明题(每小题5分,共10分)19、设n 阶方阵A 满足()30A E +=,证明矩阵A 可逆,并写出A 逆矩阵的表达式。
证明:因为()3322330(33)A E A A A E A A A E E +=+++=⇒++=-,从而212(33)33A A A E EA A A E ----=-⇒=---。
20、若矩阵TA A =-,则称矩阵A 为反对称矩阵,证明奇数阶反对称矩阵一定不是满秩矩阵。
证明:设A 为n 阶反对称矩阵,n 为奇数,则 (1)0TT n T A AA A A AA =-⇒=-=-=-⇒=,所以A 不可逆,即A 不是满秩矩阵。
第二套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 A 为3阶方阵,且2,A =-*A 是A 的伴随矩阵,则1*4A A -+= -4 。
因为:11111112442284A A A A A A A A A A *---*----==-⇒+=-===-。
2、A 为5×3矩阵,秩(A )=3,B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则秩(AB )= 3 。
因为B 可逆,AB 相当于对A 作列初等变换,不改变A 的秩。
3、12123,,,,ααβββ均为4维列向量,1123(,,,)A αβββ=,2123(,,,)B αβββ=,1A =,4B = ,则A B += 40 。
()12123121231212311232123(,2,2,2)(,2,2,2)8,,,)8,,,,,,8(14)40A B A B ααβββααβββααβββαβββαβββ+=+⇒+=+=+=+=+=。
4、121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,32t β⎛⎫⎪= ⎪ ⎪⎝⎭,且4Tαβ=,则t = -4 。
()121362442Tt t t αβ⎛⎫⎪==++=⇒=- ⎪ ⎪⎝⎭。
5、如果n 元非齐次线性方程组AX B =有解,()R A r =,则当 n 时有唯一解;当 < n 时有无穷多解。
非齐次线性方程组有解的定义。
6、设四元方程组AX B =的3个解是123,,ααα。
其中1231213,1415ααα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,如()3R A =,则方程组AX B =的通解是01112131k ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
因为()3R A =,所以0AX =的基础解系含4-3=1个解向量;又2131,αααα--都是0AX =的解,相加也是0AX =的解,从而可得0AX =的一个解为:()()()213123121031122412513ξααααααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-+-=+-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 于是AX B =的通解为:101112131X k k ξα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
二、单项选择题(每小题4分,共24分)7、对行列式做 D 种变换不改变行列式的值。
A .互换两行 B .非零数乘某一行C .某行某列互换D .非零数乘某一行加到另外一行8、n 阶方阵,,A B C 满足ABC E =,其中E 为单位矩阵,则必有 D 。
A .ACB E = B .CBA E = C .BAC E = D .BCA E =矩阵乘法不满足变换律,而D 中11ABC E A ABCA A EA BCA E --=⇒=⇒=。
9、矩阵121031021122t ⎛⎫ ⎪- ⎪ ⎪---⎝⎭的秩为2,则t = D A . 3 B . 4 C .5 D .6通过初等变换,由秩为2可得:121012103102073211220600t t ⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭:。
10、若方阵n n A ⨯不可逆,则A 的列向量中 C 。
A . 必有一个向量为零向量B . 必有二个向量对应分量成比例C . 必有一个向量是其余向量的线性组合D . 任一列向量是其余列向量的线性组合 方阵n n A ⨯不可逆,则A 的列向量线性相关,,由定义可得。
11、若r 维向量组m αααΛ21,线性相关,α为任一r 维向量,则 A 。
A . αααα,,21m Λ线性相关B . αααα,,21m Λ线性无关C . αααα,,21m Λ线性相关性不定D . m αααΛ21,中一定有零向量 由相关知识可知,个数少的向量组相关,则个数多的向量组一定相关。