导体电介质和磁介质之同心导体球和球壳之间的电势差和感应电荷

合集下载

浙江农林大学静电场中的导体和电介质有介质时的高斯定理习题

浙江农林大学静电场中的导体和电介质有介质时的高斯定理习题

四解答题1、如图所示,一导体球半径为&,外罩一半径为冬的同心薄导体球壳,外球壳所带总电荷 为0,而内球的电势为匕,求导体球和球壳之间的电势差 ___________ (填写A 、B. C 或D. 从下而的选项中选取)°答案:A 解设导体球所带电荷为因静电平衡,电荷q 分布在导体球的外表面。

这样一来,就可以把体系看成是两个半径分别为&和电荷分别为q 和Q 的带电球壳。

由电势叠加原理,导体球的电势为一^―+ — = %解出4亦°7?] 4亦()尺2q = 4亦店岭)因此 导体球和球壳之间的电势差为久,=%-仝0=(1-色||匕——0-4码)忌 R?人 4亦。

/?2丿2、如图所示,在一半径为/?i=6.0cm 的金属球A 外而套有一个同心的金属球壳B 。

已知球 壳内,夕卜半径分别为/?2=8.0cnn /?3=10.0cnio 设A 球带有总电^Q A =3x\0^C 9球壳B带有总电量0〃=2xlO*C 。

(1)求球壳B 内表而上带有的电量 ___________ 外表而上带有的 电屋 ________ 以及球A 的电势 _______ 球壳B 的电势 _______A. 5xlO 」CB. -3xlO^C C 、5.6xlO 3VD 、4.5xlO 3V 答案:B, A, C, D(2)将球壳B 接地然后断开,再把球A 接地。

求球A 带有的电量 _______ 球壳B 内表而上带有的电量 ________ 外表面上带有的电量 ________ 以及球A 的电势和球壳B 的电势 ______ o1 / 21 A 、B 、A —Q 1 <心丿1 4碣鸟丿R 2L 4矶尼丿 C. V oQ D 、 岭Q 4矶R? < 4碣尼丿A. -3xlO^C B 、2.1xlO^C C 、—2・lxlO*CD 、-0.9xl0^CE 、8.1xlO 2VF 、0答案:B, C, D, F, E解(l )由高斯泄理可知,B 球壳内表而带的电量等于金属球A 带的电量Qi 的负值,即 缢=-2=-3"0弋因电荷守恒,则B 球壳外表面所带电量为Q Bcxt =Q R + Q A =5xlO-8C= 9.0X 10^X (^ + ^122 + ^)=5.6X 10V 0.06 0.08 0.10球壳B 的电势为^=_L^L = 9.0X 1094亦o 尺3 (2)球壳B 接地后电势(p B =0 ,因此Q^{ = 0 o B 接地断开后总电量变为 Q B =Q B :M =-3xlO-8Co 然后球A 接地,则吩=°。

大学物理(下)第十章作业与解答

大学物理(下)第十章作业与解答

第十章静电场中的导体和电介质一. 选择题1. 有一带负电荷的大导体,欲测其附近P点处的场强,将一电荷量不是足够小的正点电荷放在该点,如图,测得它所受电场力大小为F,则(A) 比P点处场强的数值大(B) 比P点处场强的数值小(C) 与P点处场强的数值相等(D) 与P点处场强的数值哪个大无法确定注意:此类型题如果1. q0的电荷与带电体的电荷相异,则选A(比P点处场强的数值大)2. q0的电荷与带电体的电荷相同,则选B(比P点处场强的数值小)[ ]2. 对于带电的孤立导体球(A) 导体内的场强与电势均为零(B) 导体内的场强为零,电势为恒量(C) 导体内的电势比导体表面高(D) 导体内和导体表面的电势高低无法确定[ ]3. 同心导体球与导体球壳周围电场的电场线分布如图,由电场线分布可知球壳上所带总电荷(A)(B)(C)(D) 无法确定[ ]4. 一无限大均匀带电平面A,其附近放一与它平行的有一定厚度的无限大导体板B,如图示,已知A上的电荷面密度为+,则在导体板B的两个表面1和2上的感生电荷面密度为:(A)(B)(C)(D)[ ]5. 一不带电导体球半径为R,将一电量为 +q的点电荷放在距球心O为d(d >R)的一点,这时导体球中心的电势为(无限远处电势为零)(A) 0(B)(C)(D)注意:考虑球心的位置,距球面各点的距离相等;再考虑到,导体球达致静电平衡时感应电荷的代数和必为零,所以球面上的感应电荷对球心总的电势应为零,只剩下点电荷对球心的电势。

[ ]6. 在静电场中做一闭合曲面S,若有(式中为电位移矢量),则S面内(A) 既无自由电荷,也无极化电荷(B) 无自由电荷(C) 自由电荷和极化电荷的代数和为零(D) 自由电荷的代数和为零[ ]7. 一空气平板电容器,充电后两极板上带有等量异号电荷,现在两极板间平行插入一块电介质板,如图示,则电介质中的场强与空气部分中的场强相比较有:(A) ,两者方向相同(B) ,两者方向相同(C) ,两者方向相同(D) ,两者方向相反注意:根据高斯定理,电位移矢量无论在空气中还是介质中都是相等的。

《物理学基本教程》课后答案 第九章 静电场中的导体和电介质

《物理学基本教程》课后答案 第九章 静电场中的导体和电介质

第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q d q V V V V 000+-=++=πεπεπε111(421R R d q +-=πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R Q R R d q V V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C/m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 Sq E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C . BA 间电势差BAV ⎰⋅=A B d 2R R r E ⎰00=-=AB A B 11ln 22R R R R r drπελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V /m 1036max ⨯=E而 2maxmax 4RQ E 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε或 V 103V 14103.3464max max ⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d a r rd r d 11(2πελa ad -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C (2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV /cm 48.4)(r111=-+=εd d d UE30kV /cm kV /cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV /cm 100kV /cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 )2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容)2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'R E ,即2RR ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=18025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m 1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由d U E 00=,dUE =,得相对电容率为 3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V /m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1) 介质外任一点电势为⎰∞==rrQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。

《电磁场》复习题A

《电磁场》复习题A

《电磁场》复习题A一、填空题1、描述电场对于电荷作用力的物理量叫做______________。

2、E线和等位面之间的关系是______________,和电场强度关系是______________。

3、静电场中的折射定律是______________。

4、静电场边界条件中的自然边界条件是______________。

5、静电场中,虚位移法求静电力的两个公式是______________、______________。

6、恒定磁场中的分界面衔接条件是______________、______________。

7、恒定磁场的泊松方程为______________。

8.材料能够安全承受的最大电场强度称为___________。

9.平板电容器的板面积增大时,电容量___________。

10.在均匀媒质中,电位函数满足的偏微分方程称为___________。

11.深埋于地下的球形导体接地体,其半径越大,接地电阻越___________。

12.多匝线圈交链磁通的总和,称为___________。

13.恒定磁场中的库仑规范就是选定矢量磁位A的散度为___________。

14.磁通连续性定理的微分形式是磁感应强度B的散度等于___________。

15.正弦电磁波在单位长度上相角的改变量称为___________。

16.电磁波的传播速度等于___________。

17.电场能量等于电场建立过程中外力所做的___________。

二、选择题1.两点电荷所带电量大小不等,则电量大者所受作用力()A.更大B.更小C.与电量小者相等D.大小不定2.静电场中,场强大处,电位()A.更高B.更低C.接近于零D.高低不定3.A 和B 为两个均匀带电球,S 为与A 同心的球面,B 在S 之外,则S 面的通量与B 的( )A .电量及位置有关B .电量及位置无关C .电量有关、位置无关D .电量无关、位置有关4.一中性导体球壳中放置一同心带电导体球,若用导线将导体球与中性导体球壳相联,则导体球的电位( )A .会降低B .会升高C .保护不变D .变为零5.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的() A .ε倍 B .εr 倍C .倍ε1D .倍r1ε6.导电媒质中的恒定电流场是( )A .散度场B .无散场C .旋度场D .无旋场7.在恒定电场中,电流密度的闭合面积分等于( )A .电荷之和B .电流之和C .非零常数D .零8.电流从良导体进入不良导体时,电流密度的切向分量( )A .不变B .不定C .变小D .变大9.磁感应强度B 的单位为( )A .特斯拉B .韦伯C .库仑D .安培10.如果在磁媒介中,M 和H 的关系处处相同,则称这种磁媒质为( )A .线性媒质B .均匀媒质C .各向同性媒质D .各向异性媒质三、名词解释1、非极性分子2、体电流密度3、恒定磁场4、时变场5、动生电动势四、简答题1、什么是唯一性定理?2、什么是传导电流、什么是运流电流,什么是位移电流。

静电场中的导体和电介质习题解答

静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qaR a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aqV 0π4ε=据电势叠加原理,球心处的电势aqV V V 00π4ε='+=。

所以选(A )2. 已知厚度为d的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )0002 . D . C 2 . B 2 .A εdE=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))R d (q R d q11π4 D. 4πq C.π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D.r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rRq Q = Rrr q R Q r R ==22 4/4/ππσσ 所以选(D )o R d +q . 选择题3图选择题2图d5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

静电场中的导体与电介质习题课分析

静电场中的导体与电介质习题课分析
R1 R3
qQ dr dr 2 2 R3 4 r 4 0 r 0 q

1 1 qQ ( ) 4 0 R1 R2 4 0 R3 q
外球:取球壳外表面一点
U2
qQ qQ E dr E外dr dr R3 R3 4 r 4 0 R3 0
而电介质未插入时,电容器的储能为
Q Qd W0 2 2C 2 0 a
当电介质插入x时,电场力F 对电介质板所作的 功等于电容器储能的增量,有 W ( x) ( r 1)Q 2d F x 2 0a[a ( r 1) x]2
2
2
静电场中的导体和介质习题课
插入一半时,x=a/2 ,则
1 Q2 1 1 W QU CU 2 2 C 2 2
电场的能量密度 电场的能量
1 1 1 2 w 0 r E DE D E 2 2 2 W wdV
静电场中的导体和介质习题课
【解题指导】:
一、静电场中的导体问题
基本依据:导体静电平衡条件;电荷守恒;高斯定理。
解:由于两球由导线连接,两球电势相等:
1 Q 1 q U 4 0 R 4 0 r
得:
Q R
Q R q r
q
r
可见,大球所带电量Q比小球q多。 两球的面电荷密度分别为:
静电场中的导体和介质习题课
Q R 2 4R
2
q r 2 4r
所以:
R Qr r 2 r qR R
静电场中的导体和介质习题课
四、电介质 均匀介质中的场强
E E0 E


E E0


E
E0
r
加均匀介质的电容器的电容

导体电介质和磁介质之电介质的极化

导体电介质和磁介质之电介质的极化
这种电荷不能在电介质内部自由移动,更不能离开电介质 转移到其他带电体上去,只能被束缚在介质的表面上。
在无外 电场时, 电介质 中无极 分子正 负电荷 的“中 心”是 重合的。
加了外电 场之后, 正电荷沿 着电场线 的方向产 生微小的 位移,负 电荷逆着 电场线的 方向产生 微小的位 移,形成 电偶极子, 在电介质 的表面出 现净电荷。
对于由有极分子构成的电介质,在没有外 电场E0时,有极分子的电偶极矩p分 ≠ 0。
由于分子做无规则的热运动,各分子电矩的取向杂乱 无章,在电介质的内部任取一个体积元,其分子电偶 极矩的矢量和Σp分 = 0,整块电介质是电中性的。
加上外电场E0后,分子受到电场力矩作用,转向外 电场方向,电偶极矩呈现一定的规则排列,导致整 块电介质分子电偶极矩的矢量和不为零。
由于每个分子的电偶极矩都沿着外电场方向整齐排列, 所以整块电介质的分子电偶极矩的矢量和不为零。
在电介质内部任取一个体积元(该体积元宏观无限小, 即宏观上可看作一点;微观无限大,即微观上包含 大量的电介质分子),该体积元内分子电偶极矩的矢 量和Σp分一般不为零,从而产生一个附加电场。
这种由于正负电荷中心相对位移而引起的极化称为位移极化。
均匀电介质被外场极化的最终结果是电介质表面产生了净余的 电荷层,而内部不产生净电荷,这与导体的静电平衡类似。
电介质表面的面电荷是由靠近表面处分子中电荷的 微观位移形成的,是束缚电荷,不是自由电荷。
电介质的束缚电荷与导体上的感 在平衡时,介质内部的合
应电荷都要产生附加电场E',它 场强不为零,而导体内部
加了外 电场之 后,电 偶极矩 向外电 场方向 偏转, 在电介 质的表 面出现 净电荷。
{范例11.3} 电介质的极化

大学物理答案第10章

大学物理答案第10章

第十章 静电场中的导体与电介质10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地题 10-2 图分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0== (B )dεqV d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( )(A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解 根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7 一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E =r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9 地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解 由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1 =6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R RεC10-10 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解 建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C题 10-10 图10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12 一片二氧化钛晶片,其面积为1.0 cm 2,厚度为0.10 mm .把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V 电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2) 电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ 晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3) 晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13 如图所示,半径R =0.10 m 的导体球带有电荷Q =1.0 ×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10 m ,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm 、15 cm 、25 cm 处的D 和E ;(2) 离球心为r =5 cm 、15 cm 、25 cm 处的V ;(3) 极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r QD =;202π4r εεQ E r = r >R +d Q r D =⋅23π423π4r QD =;203π4rQ E ε= 将不同的r 值代入上述关系式,可得r =5 cm 、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外. r 1 =5 cm ,该点在导体球内,则01=r D ;01=r Er 2 =15 cm ,该点在介质层内,εr =5.0,则2822m C 105.3π42--⋅⨯==r Q D r 12220m V 100.8π42-⋅⨯==r εεQE r r r 3 =25 cm ,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r QD r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2) 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r Er 2 =15 cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+dR Qd R Q r Q V r r dR d R εεεεεrE r E r 1 =5 cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E(3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0 ,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15 如图(a )所示,有两块相距为0.50 的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K 内,金属盒上、下两壁与A 、B 分别相距0.25 mm ,金属板面积为30 mm ×40 mm .求(1) 被屏蔽后电容器的电容变为原来的几倍;(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析 薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容.解 (1) 由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C == ,因此A 、B 间的总电容12C C =(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16 在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U A C 、U CD 和U D B .题 10-16 图解 (1) 由电容器的串、并联,有μF 1221=+=C C C AC μF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4 μF .(2) 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1) 空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度 02='E 空气中电场强度δd UE -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18 为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr 的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0 为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析 导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17 的分析. 解 由分析可知,该装置的电容为()d d d SC r r -+=00εεε则介质的厚度为()()C εSεεd εεC εS εεC d εd r r r r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19 有一电容为0.50 μF 的平行平板电容器,两极板间被厚度为0.01 mm 的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量. 分析 通过查表可知聚四氟乙烯的击穿电场强度E b =1.9 ×107 V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1) 电容器两极板间的电势差V 190b max ==d E U(2) 电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε 14122210mm J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21 一空气平板电容器,空气层厚1.5 cm ,两极间电压为40 k V ,该电容器会被击穿吗? 现将一厚度为0.30 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10 MV· m -1.则此时电容器会被击穿吗?分析 在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17 可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40 k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿.解 未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E > ,空气层被击穿,击穿后40 k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.10-22 某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅ ,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大. 解 介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0 k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047 μF 的平板电容器,其极板面积210m 42.0==εεCdS显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1) 电容器能量的改变;(2) 此过程中外力所作的功,并讨论此过程中的功能转换关系.分析 在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1) 极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221SεQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2) 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。

大物电磁学答案2

大物电磁学答案2

0 r1s1 0 r 2s 2 C C1 C2 1 d d
r1 r 2

2
2-2 如图平行板电容器面积为S,两板间距为d.(1)在保持电源与 电容器的极板相连接情况下扦入厚度为d’介质,求介质内外场强 之比;(2)电容器与电源断开,再扦入介质,情况如何?(3)扦入不 是介质,而是金属平板.(1),(2)这两种情况如何? d 解:(1)在保持电源与电容器的极板相连接情 ' d r 况下扦入厚度为d’介质,介质内外场强之比.
40 R 2 R q 1 1 1 (2)球壳电势v E d l E d l 300(V ) r R 40 r R 1 R 2 (3)点电荷在壳内移动不影响壳外电势,故 v 壳 120(V )
1 2
补充2.2 以内外半径分别为R1和R2的金属球壳,带电量为Q,问: (1)球心处的电势是多少?(2)若再在球壳内离球心为r0处,绝缘 地放置一个点电荷q0,这时球心处的电势是多少?(3)若在球外离 球心为r处再放置一个电量为q的点电荷,球心处的电势是多少? 解:(1)当求带电为Q时,球壳电势为: v
x
(1)
q q v(0.05 ) 0dr dr 2 0.05 0.1 4 r 2 4 r 0 0
0.5
900 ( v )
r 0.5
7
( 2)
( 3)
q q v(0.15 ) dr 0.15 4 r 2 4 0 r 0

600 ( v )
3q 1 4 2s
(2)两板间的电势差
q 1 3 2s
2 q.d v1 v 2 E d d 0 2 0 s

大学物理课后习题详解(第十一章)中国石油大学

大学物理课后习题详解(第十一章)中国石油大学

习 题 十 一11-1 如图所示,在点电荷+Q 的电场中放置一导体球。

由点电荷+Q 到球心的径矢为r ,在静电平衡时,求导体球上的感应电荷在球心O 点处产生的场强E 。

[解] 静电平衡时,导体内任一点的场强为零,O 点的场强是点电荷+Q 及球面上感应电荷共同贡献的,由场强叠加原理有0Q 0='+=E E E r E E 20Q 4r Q πε-=-='11-2 一带电量为q 、半径为r 的金属球A ,放在内外半径分别为1R 和2R 的不带电金属球壳B 内任意位置,如图所示。

A 与B 之间及B 外均为真空,若用导线把A ,B 连接,求球A 的电势。

[解] 以导线把球和球壳连接在一起后,电荷全部分布在球壳的外表面上(或者说导体球的电荷与球壳内表面电荷中和),整个系统是一个等势体,因此20B A 4R q U U πε==11-3 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差;(2)板B 接地时,两板间的电势差。

[解] (1) 由61页例1知,两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为B A-Q/2Q/2Q/2Q/2A B -QQ故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε==11-4 如图所示,有三块互相平行的导体板,上导体板到中间导体板的距离为5.0cm ,上导体板到下导体板的距离为8.0cm ,外面的两块用导线连接,原来不带电。

中间一块两面上带电,其面电荷密度之和为25m C 103.1-⨯=σ。

求每块板的两个表面的面电荷密度各是多少(忽略边缘效应)?[解] 因忽略边缘效应,可把三个导体板看作无限大平板,由例1知32σσ-= (1) 45σσ-= (2)忽略边缘效应,则导体板可看成无限大的,具有屏蔽性,在相邻导体板之间的电场只由相对于二表面上电荷决定。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

太原理工大学大学物理第五版第10章课后题答案

太原理工大学大学物理第五版第10章课后题答案

第10章 导体和电介质中的静电场(习题选解)10-1 如图所示,在一不带电的金属球旁有一点电荷q +,金属球半径为R ,已知q +与金属球心间距离为r 。

试求:(1)金属球上感应电荷在球心处产生的电场强度E 及此时球心处的电势V ;(2)若将金属球接地,球上的净电荷为多少?题10-1图解:(1)由于导体内部的电场强度为零,金属球上感应的电荷在球心处产生的电场强度E 与点电荷q +在球心处产生的电场强度'E 大小相等,方向相反。

204r q E E πε='= E 的方向由O 指向q +点电荷q +在球心处的电势为rq V q 04πε=金属球表面感应电荷在球心的电势为R V ,由于球表面感应电荷量总和为零,⎰⎰===ssR dq RRdq V 041400πεπε 故球心电势为q V 和R V 的代数和rq V V V R q 04πε=+=(2)若将金属球接地,金属球是一个等势体,球心的电势0=V 。

设球上净电荷为q '。

球面上的电荷在球心处的电势为⎰⎰'===ssR Rq dq R Rdq V 0004414πεπεπε点电荷q +在球心的电势为 rq V q 04πε=由电势叠加原理 0=+=q R V V Vq R V V -=rq Rq 0044πεπε-='q rR q -=' 10-2 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q +的金属板A ,平行放置。

设两板面积都是S ,板间距是d ,忽略边缘效应。

求:(1)B 板不接地时,两板间的电势差; (2)B 板接地时,两板间电势差。

Qσ12σ34题10-2图解:(1)如图,设A 、B 两金属板各表面的面电荷密度分别为1σ、2σ、3σ、4σ。

由静电平衡条件可知⎪⎪⎩⎪⎪⎨⎧=-++=---02222022220403020104030201εσεσεσεσεσεσεσεσ 解得 ⎩⎨⎧-==3241σσσσ又 430σσ+= Q S S =+21σσ 故 1242Q Sσσσ===32Q Sσ=-两板间为匀强电场,电场强度31240000022222Q E Sσσσσεεεεε=+--= 两板间的电势差 SQdEd U 02ε==(2)若B 板接地,则有 ⎪⎩⎪⎨⎧=-===S Q 32410σσσσ两板间的电场强度 3200022QE Sσσεεε=-= 两板间的电势差 SQdEd U 0ε== 10-3 B A 、为靠得很近的两块平行的大金属平板,板的面积为S ,板间距离为d ,使B A 、板带电分别为A q 、B q ,且A B q q >。

导体电介质和磁介质之同心导体球和球壳之间的电势差和感应电荷

导体电介质和磁介质之同心导体球和球壳之间的电势差和感应电荷
{范例11.1} 同心导体球和球壳之间的 电势差和感应电荷
如图所示,一个带有总电量q的金属内球A,半径为R1,外 面有一同心金属球壳B,其内外半径分别为R2和R3,并带有 总电量Q(Q > 0)。此系统的电荷是如何分布的,球与球壳之 间的电势差是多少?如果使内球接地,内球上带有多少感 应电荷?球与球壳之间的电势差又是多少? [解析]静电平衡时,A球电荷只能分布在外表面,B球内表面 带等量异号的电荷-q,外表面带电量为Q + q。 Q+q Q B 根据高斯定理,电场分布为
壳外表面处产生的电势。
如果内球接地,当内球半径 为零时,感应电荷也为零。
当内球半径接近 球壳内半径时, 内球上感应电荷 最多,感应电荷 与球壳电荷大小 相等,符号相反。
感应电荷随内球半径 的增加而增加,当球 壳变为球面时,内球 上感应电荷随内球半 径的增加而直线增加。
当内球半径为零时, 球体和球壳之间的 电势差最大。
q qQ E E (R1 < r < R2) 2 (r > R3) 4 π 0r 2 4 π 0 r
E = 0 (r < R1)
E = 0 (R2 < r < R3)
R1 -q R2 q A R3
球和球壳之间的电势差为
U U U d s A B A B E
A B
R2
R1

1 1 q kq ( ). d r 2 R1 R2 4 π 0r
{范例11.1} 同心导体球和球壳之间的 电势差和感应电荷
A接地后,B的带电量仍为Q,A感应的电量设为q',B的内壳 带电为–q',外壳带电为q' + Q,它们在球心产生的电势为零
q q 1 q Q ( ) 0 可见:感应电荷q'与球壳电荷Q异 4 π R 号,由于R1 < R2,所以|q'| < Q。 0 R 1 R 2 3

导体电介质和磁介质之长直圆柱体和介质中的磁感应强度和磁场强度

导体电介质和磁介质之长直圆柱体和介质中的磁感应强度和磁场强度
{范例11.9} 长直圆柱体和介质中的磁感应 强度和磁场强度
一根无限长的直圆柱形铜导体,外包一层相对磁导率为μr的圆 筒形磁介质,磁介质外面是真空。导体半径为R0,磁介质外半 径为R1,导体内有电流I通过,电流均匀分布在截面上。求: 磁介质内、外的磁场强度H和磁感应强度B的分布规律以及磁 能密度w的分布规律。
在介质之中和介质之外同样做一半径 为r的环路L2和L3,周长都为l = 2πr, 包围的电流为I,可得磁场强度为
H I I l 2πr
(r > R0)
导体内外磁场强度与距离成反比。Leabharlann L3R1L2
O R0 I
H r P ds
{范例11.9} 长直圆柱体和介质中的磁感应 强度和磁场强度
H I l
直线增加的,在导体外的
磁比介减质小和,真 但空比中例按系距数离不反同。同理,在r = R1处B - r线也发生跃 变。
磁能密度wm在导体内是按距离的 平方规律增加的,在导体外的磁 介质和真空中则按距离平方反比 减小,只是比例系数不同。
在r = R0处,磁能密度wm- r线发生跃 变, 在介质的内表面,磁能密度最大;
在r = R1处wm- r线也发生跃 变。
磁场强度H在导体内是直线增加
在r = R0处,磁场强度H的左 的,在导体外按距离反比减小。
极限和右极限都是H = I/2πR0, 所以H - r线在导体与磁介质 的分界面上是连续的。
在r = R1处,也就是在磁介质与外界 的分界面上,H - r线是光滑连续的。
磁感应强度B在导体内是
在r = R0处,磁感应强度B的左极限 为BL = μ0I/2πR1,右极限为BR = μrμ0I/2πR1,由于μr > 1,所以BL < BR,因此B - r线在该处发生跃变。

导体电介质和磁介质之带电金属球在均匀介质中的场强

导体电介质和磁介质之带电金属球在均匀介质中的场强

02
考虑更多因素对场强分布的影响:除了导体电介质和磁介质 外,还有其他因素如温度、压力等也可能对带电金属球在均 匀介质中的场强分布产生影响。未来可以进一步考虑这些因 素的影响,以更准确地预的理论模型和方法虽然能 够较好地描述带电金属球在均匀介质中的场强分布,但仍 存在一些局限性和不足。未来可以探索新的理论模型和方 法,以更精确地描述和预测实际应用中的场强分布。
THANKS
感谢观看
导体电介质和磁介质之带电 金属球在均匀介质中的场强
• 引言 • 导体、电介质和磁介质概述 • 带电金属球在均匀介质中的场强计

• 带电金属球在均匀介质中的电势分 布
• 带电金属球在均匀介质中的能量分 析
• 总结与展望
01
引言
研究背景和意义
导体、电介质和磁介质是电磁学领域中的基本研究对象,它们在电磁场中的行为是电磁理论的重要组 成部分。
高斯定理和场强公式
高斯定理
通过任意闭合曲面的电通量等于该闭合曲面内所包围的所有电荷的代数和除以真空中的介电常数。
场强公式
利用高斯定理可以推导出带电金属球在均匀介质中的场强公式,该公式与金属球的半径、电荷量以及 介质的介电常数有关。
镜像法和场强公式
镜像法
在求解带电金属球在均匀介质中的场强时,可以采用镜像法。即在金属球的另一侧设置一个虚拟的“镜像”电荷 ,使得金属球表面的电势为零。
场强公式
根据镜像法和叠加原理,可以推导出带电金属球在均匀介质中的场强公式。该公式考虑了金属球和镜像电荷的共 同作用,可以准确地计算出任意点的场强。
04
带电金属球在均匀介质中的电势 分布
电势的定义和性质
电势定义
电势是描述电场中某点电势能大小的物 理量,通常用电势差或电势降来表示。

导体电介质和磁介质之球形电容器的电容

导体电介质和磁介质之球形电容器的电容

-Q
Q R0
dr E
r
R
在球体中取一个半径为r,厚度为dr的球 壳,其表面积为S = 4πr2,电容的倒数为
d(C1)dS4dπrr2
总电容的 1 1 R dr
倒数为
C 4π R0 r 2
再取倒数 得总电容
C 4π R0R . R R0
1 ( 1 1)
4π R0 R
两个同心导体球面的内半径为R0,外半径为R,构成球形电 容器,球面间充满介电常数为ε的各向同性的介质。求球形
电容器的电容(内球面也可以用同样半径的球体代替)。
[讨论] C 4π 4πR0R
1/R01/R RR0
-Q
① 内球半径越大,外球半径 越小,导体的电容就越大。
Q
令R→∞,可得孤立导体的电容C = 4πεR0,
R0
R
在真空中孤立导体的电容为C = 4πε0R0,
②设R – R0 = d,当 d很小时,可得
C
Q2 2W
4π R0R . R R0
两个同心导体球面的内半径为R0,外半径为R,构成球形电 容器,球面间充满介电常数为ε的各向同性的介质。求球形 电容器的电容(内球面也可以用同样半径的球体代替)。
方法三:利用电容器串联公式。
把球形电容器中划分为许多同心球壳, 在球壳之间插入无限薄的导体,每两 个导体之间就形成一个电容器,因此, 所有电容器都是串联的。
两个同心导体球面的内半径为R0,外半径为R,构成球形电 容器,球面间充满介电常数为ε的各向同性的介质。求球形 电容器的电容(内球面也可以用同样半径的球体代替)。
[解析]此题有多种解法。 方法一:利用电容定义公式。
如图所示,使内球面带电+Q,外球面带电-Q,电荷均匀分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E q 4 π 0r
2
E = 0 (R2 < r < R3)
E qQ 4 π 0r
2
R1 -q R2 q A R3
(R1 < r < R2)
B A
(r > R3)
1 R1 1 R2
球和球壳之间的电势差为
R2
U AB U A U B

E ds

R1
q 4 π 0r
2
)0
可见:感应电荷q'与球壳电荷Q异 号,由于R1 < R2,所以|q'| < Q。
R3 R1 R3 R2 )
所以A球的 感应电荷为
1 R1 1 R2

B R2Βιβλιοθήκη Q+q'A接地后球与球壳之间的电势差为
U A B kq ( ) kQ
1 / R1 1 / R 2 1 R 3 / R1 R 3 / R 2 1 1 R 3 / R1 R 3 / R 2
如果内球接地,当内球半径 为零时,感应电荷也为零。
当内球半径接近 球壳内半径时, 内球上感应电荷 最多,感应电荷 与球壳电荷大小 相等,符号相反。
感应电荷随内球半径 的增加而增加,当球 壳变为球面时,内球 上感应电荷随内球半 径的增加而直线增加。
当内球半径为零时, 球体和球壳之间的 电势差最大。
R1 -q'
q A R3
上式可 U 化为
kQ R3
AB
(1
)

k ( Q q ) R3
由于UA = 0,所以
UB
k ( Q q ) R3
这是全部电荷集中到球心时, 在B的外表面产生的电势。
{范例11.1} 同心导体球和球壳之间的 电势差和感应电荷
[讨论]
q Q /(1 R3 R1 R3 R2 ),
d r kq (

).
{范例11.1} 同心导体球和球壳之间的 电势差和感应电荷
A接地后,B的带电量仍为Q,A感应的电量设为q',B的内壳 带电为–q',外壳带电为q' + Q,它们在球心产生的电势为零
1 4 π 0 ( q R1 q R2 q Q R3
q Q /(1
电势差随内球半径 的增加而减小,当 球壳变为球面时, 电势差随球体半径 的增加而直线减小。
当内球半径接近球壳内半 径时,电势差趋于零。
q Q R1 /( R1 R 3 R1 R3 R2
kQ R3
B R2 R1 -q' q A R3
Q+q'
) 0
电势 差为
U A B kQ
1 R1 / R 2 R1 R 3 R1 R 3 / R 2
由于UA = 0,所以U'B→kQ/R3, 这就是电荷集中在球心时在球 壳外表面处产生的电势。
{范例11.1} 同心导体球和球壳之间的 电势差和感应电荷
如图所示,一个带有总电量q的金属内球A,半径为R1,外 面有一同心金属球壳B,其内外半径分别为R2和R3,并带有 总电量Q(Q > 0)。此系统的电荷是如何分布的,球与球壳之 间的电势差是多少?如果使内球接地,内球上带有多少感 应电荷?球与球壳之间的电势差又是多少? [解析]静电平衡时,A球电荷只能分布在外表面,B球内表面 带等量异号的电荷-q,外表面带电量为Q + q。 Q+q Q B 根据高斯定理,电场分布为 E = 0 (r < R1)
UB k ( Q q ) R3
①当R2 = R3时,球壳变 成球面,感应电荷为
q Q
R1 R3
电势 差为
U AB
kQ R3
(1
R1 R3
)
可知:感应电荷随A的半径呈正比例增加, 但符号相反;电势差随A的半径直线减小。
②当R1→R2时,球与内球壳无限接近, 球体上感应电荷q'→-Q,电势差U'AB→0。 ③当R1→0时,球体上感应电荷为
相关文档
最新文档