新人教版初二数学上册期末试卷及答案
2024年最新人教版初二数学(上册)期末试卷及答案(各版本)
2024年最新人教版初二数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 22. 已知a > 0,b < 0,则下列各式中正确的是()A. a b > 0B. a b < 0C. a + b > 0D. a + b < 03. 下列哪个图形是平行四边形()A. 边长相等的四边形B. 有一个角是直角的四边形C. 对边平行且相等的四边形D. 对角线互相平分的四边形4. 下列哪个图形是正方形()A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线互相垂直平分的四边形D. 对角线互相垂直且相等的四边形5. 下列各式中,正确的是()A. a^2 = a aB. a^2 = a + aC. a^3 = a a aD. a^3 = a + a + a二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 任何两个偶数之和都是偶数。
()3. 任何两个奇数之积都是奇数。
()4. 任何两个偶数之积都是偶数。
()5. 任何数乘以1都等于它本身。
()三、填空题5道(每题1分,共5分)1. 两个质数的和是______。
2. 两个偶数的积是______。
3. 两个奇数的积是______。
4. 任何数乘以0都等于______。
5. 任何数除以1都等于______。
四、简答题5道(每题2分,共10分)1. 请简要说明勾股定理的内容。
2. 请简要说明矩形的性质。
3. 请简要说明菱形的性质。
4. 请简要说明正方形的性质。
5. 请简要说明平行四边形的性质。
五、应用题:5道(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个正方形的边长是6cm,求它的面积。
3. 一个平行四边形的底是8cm,高是5cm,求它的面积。
4. 一个三角形的底是10cm,高是6cm,求它的面积。
最新人教版八年级上册数学期末考试试题(附答案)
最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
2023-2024学年全国初二上数学人教版期末试卷(含答案解析)
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 一个等腰三角形的底边长是12厘米,腰长是8厘米,那么这个三角形的周长是()厘米。
A. 20B. 28C. 36D. 443. 一个正方形的边长是5厘米,那么它的面积是()平方厘米。
A. 10B. 15C. 20D. 254. 在一个等差数列中,首项是2,公差是3,那么第五项是()。
A. 11B. 12C. 13D. 145. 一个圆的半径是4厘米,那么它的周长是()厘米。
A. 8πB. 16πC. 32πD. 64π二、判断题(每题1分,共5分)1. 一个等腰三角形的两个底角相等。
()2. 一个正方形的对角线长度是边长的根号2倍。
()3. 在一个等差数列中,任意两项的差都是公差。
()4. 一个圆的周长是直径的π倍。
()5. 一个等腰三角形的底边长是腰长的两倍。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角都是____度。
2. 一个正方形的面积是边长的____倍。
3. 在一个等差数列中,首项是a,公差是d,那么第n项是____。
4. 一个圆的面积是半径的____倍。
5. 一个等腰三角形的底边长是腰长的____倍。
四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。
2. 简述正方形的性质。
3. 简述等差数列的性质。
4. 简述圆的性质。
5. 简述等腰三角形的判定方法。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。
2. 一个正方形的边长是6厘米,求这个正方形的面积。
3. 在一个等差数列中,首项是2,公差是3,求第五项。
4. 一个圆的半径是5厘米,求这个圆的周长。
5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 分析等腰三角形的性质,并说明如何利用这些性质解决实际问题。
2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)
20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。
7. 下列函数中,其图像是抛物线的是__________。
8. 下列图形中,属于中心对称图形的是__________。
9. 下列关于圆的命题中,错误的是__________。
10. 下列关于角的命题中,错误的是__________。
三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。
12. 解不等式:3x 2 < 2x + 5。
13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。
14. 解圆的方程:x² + y² 6x 8y + 9 = 0。
四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。
16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。
八年级上册期末考试数学试卷含参考答案(共5套,最新人教版)
初二年级第一学期期末考试数学试卷本试卷包括两道大题,共24道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共24分)1.-64的立方根是()A.-4B.8C.-4和4D.-8和82.若3-m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>33.如图,在△ABC中,AB=AC,∠A=40︒,AB的垂直平分线交AB于点D,交AC于点E,连结BE,则∠CBE 的度数为()A.70︒B.80︒C.40︒D.30︒第3题图第5题图4.如果a、b、c是一个直角三角形的三边,则a,b,c可能为()A.1,2,4B.1,3,5C.3,4,7D.5,12,13, x15<x≤20S S5. 如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使 BC =CD ,再作出 BF的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图所示) 可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得DE 的长就是 AB 的长,判定△ ABC ≌△EDC ,最恰当的理由是() A .边角边 B .角边角 C .边边边D .边边角AS 3S 2B S1 C第 6 题图第 8 题图6.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交 AD 边于点 E ,且 AE =3,则 AB 的长为().5 A .4B .3C .2D .27. 小 明统计了他家今年 11 月 份打电话的次数及通话时间,并列出了频数分布表:通话时间 x/min 0<x≤5 5<x≤10 10<x≤15 频数(通话次数)1916510则通话时间不超过 15min 的频率为( )A .0.1B .0.4C .0.5D .0.88.如图所示,以 △RtABC 的三边向外作正方形,其面积分别为 S 1,2,3 且 S 1 = 4, S 2 = 8, 则S 3 =()A .4B .8C .12D .32二、填空题(每小题 3 分,共 18 分)9.因式分解: am + an + ap = .10.计算: a 3 ⋅ a 5 =.11.25 的平方根是.12.若代数式 x - 2 - 2 - x 有意义,则 x 的值为.13.如图,△ABC 中,∠C = 90︒ ,AB =10,AD 是△ABC 的一条角平分线,若 CD =3,则△ABD 的面积为.16 - 9 ⎪• 4 18.因式分解 x 3 - 4 x2314.如图, ∠C = ∠ABD = 90︒, AC = 4, BC = 3, BD = 12 ,则 AD=.ACB D第 13 题图第 14 题图三、计算题(每小题 6 分,共 24 分)15. 3a •(a - 4)16.(x3y + 2 x 2 y 2 )÷ xy⎛ 1⎫17.⎝ 2 ⎭四、解答 题:(每小题 8 分,共 32 分)19..先化简,再求值 (x + y )2 - 2 x (x + y ),其中 x=3,y=2.320.已知:a+b=5,a2-b2=10,求a-b的值.21.如图,BD、CE△是ABC的高,且AE=AD,求证:AB=AC.第21题图22.如图,延长□A BCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.第22题图五、解答题(23题10分,24题12分,共22分)23.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.第23题图请根据所给信息解答下列问题:(1)求本次抽取的学生人数;(2)补全条形图,在扇形统计图中的横线上填上正确的数值;(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人.24.如图,在△Rt ABC中,∠B=90,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.xk|b|1(3)P、Q两点运动几秒,AP=CQ.第24题图答案:一、1.A 2.A 3.D 4.D 5.A 6.B7.D8.C二、9.a(m+n+p)10.a811.±512.x=213.1514.13三、15.3a2-12a16.x2+2xy17.018.x(x+2)(x-2)四、19.-x2+y2,-520.221.略22.略五、23.(1)50(2)30%(3)108024.(1)24(2)13(3)24 72C.6D.9B B B八年级上册数学期末试题一.选择题45分1.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB△≌OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS1题图2题图3题图4题图2.某市准备在一块三条公路围成的平地△ABC上设立一个大型超市,要求超市到三条公路的距离相等,则超市应建立在△ABC的()A.两个内角的平分线的交点处C.两边中线的交点处B.两边高线的交点处D.两边的垂直平分线的交点处3.如图,已知∠BAC的平分线与BC的垂直平分线PQ相交于点P,PM⊥AC,PN⊥AB,垂足分别为M、N,AB=3,AC=7,则CM的长度为()A.4B.3C.2D.324.如图,在△ABC中,∠C=90°,AC=BC=6,D为AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合)且保持∠EDF=90°,连接EF,在此运动变化过程中,△SCEF的最大值为()A.3B.95.已知A、B两点的坐标分别为(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、关于y轴对称;③A、关于原点对称;④A、之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个6.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形A.八B.十C.十二D.十四7.六边形的对角线共有()A.9条B.15条C.12条D.6条8.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置)她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分9.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③④B.①②③C.②④D.①③11、下列正多边形中,不能铺满地面的是()A、正三角形C、正六边形B、正方形D、正七边形12、若一个三角形三个角度数的比为2:3:4,则这个三角形的()A、直角三角形C、钝角三角形B、锐角三角形D、正三角形13.如图,直线l1、l2、l3表示三条互相交叉的公路,现在建一个货物中转站,要求到三条公路的距离相等,则可选择的地址有()处A.一处B.两处C.三处D.四处14、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.30°或150°B.30°或150°C.60°或150°D.60°或120°15.下列因式分解结果正确的是()A.x2+2x-3=x(x+2)-3B.6p(p+q)-4q(p+q)=(p+q)(6p-4q)C.a2-2a+1=(a-1)2D.4x2-9=(4x+3)(4x-3)二、解答题16.如图,△ABC△和BDE中,AB=BC,BD=BE,∠ABC=∠EDB=90°,G、H分别为AD、CE 中点,试判断△BGH形状并证明17.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点(1)求证:CD=BE(2)若DE⊥AC,求BP的长18.(7分)已知AB∥CD,点E为BC上一点,且AB=CD=BE,AE、DC的延长线交于点F,连BD(1)如图1,求证:CE=CF(2)如图2,若∠ABC=90°,G是EF的中点,求∠BDG的度数已知ABC△和DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上19.△(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD(2)如图2,若AD=AB,求证:AF=AE+BC20.如图,AD△为ABC的高,点H为AC的垂直平分线与BC的交点,HC=AB(1)如图1,求证:∠B=2∠C(2)如图2,若2∠DAF=∠B-∠C①求证:AC=BF+BA②直接写出AC FC的值DF21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F(1)说明BE=CF的理由(2)如果AB=a,AC=b,求AE、BE的长( , a + x a + 1nna (C. = , a ≠ 0)D. =B.=xx 2m ma八年级第一学期期末质量检测试卷数学(总分 150 分,答题时间 120 分钟)A 卷(100 分)一.选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5x67 8 9 10答案1.1 纳米等于 0.0000000001 米,则 35 纳米用科学记数法表示为()A .35×10-9 米B .3.5×10-9 米C .3.5×10-10 米D .3.5×10-8 米2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A .B. C. D.3.下列各式: 1 1- x ) 4 x , x 2 - y 2 , 1 + x, 5x2 其中分式共有( )个 5 π -3 2 x xA.2B.3C.4D.54.下列各式正确的是()A.5.若把分式 x + y中的 x 和 y 都扩大 3 倍,那么分式的值()2 x yA.扩大 3 倍B.不变C.缩小 3 倍D.缩小 6 倍6.若分式 x - 1x 2 - 3x + 2A.-1的值为 0,则 x 等于( )B.1C.-1 或 1D.1 或 27.A 、B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小时,已知水流速度为 4 千米/时,若设该轮船在静水中的速度为 x 千米/时,则可列方程()A.48+=9 B.+=9 C.+4=9 D.+=9CD12.①3a5xy10axy a2-4()y-z x+z x-y,,⎪5122132中得到巴尔末公式,从而打开484848489696x+4x-44+x4-x x x+4x-48.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对9.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()EA.90°B.75°C.70°D.60°A B F10.若平面直角坐标系中,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为()A.(-1,2)B.(-1,-2)C.(1,2)D.(-2,1)二、填空题(每小题3分,共30分)11.如图1,AB,CD相交于点O,AD=△C B,请你补充一个条件,使得AOD≌△COB.你补充的条件是______.A C()a+21=,(a≠0)②=13.分式的最简公分母是。
人教版初二上册数学期末试卷及参考答案
人教版初二上册数学期末试卷及参考答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. 3√2B. 0.333...C. 2/3D. -5答案:A2. 已知a=5,b=3,则a²-b²的值是:A. 16B. 25C. 10D. 6答案:B3. 下列等式成立的是:A. a²=2aB. a³=3a²C. a²=a³D. a²/a=a答案:D4. 下列哪个数是正数:A. -3B. -2C. 0D. 3答案:D5. 已知直角三角形的两个直角边分别为6和8,则斜边长为:A. 10B. 12C. 15D. 16答案:A6. 下列哪个数是偶数:A. -3B. -2C. 0D. 3答案:C7. 若平行四边形的对角线互相平分,则该平行四边形的面积是:A. 20B. 40C. 60D. 80答案:C8. 已知一个圆的半径为5,则其直径为:A. 10B. 15C. 20D. 25答案:A9. 下列哪个数是负数:A. -3B. -2C. 0D. 3答案:A10. 下列哪个数是3的倍数:A. -3B. -2C. 0D. 3答案:D二、填空题(每题4分,共40分)1. 若a=3,b=4,则a²+b²=______。
答案:252. 已知直角三角形的两个直角边分别为6和8,则斜边长为______。
答案:103. 一个平行四边形的底为8,高为6,则其面积为______。
答案:484. 若一个圆的半径为5,则其周长为______。
答案:31.45. 已知一个等差数列的首项为2,公差为3,则第5项为______。
答案:146. 一个立方体的体积为27,则其边长为______。
答案:37. 若平行四边形的对角线互相平分,则该平行四边形的面积是______。
答案:608. 已知一个圆的半径为5,则其直径为______。
答案:109. 一个等差数列的首项为2,公差为3,则第9项为______。
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共10小题,每小题3分,计30分)1.下列长度的线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.6,10,42.下列图案中不是轴对称图形的是()A.B.C.D.3.分式有意义的条件是()A.x≠﹣4B.x≠6C.x≠﹣4且x≠6D.x=44.甲、乙、丙、丁4名运动员参加射击训练,他们10次射击的平均成绩都是8.5环,方差分别是S甲2=3,S乙2=4,S丙2=6,S丁2=2,则这4名运动员10次射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×3+①C.①﹣②×3D.①×(﹣2)+②6.下列各组线段不能构成直角三角形的是()A.2,3,4B.3,4,5C.1,1,D.6,8,107.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<10.关于x的分式方程有整数解,关于x的不等式组无解,所有满足条件的整数a的和为()A.2B.﹣6C.﹣3D.4二、填空题(共8小题,每空3分,计24分)11.(3分)开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为.12.(3分)计算:(﹣1)2019+(﹣)﹣2﹣(π﹣)0=.13.(3分)如图,若AB∥CD,∠A=110°,则∠1=°.14.(3分)一次函数y=2x+1的图象不经过第象限.15.(3分)将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.16.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为.18.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.三、计算题(共3小题,计16分)19.(6分)化简:(1)(3x+2y)(x﹣3y)﹣6xy(2)(a+2b)2+(2a3b+8ab3)÷(2ab)20.(4分)解方程组.21.(6分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2(2)解方程:=﹣1四、操作题(5分)22.(5分)在平面直角坐标系中,已知点A(1,3),B(3,1),C(4,3).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1.连接A1B并直接写出线段A1B的长.五、解答题(共3小题,计25分)23.(8分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?24.(8分)如图,在△ABC中,∠A=30°,∠ACB=80°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.25.(9分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.人教版八年级(上)数学期末试卷参考答案与试题解析一、选择题1.【解答】解:A、3+4<8,不能构成三角形,故此选项不符合题意;B、5+6<11,不能构成三角形,故此选项不符合题意;C、6+5>10,能构成三角形,故此选项符合题意;D、6+4=10,不能构成三角形,故此选项不符合题意.故选:C.2.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意;故选:D.3.【解答】解:要使分式有意义,必须x+4≠0,解得,x≠﹣4,故选:A.4.【解答】解:∵S甲2=3,S乙2=4,S丙2=6,S丁2=2,∴S丁2<S甲2<S乙2<S丙2,∴这4名运动员10次射击成绩最稳定的是丁,故选:D.5.【解答】解:A.,①×2﹣②,得7y=7,能消元,故本选项不符合题意;B.,②×3+①,得7x=7,能消元,故本选项不符合题意;C.,①﹣②×3,得﹣5x+6y=1,不能消元,故本选项符合题意;D.,①×(﹣2)+②,得﹣7y=﹣7,能消元,故本选项不符合题意;故选:C.6.【解答】解:A、∵22+32≠42,∴三角形不是直角三角形,故本选项正确;B、∵32+42=52,∴三角形是直角三角形,故本选项错误;C、∵12+12=()2,∴三角形是直角三角形,故本选项错误;D、∵62+82=102,∴三角形不是直角三角形,故本选项错误.故选:A.7.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.10.【解答】解:将不等式组整理得:,由不等式组无解,得到﹣1≥,解得:a≤3,分式方程去分母得:1﹣ax+4(x﹣3)=﹣5,去括号得:1﹣ax+4x﹣12=﹣5,移项合并得:(4﹣a)x=6,解得:x=,∵x﹣3≠0,当a=﹣2、1、3时,符合题意;∴所有满足条件的a的值之和为:﹣2+1+3=2,故选:A.二、填空题11.【解答】解:0.000002275=2.275×10﹣6.故答案是:2.275×10﹣6.12.【解答】解:原式=﹣1+9﹣1=7.故答案为:7.13.【解答】解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故答案为:四.15.【解答】解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.16.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.【解答】解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PQ=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.18.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、计算题19.【解答】解:(1)(3x+2y)(x﹣3y)﹣6xy =3x2﹣9xy+2xy﹣6y2﹣6xy=3x2﹣13xy﹣6y2;(2)(a+2b)2+(2a3b+8ab3)÷(2ab)=a2+4ab+4b2+a2+4b2=2a2+4ab+8b2.20.【解答】解:①×3﹣②得:2x=4,解得:x=2,把x=2代入①得:4+y=2,解得:y=﹣2,所以原方程组的解为.21.【解答】解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.四、操作题22.【解答】解:(1)如图,△ABC为所作;(2)如图,△A1B1C1为所作;A1B==2.五、解答题23.【解答】解:(1)设该旅行社去年有x人前来观看赛事,根据题意,得:,解得:x=30,经检验:x=30是原方程的解,所以原方程的解为x=30,∴(1+50%)x=45,答:该旅行社今年的有45人前来观看赛事;(2)今年该旅行社本次费用中,人均交通费为x元,由题意得:9600+3900﹣45x≥2×45x,解得:x≤100,答:人均交通费最多为100元.24.【解答】解:(1)∵在△ABC中,∠A=30°,∠ACB=80°,∴∠CBD=∠A+∠ACB=110°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=55°;(2)∵∠ACB=80°,∠CBE=55°,∴∠CEB=∠ACB﹣∠CBE=80°﹣55°=25°,∵DF∥BE,∴∠F=∠CEB=25°.25.【解答】解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。
2024年最新人教版初二数学(上册)期末考卷及答案(各版本)
2024年最新人教版初二数学(上册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 圆形3. 下列哪个数是整数?A. 3.5B. 2/3C. 1/2D. 54. 下列哪个数是无理数?A. 1/3B. 4C. √9D. √35. 下列哪个图形是菱形?A. 矩形B. 梯形C. 正方形D. 圆形二、判断题:每题1分,共5分1. 0是有理数。
()2. 平行四边形的对边相等。
()3. 2/3是整数。
()4. √9是无理数。
()5. 矩形是菱形。
()三、填空题:每题1分,共5分1. 1/2 + 1/3 = _______。
2. 3x 5 = 7,求解x = _______。
3. 平行四边形的对边相等,那么四边形ABCD中,AB = _______。
4. 矩形的对边相等且内角为直角,那么四边形EFGH中,EF =_______且∠EFG = _______。
5. 菱形的对角线互相垂直平分,那么四边形IJKL中,IJ =_______且IJ ⊥ _______。
四、简答题:每题2分,共10分1. 解释有理数和无理数的区别。
2. 解释整数的定义。
3. 解释平行四边形的性质。
4. 解释矩形的性质。
5. 解释菱形的性质。
五、应用题:每题2分,共10分1. 计算下列各式的值:a) 1/4 + 3/8b) 2/3 1/6c) 5/8 4/7d) 9/10 ÷ 2/52. 解下列方程:a) 2x + 3 = 9b) 3x 4 = 7c) 4x + 5 = 2x 3d) 5x 8 = 3x + 4六、分析题:每题5分,共10分1. 下列哪个图形是矩形?为什么?A. 矩形B. 梯形C. 正方形D. 圆形2. 下列哪个图形是菱形?为什么?A. 矩形B. 梯形C. 正方形D. 圆形七、实践操作题:每题5分,共10分1. 请画出一个平行四边形,并标出其性质。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.当分式22x -有意义时,x 的取值范围是()A .2x >B .2x <C .2x ≠D .2x =2.在211133122x xy a x x y m π+++,,,,,中,分式的个数是()A .2B .3C .4D .53.下列图形中,不是..轴对称图形的是()A .B .C .D .4.已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为()A .1B .2C .3D .45.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()24444x x x x -+=-+C .()2105521x x x x -=-D .()()2163443x x x x x -+=-++7.如果把分式xy x y +中的x 和y 都扩大2倍,则分式的值()A .扩大4倍B .扩大2倍C .不变D .缩小2倍8.若关于x 的方程2222x m x x ++=--有增根,则m 的取值是()A .0B .2C .-2D .19.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是A .180°B .220°C .240°D .260°10.张老师和李老师同时从学校出发,步行15千米去书店购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,根据题意,所列的方程是()A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=-二、填空题11.分解因式:x 2-9=______.12.将0.000000823用科学记数法表示为___________13.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.14.比较大小:4442333315.如图,Rt △ABC 中,∠BCA=90°,∠A=30°,BC=2cm ,DE 是AC 边的垂直平分线,连接CD ,则△BCD 的周长是__________________.16.已知12a b =,则分式252a b a b+-的值为______.17.对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=_____.18.如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.三、解答题19.计算:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭;(2)()()2323x y x y +--+.20.分解因式:(1)316m m -;(2)()228a b ab -+.21.解分式方程:(1)233x x =-;(2)28124x x x -=--.22.先化简,再求值:21211x x x x x x x --⎛⎫-÷ ⎪-+⎝⎭,其中3x =.23.如图:△ABC 和△ADE 是等边三角形,证明:BD=CE .24.在争创文明城市的活动中,某市一“少年突击队”决定清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“少年突击队”原计划每小时清运垃圾多少吨?25.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE .求证:(1)△ABC ≌△DEF ;(2)GF =GC .26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题:(1)猜想并写()11n n =+.(2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值.(3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++.27.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .28.如图,在ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,交AB 于点E ,连接EG 、EF .(1)求证:BG CF =.(2)请你判断:BE CF +与EF 的大小关系,并加以证明.参考答案1.C2.B3.C4.C5.C6.C7.B8.A9.C10.B11.(x +3)(x -3)12.8.23×10-713.144°14.<15.6cm.16.417.2218.20°【分析】根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算.【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D ,∴1,122DBC ABC DCE ACE ∠=∠∠=∠,∵∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.19.(1)1;(2)224129x y y -+-【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭,=414+-,=1;(2)()()2323x y x y +--+,=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦,=()2223x y --,=()224129x y y --+,=224129x y y -+-.20.(1)()()44m m m +-;(2)()22a b +【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=()()()21644m m m m m -=+-;(2)原式=()22222448442a ab b ab a ab b a b -++=++=+.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.21.(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =-方程两边同时乘以()3x x -,得:()233x x =-,解得:9x =,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=--方程两边同时乘以()24x -,得:()()2248x x x +--=,解得:2x =,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键.22.11x x +-,2【分析】根据分式的运算法则进行化简,再代入求值即可.解:原式()()()()()()()2221121212121111111211x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤-+----+=-÷=÷=⨯=⎢⎥--+-+---⎢⎥⎣⎦.当x=3时,原式1312131x x ++===--.【点睛】本题考查分式化简求值,熟练掌握该知识点是解题关键.23.见解析【分析】根据等边三角形的性质可得到两组边对应相等,一组角相等,从而利用SAS 判定两三角形全等,根据全等三角形的对应边相等即可得到BD=CE .【详解】证明:∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°.∴∠BAD=∠CAE .在△BAD 与△CAE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ).∴BD=CE【点睛】此题考查了等边三角形的性质及全等三角形的判定与性质;证明线段相等常常通过三角形全等进行解决,全等的证明是正确解答本题的关键.24.12.5吨【分析】设原计划每小时清运x 吨,根据“使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,”列出方程,即可求解.【详解】解:设原计划每小时清运x 吨,根据题意得:10010042x x-=,解得:12.5x=,经检验,12.5x=是原方程的解,且符合题意,答:“少年突击队”原计划每小时清运垃圾12.5吨.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)证明见解析,(2)证明见解析.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF 全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【详解】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,∵AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC.【点睛】本题考查了全等三角形的判定与性质和等腰三角形的判定,比较简单,证明出BC =EF是解题的关键.26.(1)111n n⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x=【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()111n n 1n n 1=-++;故答案为:111n n ⎛⎫- ⎪+⎝⎭;(2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯=1111111(1()()(2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=112021-=20202021;(3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++,∴211111113()33366918x x x x x x x -+-+-=++++++,∴21113()3918x x x -=++,∴2119918x x x -=++,∴299(9)18x x x =++,∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.27.见解析【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED .【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED .【点睛】本题考查了平行线的性质,全等三角形的判定和性质.28.(1)见解析;(2)BE CF EF +>,见解析【分析】(1)证BDG CDF ≌可得BG CF =;(2)根据全等得到DG DF =,再根据三角形三边关系即可得到结果.【详解】(1)∵BG ∥AC ,∴C GBD ∠=∠,∵D 是BC 的中点,∴BD=DC ,在△BDG 和△CDF 中,C GBDBD CD BDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BDG CDF ≌,∴BG CF =;(2)BE CF EF +>,由BDG CDF ≌得DG DF =,∵ED GF ⊥,∴EG EF =,∵CF BG =,∴+>BG BE EG ,∴BE CF EF +>.。
2024年人教版初二数学上册期末考试卷(附答案)
2024年人教版初二数学上册期末考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个数是负数?A. 3B. 0C. 5D. 82. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1.25. 下列哪个数是负整数?A. 3B. 0C. 5D. 8二、判断题5道(每题1分,共5分)1. 一个数的绝对值总是非负的。
( )2. 分数和小数都可以表示为整数。
( )3. 任何两个整数相乘的结果都是整数。
( )4. 任何两个正数相加的结果都是正数。
( )5. 任何两个负数相加的结果都是负数。
( )三、填空题5道(每题1分,共5分)1. 一个数的绝对值是它本身的数是______。
2. 下列哪个数是分数?______。
3. 下列哪个数是整数?______。
4. 下列哪个数是负整数?______。
5. 一个数的绝对值总是非负的。
( )四、简答题5道(每题2分,共10分)1. 简述绝对值的概念。
2. 简述分数的概念。
3. 简述整数的概念。
4. 简述负整数的概念。
5. 简述小数的概念。
五、应用题:5道(每题2分,共10分)1. 计算:| 3 | + 2 = ?2. 计算:3/4 + 0.5 = ?3. 计算:0 + 1 = ?4. 计算:3 4 = ?5. 计算:5 2 = ?六、分析题:2道(每题5分,共10分)1. 分析:为什么一个数的绝对值总是非负的?2. 分析:为什么分数和小数都可以表示为整数?七、实践操作题:2道(每题5分,共10分)1. 实践操作:请用尺子和圆规在纸上画一个半径为5cm的圆。
2. 实践操作:请用尺子和圆规在纸上画一个边长为4cm的正方形。
八、专业设计题:5道(每题2分,共10分)1. 设计一个包含10个数的数列,其中前5个数是正整数,后5个数是负整数。
新人教版八年级数学上册数学期末测试卷含答案(精选六套)
新人教版八年级数学上册数学期末测试卷八年级数学试卷(试卷满分150分,考试时间120分钟)一、 选择题(每小题3分,共计30分)1、数—2,0.3,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2²2x 3的正确结果是 ( )A 、1;B 、xC 、4x 6;D 、x 43、一次函数 12+-=x y 的图象经过点 ( )A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( )①1))((122--+=--y x y x y x ②)1(23+=+x x x x③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=-A .1个B .2 个C .3个D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是 ( )A DB C7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 8、下列图案中,是轴对称图形的是 ( ) 9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有() A :1个 B :2个 C :3个 D :4个二、填空题(每小题3分,共计30分)11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。
人教版八年级上学期期末考试数学试卷及答案(共五套)
人教版八年级上学期期末考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.以下列各组数据为三角形的三边,不能构成三角形的是( ) A .4,8,7 B .3,4,7 C .2,3,4 D .13,12,5 2.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2·3ab 3=-3a 2b 5C.ba -b +ab -a =-1 D.a 2-1a ·1a +1=-1 3.如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( ) A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第3题图 第6题图4.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-145.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x 2-4,乙与丙相乘为x 2+15x -34,则甲与丙相加的结果为( ) A .2x +19 B .2x -19 C .2x +15 D .2x -156.如图,在Rt△ABC 中,AB =AC ,点D 为BC 中点,直角∠MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①△DEF 是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确结论是( )A.①②④ B.②③④C.①②③ D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(-2x3)3= ________.8.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3=________.第8题图第10题图9.一个三角形的三个外角之比为5∶4∶3,则这个三角形内角中最大的角是________度.10.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=________.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设列车原来的平均速度为x千米/时,根据题意,可列方程为______________.12.已知C,D两点在线段AB的垂直平分线上,且∠ACB=40°,∠ADB=68°,则∠CAD=__________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(-4b)·(-a2b)2÷(-2a);(2)分解因式:x2(x-2y)+xy2.14.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.15.(1)化简求值:a2a+1-a+1,其中a=99;(2)解方程:xx-1=3x+1+1.16.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB 的度数.17.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边,要求:①仅用无刻度直尺,②保留必要的画图痕迹.四、(本大题共3小题,每小题8分,共24分)18.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.19.(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.20.现定义运算“△”,对于任意实数a、b,都有a△b=a2-2ab+b2,请按上面的运算计算(3x+5)△(2-x)的值,其中x满足xx-1-3x=1.五、(本大题共2小题,每小题9分,共18分)21.在我市开展的“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?22.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数;(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.六、(本大题共12分)23.如图①,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB,OB于E,F 两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图②,若∠ECF=45°,给出两个结论:①OF+AE-EF的值不变;②OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.参考答案与解析 1.B 2.C 3.C 4.C5.A 解析:∵x 2-4=(x +2)(x -2),x 2+15x -34=(x +17)(x -2),∴乙为x -2,∴甲为x +2,丙为x +17,∴甲与丙相加的结果为x +2+x +17=2x +19.故选A.6.C 解析:∵在Rt△ABC 中,AB =AC ,点D 为BC 中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.7.-8x 98.55° 9.90 10.36° 11.1480x =1480x +70+312.126°或14° 解析:分C 、D 在线段AB 同侧和异测两种情况讨论.(1)如图①.∵点C 、D 为线段AB 的垂直平分线上的两点,∴CA =CB ,DA =DB .∵∠ACB =40°,∠ADB =68°,∴∠CAB =∠CBA =12(180°-40°)=70°.∴∠DAB =∠DBA =12(180°-68°)=56°,∴∠CAD =∠CAB +∠DAB =126°;(2)如图②.同(1)可得∠CAB =70°,∠DAB =56°,∴∠CAD =∠CAB -∠DAB =70°-56°=14°.综上所述,∠CAD =126°或14°.13.解:(1)原式=4b ·a 4b 2·12a=2a 3b 3.(3分) (2)原式=x (x 2-2xy +y 2)=x (x -y )2.(6分)14.证明:∵∠OBC =∠OCB ,∴OB =OC .(2分)在△AOB 和△DOC 中,⎩⎨⎧OA =OD ,∠AOB =∠DOC ,OB =OC ,∴△AOB ≌△DOC (SAS),(4分)∴∠1=∠2.(6分) 15.解:(1)原式=a 2-(a +1)(a -1)a +1=1a +1.(2分)将a =99代入得原式=1100.(3分) (2)方程两边同乘x 2-1,得x (x +1)=3(x -1)+x 2-1,解得x =2.(5分)检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2.(6分)16.解:∵∠D +∠C +∠DAB +∠ABC =360°,∠D +∠C =220°,∴∠DAB +∠ABC =360°-220°=140°.(2分)∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°.(4分)∴∠AOB =180°-70°=110°.(6分)17.解:如图所示,∠ABC =45°(AB ,AC 是小长方形的对角线,答案不唯一).(6分)18.解:(1)如图所示.(3分) (2)如图所示.(6分)(3)点B ′的坐标为(2,1).(8分)19.解:(1)a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(4分)(2)∵3x +2·5x +2=153x -4,∴(3×5)x +2=153x -4,即x +2=3x -4,解得x =3.(6分)又∵(2x -1)2-4x 2+7=4x 2-4x +1-4x 2+7=-4x +8,∴当x =3时,原式=-4×3+8=-4.(8分)20.解:去分母得x 2-3(x -1)=x (x -1),解得x =32.(3分)经检验,x =32是原方程的解,(4分)∴(3x +5)△(2-x )=(3x +5)2-2(3x +5)(2-x )+(2-x )2=(3x +5-2+x )2=(4x +3)2=⎝⎛⎭⎪⎫4×32+32=81.(8分)21.解:设引进新设备前工程队每天改造管道x 米.(1分)由题意得360x+900-360(1+20%)x =27,(4分)解得x =30.(6分)经检验,x =30是原分式方程的解且符合实际.(8分)答:引进新设备前工程队每天改造管道30米.(9分)22.解:(1)∵AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,∴∠ACE =∠ACF ,∠AEC =∠AFC =90°,∴AE =AF .(1分)在Rt△ABE 和Rt△ADF 中,⎩⎨⎧AE =AF ,AB =AD ,∴Rt△ABE ≌Rt△ADF (HL),(3分)∴∠ADF =∠ABE =60°,∴∠CDA =180°-∠ADF =120°.(4分)(2)由(1)知Rt△ABE ≌Rt△ADF ,∴FD =BE =1,AF =AE =2.在△AEC 和△AFC 中,⎩⎨⎧∠ACE =∠ACF ,∠AEC =∠AFC ,AC =AC ,∴△AEC ≌△AFC (AAS),∴CE =CF =CD +FD =5,(7分)∴S 四边形AECD=S △AEC +S △ACD =12EC ·AE +12CD ·AF =12×5×2+12×4×2=9.(9分)23.(1)解:(m -4)2+n 2-8n =-16,即(m -4)2+(n -4)2=0,则m -4=0,n -4=0,解得m =4,n =4.则A 点的坐标是(4,4).(3分)(2)证明:∵AB ⊥x 轴,AC ⊥y 轴,A (4,4),∴AB =AC =OC =OB ,∠ACO =∠COB =∠ABO =90°.又∵四边形的内角和是360°,∴∠A =90°.∵OF +BE =AB =BE+AE ,∴AE =OF .(5分)在△COF 和△CAE 中,⎩⎨⎧OF =AE ,∠COF =∠A ,OC =AC ,∴△COF ≌△CAE (SAS),∴CF =CE .(7分)(3)解:结论①正确,值为0.(8分)证明如下:如图②,在x 轴负半轴上取点H ,使OH =AE ,连接CH .在△ACE 和△OCH 中,⎩⎨⎧AE =OH ,∠A =∠COH =90°,OC =AC ,∴△ACE ≌△OCH (SAS),∴∠1=∠2,CE =CH ,∴∠ECH =∠2+∠ECO =∠1+∠ECO =90°.又∵∠ECF =45°,∴∠HCF =45°.(10分)在△HCF 和△ECF 中,⎩⎨⎧CH =CE ,∠HCF =∠ECF ,CF =CF ,∴△HCF ≌△ECF (SAS),∴HF =EF ,∴OH +OF =AE +OF =EF ,∴OF +AE -EF =0.(12分)人教版八年级上学期期末考试数学试卷(二) 时间:120分钟 满分:120分一、选择题(共10小题,每小题3分,共30分) 1.若分式x +1x +2的值为0,则x 的值为( ) A .0 B .-1 C .1 D .22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .153.如图是两个全等三角形,则∠1的度数为( ) A .62° B.72° C .76° D.66°第3题图 第5题图 4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+15.如图,D 为BC 上一点,且AB =AC =BD ,则图中∠1与∠2的关系是( ) A .∠1=2∠2 B.∠1+∠2=180°C .∠1+3∠2=180° D.3∠1-∠2=180° 6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32D .647.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-148.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( ) A.12 B.13 C.25 D.37第8题图9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN 绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( ) A.①②④ B.②③④C.①②③ D.①②③④第10题图第11题图二、填空题(共6小题,每小题3分,共18分)11.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=________°.12.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.13.如图,在△ABC中,D为AB上一点,AB=AC,CD=CB.若∠ACD=42°,则∠BAC =________°.第13题图 第16题图 14.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是________.15.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x 千米/时,根据题意,可列方程为______________.16.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是________.三、解答题(共8题,共72分)17.(8分)计算:(1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.18.(8分)分解因式:(1)3mx -6my; (2)4xy 2-4x 2y -y 3.19.(8分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.20.(8分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎫14-1.21.(8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD .(1)求证:△ABC ≌△AED ;(2)当∠B =140°时,求∠BAE 的度数.22.(10分)如图,在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于点G ,DE ⊥DF ,交AB 于点E ,连接EG ,EF .(1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.23.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?24.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C8.B 解析:如图,连接CC ′并延长交A ′B ′于D ,连接CB ′,CA ′.∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A ′C ,BC =B ′C ,∠ACB =∠A ′CB ′,AB 垂直平分CC ′,∴△ABC ≌△A ′B ′C (SAS),∴S △ABC =S △A ′B ′C ,∠A =∠AA ′B ′,AB =A ′B ′,∴AB ∥A ′B ′,∴CD ⊥A ′B ′.根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ′,∴S △A ′B ′C =13S △A ′B ′C ′,∴S △ABC =13S △A ′B ′C ′,∴△ABC 与△A ′B ′C ′的面积之比为13.故选B.9.C 解析:在方程两边同乘x +1,得x -a =a (x +1),整理得(1-a )x =2a .当1-a =0时,即a =1,整式方程无解;当x +1=0,即x =-1时,分式方程无解,把x =-1代入(1-a )x =2a ,得-(1-a )=2a ,解得a =-1.故选C.10.C 解析:∵在Rt△ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,AF +AE >EF ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.11.50 12.(1)a (x -1)2 (2)1x +113.32 14.(-2,-15) 15.1480x=1480x +70+316.4 解析:如图,延长DE 至F ,使EF =BC ,连接AC ,AD ,AF .∵AB =CD =AE =BC +DE =2,∠B =∠AED =90°,∴CD =EF +DE =DF ,∠AEF =90°.在△ABC与△AEF 中, ⎩⎨⎧AB =AE ,∠ABC =∠AEF ,BC =EF ,∴△ABC ≌△AEF (SAS),∴AC =AF .在△ACD 与△AFD 中,⎩⎨⎧AC =AF ,CD =FD ,AD =AD ,∴△ACD ≌△AFD (SSS),∴五边形ABCDE 的面积S =2S △ADF =2×12·DF ·AE =2×12×2×2=4.故答案为4.17.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(4分)(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.(8分)18.解:(1)原式=3m (x -2y ).(4分)(2)原式=-y (-4xy +4x 2+y 2)=-y (y -2x )2.(8分)19.解:如图,作AB 的垂直平分线EF ,(3分)作∠BAC 的平分线AM ,两线交于P ,(6分)则P 为这个中心医院的位置.(8分)20.解:(1)∵a +b =7,ab =10,∴a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(4分)(2)原式=(a -2)(a +2)-5a +2·2(a +2)a -3=(a +3)(a -3)a +2·2(a +2)a -3=2a +6.(6分)∵a =(3-π)0+⎝ ⎛⎭⎪⎫14-1=1+4=5,∴原式=2×5+6=16.(8分) 21.(1)证明:∵AC =AD ,∴∠ACD =∠ADC .又∵∠BCD =∠EDC =90°,∴∠ACB=∠ADE .(2分)在△ABC 和△AED 中, ⎩⎨⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED (SAS).(4分)(2)解:由(1)知△ABC ≌△AED ,∴∠E =∠B =140°.又∵∠BCD =∠EDC =90°,∴五边形ABCDE 中,∠BAE =540°-140°×2-90°×2=80°.(8分)22.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(5分)(2)解:BE +CF >EF .(6分)理由如下:由(1)知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴DE 垂直平分GF ,∴EG =EF .(8分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(10分)23.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5,(3分)解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(5分)(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a 1=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,(8分)解得a ≥8.答:甲工程队至少修路8天.(10分)24.(1)证明:∵∠ACB =∠DCE =α,∴∠ACD =∠BCE .(1分)在△ACD 和△BCE中,⎩⎨⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴BE =AD .(3分)(2)解:由(1)知△ACD ≌△BCE ,∴∠CAD =∠CBE .∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =180°-(180°-α)=α.(6分)(3)解:△CPQ 为等腰直角三角形.(7分)证明如下:由(1)可知BE =AD .∵AD ,BE 的中点分别为点P ,Q ,∴AP =BQ .由(1)知△ACD ≌△BCE ,∴∠CAP =∠CBQ .在△ACP 和△BCQ 中,⎩⎨⎧CA =CB ,∠CAP =∠CBQ ,AP =BQ ,∴△ACP ≌△BCQ (SAS),∴CP =CQ 且∠ACP =∠BCQ .(10分)又∵∠ACP +∠PCB =90°,∴∠BCQ +∠PCB =90°,∴∠PCQ =90°,∴△CPQ 为等腰直角三角形.(12分)人教版八年级上学期期末考试数学试卷(三)时间:120分钟 满分:150分一、选择题(本题共12小题,每小题3分,共36分)1.若分式x +1x +2的值为0,则x 的值为( ) A .0 B .-1C .1D .22.下列图形中,是轴对称图形的是( )3.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -2b )=a 2-2b 2D .5a -2a =34.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .155.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+16.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠A =∠A ′,若证△ABC ≌△A ′B ′C ′还要从下列条件中补选一个,错误的选法是( )A .∠B =∠B ′ B.∠C =∠C ′C .BC =B ′C ′ D.AC =A ′C ′7.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线DE 分别交AB ,BC 于点D ,E ,则∠BAE =( )A .80°B .60°C .50°D .40°8.已知2m +3n =5,则4m ·8n =( )A .16B .25C .32D .649.若a +b =3,ab =-7,则a b +b a的值为( )A .-145B .-25C .-237D .-25710.如图,在△ABC 和△CDE 中,已知AC =CD ,AC ⊥CD ,∠B =∠E =90°,则下列结论不正确的是( )A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠211.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的平分线,则图中的等腰三角形有( )A.5个 B.4个C.3个 D.2个12.如图,在Rt△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确结论是( ) A.①②④ B.②③④C.①②③ D.①②③④二、填空题(本题共6小题,每小题4分,共24分)13.一个n边形的内角和为1800°,则n=________.14.如图,小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为________米.15.若x2+bx+c=(x+5)(x-3),则点P(b,c)关于y轴对称点的坐标是________.16.已知甲、乙两地间的铁路长1480千米,列车提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为________.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为________.18.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF 的最小值是________.三、解答题(本题共9小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)化简或解方程:(1)(a+b)(a-b)+2b2;(2)xx-1+21-x=2.20.(8分)先化简,再从1,2,3中选取一个适当的数代入求值.21.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系并说明理由.22.(10分)如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.23.(10分)把两个含有45°角的直角三角板ACB和DEC如图放置,点A,C,E 在同一直线上,点D在BC上,连接BE,AD,AD的延长线交BE于点F.(1)求证:△ADC≌△BEC;(2)猜想AD与EB是否垂直?并说明理由.24.(10分)如图,在△ABC中,点O是∠ABC,∠ACB平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.25.(12分)某公司向甲、乙两所中学送水,每次送往甲中学7600升,乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.(1)求这两所中学师生人数分别是多少;(2)若送瓶装水,价格为1元/升;若用消防车送饮用水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个,其他费用不计.请问这次乙中学用瓶装水花费少还是饮用消防车送水花费少?26.(12分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.27.(14分)已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x s.(1)如图①,当x为何值时,PQ∥AB?(2)如图②,若PQ⊥AC,求x的值;(3)如图③,当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.期末检测卷1.B 2.C 3.A 4.A 5.C 6.C7.D 8.C 9.C 10.D 11.A12.C 解析:∵在Rt△ABC 中,∠B =45°,AB =AC ,点D 为BC 中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠CAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.13.12 14.100 15.(-2,-15) 16.1480x =1480x +70+3 17.60° 18.10 解析:利用正多边形的性质可得点F 关于AD 的对称点为点B ,连接BE 交AD 于点P ′,连接P ′F ,那么有P ′B =P ′F .P ′E +P ′F =P ′E +P ′B =BE ,故当点P 与点P ′重合时,PE +PF 的值最小,最小值为BE 的长.易知△AP ′B 和△EP ′F 均为等边三角形,所以P ′B =P ′E =5,可得BE =10.所以PE +PF 的最小值为10.19.解:(1)原式=a 2-b 2+2b 2=a 2+b 2.(3分)(2)方程两边乘(x -1),得x -2=2(x -1),解得x =0.检验:当x =0时,x -1≠0.所以,原分式方程的解为x =0.(6分)20.解:⎝ ⎛⎭⎪⎫a 2+4a a -2-42-a ·a -2a 2-4=a 2+4a +4a -2·a -2a 2-4=(a +2)2a -2·a -2(a +2)(a -2)=a +2a -2.(5分)∵a -2≠0,a +2≠0,∴a ≠±2,∴可取a =1.(6分)当a =1时,原式=-3(答案不唯一,也可取a =3代入求值).(8分)21.解:(1)如图所示.(2分)(2)DE ∥AC .(4分)理由如下:∵DE 平分∠BDC ,∴∠BDE =12∠BDC .∵∠ACD =∠A ,∠ACD +∠A =∠BDC ,∴∠A =12∠BDC ,∴∠A =∠BDE ,∴DE ∥AC .(8分) 22.解:选②BC =DE .(3分)证明如下:如图,∵∠1=∠2,∠3=∠4,∴∠E =∠C .(5分)在△ADE 和△ABC 中,⎩⎨⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(10分)23.(1)证明:∵△DCE 和△ABC 都是等腰直角三角形,∴∠ECB =∠DCA =90°,EC =DC ,BC =AC ,(3分)∴△BEC ≌△ADC (SAS).(4分)(2)解:AD ⊥EB .(6分)理由如下:由(1)知△BEC ≌△ADC ,∴∠CAD =∠CBE .∵∠CAD +∠ADC =90°,∠ADC =∠BDF ,(8分)∴∠CBE +∠BDF =90°,(9分)∴∠BFD =90°,∴AD ⊥EB .(10分)24.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO+S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)25.解:(1)设乙中学有师生x 人,则甲中学有师生(2x -20)人,依题意得76002x -20=4000x,解得x =200.(4分)经检验,x =200是原分式方程的解,且符合题意.∴2x -20=380.(6分)答:甲中学有师生380人,乙中学有师生200人.(7分)(2)乙中学饮用瓶装水的费用为4000×1=4000(元),饮用消防车送水的费用为4000÷500×520=4160(元).(11分)∵4000<4160,∴这次乙中学饮用瓶装水花费少.(12分)26.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(6分)(2)解:BE +CF >EF .(8分)理由如下:由(1)可知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴EG =EF .(10分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(12分)27.解:(1)∵∠C =60°,∴当PC =CQ 时,△PQC 为等边三角形,∴∠QPC =60°=∠B ,从而PQ ∥AB .(2分)∵PC =(4-x )cm ,CQ =2x cm ,∴4-x =2x ,解得x =43,∴当x =43时,PQ ∥AB .(4分) (2)∵PQ ⊥AC ,∠C =60°,∴∠QPC =30°,∴CQ =12PC ,即2x =12(4-x ),解得x =45.(8分)(3)OQ 与OP 总是相等.(9分)理由如下:作QH ⊥AD 于H .(10分)∵△ABC 为等边三角形,AD ⊥BC ,∴∠QAH =30°,BD =12BC =2cm ,∴QH =12AQ =12(2x -4)=(x -2)cm.∵DP =BP -BD =(x -2)cm ,∴QH =DP .(12分)在△OQH 和△OPD 中,⎩⎨⎧∠QOH =∠POD ,∠QHO =∠PDO ,QH =PD ,∴△OQH ≌△OPD (AAS),∴OQ =OP .(14分)人教版八年级上学期期末考试数学试卷(四)时间:120分钟 满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若分式x -3x +4有意义,则x 的取值应满足( ) A .x ≠3 B.x ≠4 C.x ≠-4 D .x ≠-32.涞水的文化底蕴深厚,涞水人民的生活健康向上.下面的四幅简笔画是从涞水的文化活动中抽象出来的,其中是轴对称图形的是( )3.下列二次三项式是完全平方式的是( )A .x 2-8x -16B .x 2+8x +16C .x 2-4x -16D .x 2+4x +164.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125° B.120° C.140° D.130°5.若等腰三角形的两边长分别为4和8,则它的周长为( )A .12B .16C .20D .16或206.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组7.化简x -y x +y ÷(y -x )·1x -y的结果是( ) A.1x 2-y 2 B.y -x x +y C.1y 2-x 2 D.x -y x +y8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .60° B.72° C.90° D.108°9.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,直线m 为∠ABC 的平分线,l 与m 相交于P 点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为( )A .24° B.30° C.32° D.36°10.若a -b =12,且a 2-b 2=14,则a +b 的值为( ) A .-12 B.12C .1D .2 11.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC .若∠ABC =67°,则∠1=( )A .23° B.46° C.67° D.78°12.如图,在等腰△ABC 中,∠BAC =120°,DE 是AC 的垂直平分线,线段DE =1cm ,则BD 的长为( )A .6cmB .8cmC .3cmD .4cm13.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰直角三角形,则点C 的个数是( )A .2B .4C .6D .814.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )15.已知A ,C 两地相距40千米,B ,C 两地相距50千米,甲、乙两车分别从A ,B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/时,依题意列方程正确的是( )A.40x =50x -12B.40x -12=50xC.40x =50x +12D.40x +12=50x16.当x 分别取-2017、-2016、-2015、…、-2、-1、0、1、12、13、…、12015、12016、12017时,计算分式x 2-1x 2+1的值,再将所得结果相加,其和等于( ) A .-1 B .1 C .0 D .2016二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.若点A (m +2,3)与点B (-4,n +5)关于y 轴对称,则m n = .18.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DE =2cm ,AB =4cm ,S △ABC =7cm 2,则AC 的长为 .19.如图,已知长方形OABC中,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),则第二次碰到长方形的边上一点P2的坐标为.当点P第2018次碰到长方形的边时,点P2018的坐标是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)计算:(1)a·a5-(2a3)2+(-2a2)3;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2.21.(9分)因式分解:(1)2x3-4x2+2x;(2)(m-n)(3m+n)2+(m+3n)2(n-m).22.(9分)(1)解分式方程:x x +1=2x3x +3+1;(2)先化简⎝ ⎛⎭⎪⎫a -2ab -b 2a ·a 2+ab a 2-b 2,再求值,其中a =3,b =1.23.(9分)如图,在平面直角坐标系中有一个△ABC ,顶点A (-1,3),B (2,0),C (-3,-1).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1(不写画法),并写出点A 1,B 1,C 1的坐标;(2)求△ABC 的面积.24.(10分)如图,已知∠AOB ,以O 为圆心,以任意长为半径作弧,分别交OA ,OB 于F ,E 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线OP ,过点F 作FD ∥OB 交OP 于点D . (1)若∠OFD =116°,求∠DOB 的度数;(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.25.(11分)元旦晚会上,王老师要为她的学生及班级的六位老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5∶4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱.(1)贺年卡的零售价是多少?(2)班里有多少学生?26.(12分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请写出你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,并证明.参考答案与解析1.C 2.C 3.B 4.D 5.C 6.C 7.C 8.B 9.C 10.B 11.B 12.D 13.C 14.D 15.B16.A 解析:设a 为负整数.∵当x =a 时,分式的值为a 2-1a 2+1,当x =-1a 时,分式的值为⎝ ⎛⎭⎪⎫-1a 2-1⎝ ⎛⎭⎪⎫-1a 2+1=1-a 2a 2+1,∴当x =a 时与当x =-1a 时两分式的和为a 2-1a 2+1+1-a 2a 2+1=0.∴当x 的两个取值互为负倒数时,两分式的和为0.∴所得结果的和为02-102+1=-1.故选A. 17.1418.3cm 19.(7,4) (7,4) 解析:按照光线反射规律,画出图形,如图:P (0,3),P 1(3,0),P 2(7,4),P 3(8,3),P 4(5,0),P 5(1,4),P 6(0,3),通过以上变化规律,可以发现每六次反射一个循环.∵2018÷6=336……2,∴P 2018与P 2的坐标相同,∴点P 2018的坐标是(7,4).20.解:(1)原式=a 6-4a 6-8a 6=-11a 6.(4分) (2)原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5.(8分) 21.解:(1)原式=2x (x 2-2x +1)=2x (x -1)2.(4分)(2)原式=(m -n )[(3m +n )2-(m +3n )2]=(m -n )(2m -2n )(4m +4n )=8(m -n )2(m +n ).(9分) 22.解:(1)方程x x +1=2x3x +3+1两边同乘3(x +1),得3x =2x +3x +3.解得x=-32.(3分)检验:当x =-32时,3(x +1)≠0,所以x =-32是原分式方程的解.(4分) (2)原式=(a -b )2a·a (a +b )(a +b )(a -b )=a -b .(7分)当a =3,b =1时,原式=3-1=2.(9分)23.解:(1)如图所示,△A 1B 1C 1即为所求.(3分)点A 1的坐标为(1,3),点B 1的坐标为(-2,0),点C 1的坐标为(3,-1).(6分)(2)△ABC 的面积为4×5-12×3×3-12×2×4-12×1×5=9.(9分)24.(1)解:∵OB ∥FD ,∴∠OFD +∠AOB =180°.又∵∠OFD =116°,∴∠AOB =180°-∠OFD =180°-116°=64°.(2分)由作法知,OP 是∠AOB 的平分线,∴∠DOB =12∠AOB =32°.(4分)(2)证明:∵OP 平分∠AOB ,∴∠AOD =∠DOB .∵OB ∥FD ,∴∠DOB =∠ODF ,∴∠AOD =∠ODF .又∵FM ⊥OD ,∴∠OMF =∠DMF .(7分)在△MFO 和△MFD 中,⎩⎨⎧∠OMF =∠DMF ,∠FOM =∠FDM ,FM =FM ,∴△MFO ≌△MFD (AAS).(10分) 25.解:(1)设零售价为5x 元,则团购价为4x 元.则100+105x +6=1004x ,(2分)解得x =12,经检验,x =12是原分式方程的解,(5分)5x =2.5.(6分)答:零售价为2.5元.(7分)(2)学生数为1102.5-6=38(人).(10分) 答:王老师的班级里有38名学生.(11分)26.(1)证明:∵AC =BC ,∴∠ABC =∠CAB .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD =45°,∴∠A=∠BCD .在△BCG 和△CAE 中,⎩⎨⎧∠BCG =∠A ,BC =CA ,∠CBG =∠ACE ,∴△BCG ≌△CAE (ASA),∴AE =CG .(4分)(2)解:不变,AE =CG .理由如下:∵AC =BC ,∴∠ABC =∠A .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD=45°,∴∠A =∠BCD .在△BCG 和△CAE 中,⎩⎨⎧∠BCG =∠A ,BC =CA ,∠CBG =∠ACE ,∴△BCG ≌△CAE (ASA),∴AE =CG .(8分)(3)解:BE =CM .证明如下:∵∠ACB =90°,∴∠ACE +∠BCE =90°.∵AH ⊥CE ,∴∠AHC =90°,∴∠HAC +∠ACE =90°,∴∠BCE =∠HAC .∵∠ACB =90°,CD ⊥AB ,AC =BC ,∴∠BCD =∠ACD =45°,∴∠ACD =∠ABC .在△BCE 和△CAM中,⎩⎨⎧∠BCE =∠CAM ,BC =CA ,∠CBE =∠ACM ,∴△BCE ≌△CAM (ASA),∴BE =CM .(12分)人教版八年级上学期期末考试数学试卷(五) 时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.若分式x +1x +2的值为0,则x 的值为( )A .0B .-1C .1D .22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .153.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( ) A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+15.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线分别交AB 、BC 于点D 、E ,则∠BAE 的大小为( ) A .80° B .60° C.50° D.40°6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32 D .647.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-148.如图,在△ABC 中,∠C =40°,将△ABC 沿着直线l 折叠,点C 落在点D 的位置,则∠1-∠2的度数是( ) A .40° B.80° C.90° D.140°9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN 绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( ) A.①②④ B.②③④C.①②③ D.①②③④二、填空题(每小题3分,共24分)11.如图,∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=________°.12.计算:(-8)2018×0.1252017=________.13.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3的度数为________.15.如图,在△ABC 中,D 为AB 上一点,AB =AC ,CD =CB .若∠ACD =42°,则∠BAC =________°.16.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是________.17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x 千米/时,根据题意,可列方程为______________.18.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是________.三、解答题(共66分) 19.(8分)计算: (1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.20.(6分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.21.(10分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎫14-1.22.(10分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD . (1)求证:△ABC ≌△AED ;(2)当∠B =140°时,求∠BAE 的度数.23.(10分)如图,在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于点G ,DE ⊥DF ,交AB 于点E ,连接EG ,EF . (1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.24.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C 8.B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版初二数学上册期末试卷及答案
一、选择题 (每题3分,共30分)
1.如图,下列图案中是轴对称图形的是 ( )
A.(1)、(2) B.(1)、(3) C.(1)、(4) D.(2)、(3)
2.在3.14、、、、、0.2020020002这六个数中,无理数有 ( )
A.1个 B.2个 C.3个 D.4个
3.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为( )
A.(-2,3) B.(2,-3) C.(3,-2) D.(-3,2)
4. 已知正比例函数y=kx (k≠0)的函数值y随x的增大而减小,则一次函数
y=x+k的图象大致是下列选项中的 ( )
5.根据下列已知条件,能画出△ABC的是( )
A.AB=5,BC=3,AC=8 B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6
6.已知等腰三角形的一个内角等于50º,则该三角形的一个底角的余角是( ) A.25º B.40º或30º C.25º或40º D.50º
7.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是( )
A B C D
8.设0<k<2,关于x的一次函数,当1≤x≤2时,y的最小值是( )
A. B.C.k D.
9.下列命题①如果a、b、c为一组勾股数,那么3a、4b、5c仍是勾股数;②含有30°角的直角三角形的三边长之比是3∶4∶5;③如果一个三角形的三边是,,,那么此三角形
必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(c > a = b),那么a2∶b2∶c2=1∶1∶2;⑤无限小数是无理数。
其中正确的个数是 ( ) A.1个 B.2个 C.3个 D.4个
10.如图所示,函数y1=|x|和y2= x+ 的图象相交于(-1,1),(2,2)
两点,当y1>y2时,x的取值范围是( )
A.x<-1 B.-1<x<2
C.x>2 D.x<-1或x>2
二、填空题 (每空3分,共24分)
11.=_________ 。
12. =_________ 。
13.若△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= 。
14.函数中自变量x的取值范围是_____ 。
15.如图所示,在△ABC中,AB=AC=8cm,过腰AB的中点D作AB的垂线,
交另一腰AC于E,连接BE,若△BCE的周长是14cm,则BC= 。
第15题第17题第18题
16.点p(3,-5)关于轴对称的点的坐标为.
17.如图已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为__________。
18.如图,A(0,2),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒. 若点M,N位于直线l的异侧,则t的取值范围是。
三、解答题(本大题共9题,共96分)
19.计算(每题5分,共10分)
(1) (2)
20.(8分)如图,在ΔABC与ΔDEF中,如果AB=DE,
BE=CF,只要加上条件(写一
个就可以),就可证明ΔABC≌ΔDEF;并用你所选
择的条件加以证明。
21.(10分)如图,已知△ABE,AB、AE边上的垂直平分线
m1、m2交BE分别于点C、D,且BC=CD=DE
(1) 判断△ACD的形状,并说理;
(2) 求∠BAE的度数.
22.(10分)如图,在平面直角坐标系中, 、均在边长为1的正方形网格格点上.
(1) 在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);
(2) 若点P在图中所给网格中的格点上,△APB是等腰三角形,
满足条件的点P共有个;
(3) 若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标
23.(10分) 我市运动会要隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
(1) 分别写出学校购买A、B两公司服装所付的总费用y1(元)
和y2(元)与参演男生人数x之间的函数关系式;
(2) 问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
24.(12分)已知一次函数的图象a过点M(-1,-4.5),N(1,-1.5)
(1) 求此函数解析式,并画出图象(4分);
(2) 求出此函数图象与x轴、y轴的交点A、B的坐标(4分);
(3) 若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标
(5分)。
25.( 12分)某商场筹集资金13.16万元,一次性购进空调、彩电共30台.根
据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.56万元,其中空调、彩电的进价和售价见表格.
空调彩电
进价(元/台) 5400 3500
售价(元/台) 6100 3900
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1) 试写出y与x的函数关系式;
(2) 商场有哪几种进货方案可供选择?
(3) 选择哪种进货方案,商场获利?利润是多少元?
26.(12分)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B 地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1) 写出A、B两地的距离;
(2) 求出点M的坐标,并解释该点坐标所表示的实际意义;
(3) 若两人之间保持的距离不超过2km时,能够用无线对讲
机保持联系,请直接写出甲、乙两人能够用无线对讲机
保持联系时x的取值范围.
27.(12分)如图,直线l1 与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,
(1) 求直线l2的解析式;
(2) 过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF ⊥l3于F,请画出图形并求证:BE+CF=EF
(3) △ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,
与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。
在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。
答案
一、选择题
1—5 C B B B C 6—10 C C A A D
二、填空题
11. 3 12.
13. 5 14. x≥-2
15. 6 16. (-3,-5)
17. 48 18. 3<t<6
三、解答题
19.(1)4 (2)x=2或x=-4
20. 略
21. (1)△ACD是等边三角形 (5分) (2)∠BAE=120°(5分)
22. (1)略 (2)4 (3)(3,1)
23. (1)y1=0.7[120x+100(2x﹣100)]+2200=224x﹣4800;
y2=0.8[100(3x﹣100)]=240x﹣8000; (6分)
(2)由题意,得
当y1>y2时,即224x﹣4800>240x﹣8000,解得:x<200
当y1=y2时,即224x﹣4800=240x﹣8000,解得:x=200
当y1<y2时,即224x﹣4800<240x﹣8000,解得:x>200
即当参演男生少于200人时,购买B公司的服装比较合算;
当参演男生等于200人时,购买两家公司的服装总费用相同,任一家公司购买;
当参演男生多于200人时,购买A公司的服装比较合算. (4分)
24. (1)y=1.5x-3 图像略 (4分) (2)A(2,0) B(0,-3)(4分)
(3)P(4,3) C(-2,0)或(6,0) (5分)
25.(1)y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000;
(2)12≤x≤14 ;略
(3)空调14台,彩电16台;16200元
26.(1)20千米
(2)M的坐标为( ,40/3),表示小时后两车相遇,此时距离B地40/3千米;
(3) 当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.
27. (1) y=-x-3; (2)略 (3) ①对,OM=3。