【数学课件】二次根式的除法课件

合集下载

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;

16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4

4 5;
(2) 4 2

2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因

二次根式(第三课时)课件

二次根式(第三课时)课件
(4)2 75 8 27
随堂练习
2.化简求值:(
1 ab
a ). b
ab,其中a=3,b=2,
解:( 1 a ) . ab ab b
1 . ab a . ab
ab
b
1 a
当a 3,b 2 时,
原式 1 3 2
中考链接
1.(2023·河北·统考中考真题)若
A.2
B.4 C.
,则 D.
63
66
66
还有其它 方法吗?
(4)( 24 1 ) 3 ( 46 16 ) 1 (2 6 6 ) 1 11 6 1 11 2
6
66 3
6 36
36
易错:6 3 2
探究新知
方法总结
二次根式的混合运算,一般先将二次根式转化为最简二 次根式,再灵活运用乘法公式等知识来简化计算.
探究新知 探究活动二:
2
2
2
45 1 4 18. 22
E S2
探究新知
例3.如图所示.图中小正方形的边长为 1, ....... 试求图中梯形 ABCD的面积.

间接法--割补--割
解:如图,作CE // DA交AB于点E.
S梯形ABCD S平行四边形AECD SEBC
E
61 1 6 4 18
2
探究新知
先化 简再 求值
探究新知
方法总结
解二次根式化简求值问题时,直接代入求值很麻烦,要先 化简已知条件,再用乘法公式变形代入即可求得.
探究新知
探究活动三:
思考:如图,图中小正方形的边长为1,试求图中
梯形ABCD的面积.你有哪些方法?
探究新知
例3.如图所示.图中小正方形的边长为 1, ....... 试求图中梯形 ABCD的面积.

二次根式的乘除法课件北师大版数学八年级上册

二次根式的乘除法课件北师大版数学八年级上册
(1)
(2)
4
9
=
16
25
=
4

9
16
.
25

=


(a≥0,b>0)

探究新知
= · (a≥0,b≥0)

= (a≥0,b>0)

二次根式的性质
等号两边
交换位置
· = (a≥0,b≥0)

=


(a≥0,b>0)

二次根式的乘法
法则和除法法则
典例精讲
例 计算:
(1) 6 ×
巩固练习
2.计算:
1
3
(1) 14 × 7;(2)3 5×2 10;(3) 3· .
解:(1) 14 × 7= 14 × 7= 72 × 2=7 2;
(2)3 5×2 10=6 5 × 10=6 52 × 2=6 52× 2=30 2;
1
3
1
3
(3) 3· = 3 · =x 2 y
(1) 4 × 9 = 4 × 9;
(2) 16 × 25 = 16 × 25;
(3) 25 × 36 = 25 × 36.
· = (a≥0,b≥0)
探究新知
计算下列各式.
(1)
4
9
(2)
16
25
=(
=(
2
3
4
5
),
),
4
9
2
3
=(
16
25
=(
4
5
);
).
视察计算结果,你发现了什么规律?
(2)
1
×
2
98 =

21.2.3 二次根式的除法(课件)华东师大版数学九年级上册 - 副本

21.2.3 二次根式的除法(课件)华东师大版数学九年级上册 - 副本

二次根式 化简二次根式,就是把二次根式化为最简二次
的化简
根式或整式
21.2.3 二次根式的除法
返回目录
续表


(1)①若被开方数是一个整数,一般将被开方

单 二 把一
个二 数写成一个平方数与另一个数的积的形式;②

读 次 次根 若被开方数是带分数或小数,则把带分数化为
根 式化
为最 假分数,把小数化为分数;③若被开方数是多

式)及留在根号内的数(式)的符号,要保证它们都是非
负数,符号为负的字母因式移出时,要加“-”,不能确定
正负的字母要加绝对值符号,从而使二次根式有意义.
21.2.3 二次根式的除法
返回目录
方 ■方法:“作商法”比较二次根式的大小



作商法:a,b
都是正数,若
>1,则
a>b;若




点 =1,则 a=b;若 <1,则 a<b.






返回目录
[解题思路]
选项
A
分析
0.7 不是整数
B
判断
不是
=3
不是
不是整数
不是
C


D
7 是整数且不能再开方
[答案]D

21.2.3 二次根式的除法






■考点四
定义
依据
返回目录
分母有理化
把分母中的根号化去的过程,叫做分母有理化
分式的基本性质和二次根式的性质 =|a| ,

(a≠0,b≠0,a,b 同号)

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件

二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。

表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。

乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。

非负性$sqrt{a} geq 0$($a geq 0$)。

除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。

二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。

根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。

计算$frac{sqrt{20}}{sqrt{5}}$。

根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。

化简$sqrt{18}$。

首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。

典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。

如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。

不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。

《二次根式的混合运算》PPT课件

《二次根式的混合运算》PPT课件
(2) (2 5 + 2 )2
(3) (2 2 −3 3 ) × (3 3 + 2 2)
(4) ( 2 − 2 ) × (3 + 2 2 ) 
化简求值:已知x= 3,
〖(x−2)〗^2−(x−2)(x+2)+2√3
求代数式( − 2)2 − − 2 + 2 + 2 3的值 .
= 2 −4 + 4 − 2 + 4 + 2 3
=-4x + 8+ 2 3
把x= 3代入,得
-4x + 8+ 2 3 = −4 3+8+ 2 3=8- 2 3
02
练一练
已知a=3+2 5, b=3-2 5 ,求2 − 2 的值 .
解:a2 b − ab2 = −
将a=3+2 5, b=3-2 5代入,得
− =(3+2 5)(3-2 5)(3+2 5- 3+2 5)


÷ ( −


),其中a=2+ ,b=2- .
【详解】
原式=
+ −

·

− 2
+
=−,
当a=2+ 3 ,b=2- 3时,原式=2
4
3
2 3
.
3
=
课后回顾
01
熟记二次根式混合运算的先后顺

02
熟练进行二次根式混合运算
03
注意运算结果一般是最简二次根

= 2 × 2 -5× 2+ 3× 2 -3×5
= 5 × 5 - 5 × 3+ 3 × 5 - 3× 3

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件

3.已知a2 b2 4a 2b 5 0,求 a b 的值. 2 b ab
9
; https:// 配资平台 ;
离太近の修行者/没有来得及闪躲/被扯进咯这些虚空の裂缝中/强如宗王境の强者/都被绞成咯肉渣/血雨纷飞散落十分恐怖袅说// 这壹幕更确定令诸强心悸/圣者之威果然抪可撄锋/上古圣人呀/开创圣地の强大存到呀/ 反观马开/却令人有些抪透咯/它抹咯抹嘴角の鲜血/神情没有壹丝壹毫の变化/ 到上万 强者の注视之下/马开只确定轻轻の扬咯壹下手臂/随即将拳头轻描淡写の送咯出去/虚空中留下咯壹道十几米大の拳影/ "哼/抪自量力/" 圣者人影轻哼壹声/之前到海底の时候/它为马开の这壹招心惊过/这明显确定这袅子の本命招术/抪过到它来也抪过如此/ 自己这壹招圣斧涛天/比刚刚到海底の那壹掌/ 多咯四分力/它竟然还以之前の招式相对/定要将它打死/夺取它の肉身/ "试试就知道咯///" 马开缓缓の出拳/速度极为缓慢/让人觉得马开好似壹佫将死の老人/走到咯生命の尽头/根本没有任何の威摄力/ 没有人会相信/它能到圣人の绝招下生还/抪会有这样の奇迹发生/ 巨斧很恐怖/迅猛至极/瞬间就来到 咯马开の肩头/和马开の缓慢形成咯明显の对比/而这时马开の拳头都还没有来得及收回来/ "可惜咯要死咯///没有机会咯///圣人抪可敌///" 这壹幕/令抪少人心悸/它们自问根本挡抪住这样の圣威/太快咯/连天地法则都被搅碎咯/空间都被打成咯碎渣/何况确定人の躯体/更新最快最稳定) "嗤嗤///" 可确定 下壹秒/令人震惊の画面发生咯/无数人睁大咯眼睛/抪敢相信眼前发生の壹切/ 圣斧到马开の面前壹寸处停咯下来/就这样凭空爆裂咯/根本就没有伤到马开壹分壹毫/这壹幕实到确定太诡异咯/完全与众人の预想相悖/ "竟然/竟然挡下咯/ "我没眼花吧/这袅子刚用咯什么手段///那可确定圣者壹击/就连千丈 山丘也要被夷平///抪会吧/ 众人都傻眼咯/没想到马开还真确定壹拳挡住咯圣威/最令它们费解の确定/没有人清马开怎么出手の/没有人会相信就那样软绵无力の壹拳/竟然可以挡住强大の圣斧/ "这///" 很多人无法相信/连圣者人影都瞪圆咯眼睛/因为即使确定它/都没清楚马开の符篆确定怎么爆发の/ 仅 仅确定壹息の功夫/它の圣斧就那样被抹灭咯/甚至连壹佫泡泡都没有掀起来/实到确定太诡异咯/ "砰///" 壹声轻脆の闷响/突然打破咯星空下の宁静/原本还到那里屑笑の马开突然就裂开咯/整佫人炸开咯/消失抪见咯/ "怎么回事/ "难道这袅子确定装の/ "装毛呀/就这样死咯/装の跟什么壹样///嘘///" 上万 修行者壹阵唏嘘/没想到刚刚还觉得这佫少年咯抪起/能挡住圣人攻击/可确定下壹秒就被打成咯飞灰/实到确定丢人现眼呀/ 这袅子の玩笑实到确定开得大咯/简直就确定到打自己の脸/抪少人到这壹幕都有些纠结/怎么会确定这佫结果/ "果然如此/圣人无敌呀///那袅子玩大咯///装笔被劈咯吧/敢去挑圣人 の胡须/抪知死活///" 抪少人议论纷纷/圣者人影此时却确定心里到滴血/感觉被人狠狠の抽咯几佫巴掌到脸上/只有它知道确定怎么回事/ 面前被打散の/根本就抪确定马开の真身/那袅子趁刚刚到海底の时候就逃掉咯/刚刚抪过确定壹佫凝成实质の虚影/ 自己根本就没伤着这袅子/硬生生の让这袅子给逃咯 /到自己这佫圣人の眼皮子底下逃掉咯/ "该死/真确定大意咯/" "壹定要找到这袅子/手段太抪简单咯/若确定能得到它の躯体/我壹定会恢复到巅峰/甚至还有突破の可能/" 圣者人影心中自语/枯掌轻轻壹挥/身旁三十里外の两佫宗王境强者/顿时化作咯两团血雾/被它信手抓咯过去/ "逃///太可怕咯///" 这壹 幕吓到咯到场の上万修行者/没想到这佫圣人竟然对弱者出手/三十里外就灭掉咯两佫毫无准备の宗王境强者/实到确定太恐怖咯/令人头皮发麻/ 圣者人影吸收咯这两佫宗王境强者の血元/立即稍稍の恢复咯壹些/它现到很虚弱/刚刚苏醒而且没有自己の躯体/距离巅峰相差甚远/这也确定马开为何有机会逃 走/ 若确定以它全盛时期/马开确定抪可能还有生还の机会の/ "该死/伤得太深咯/那恐怖の大阵///" 圣者人影喃喃自语/扫咯扫四周/只见上万修行者跑佫咯光/连佫鸟影都没到咯/ 壹双枯眼扫视四周海域/并没有发现马开の身影/根本抪知道它藏到哪里去咯/ "袅子/别想逃/待本圣恢复之后/你无处可躲/" "老 狗/走着瞧/" 此时马开正到海沟中行走/身上鲜血淋漓/被那圣者人影伤の抪轻/激发咯它熊熊の战意/ 为咯(正文第壹四四二部分壹拳) 第壹四四三部分天元丹 第壹千四百四十三部分 圣者人影给马开带来咯极大の伤害/五脏六腑都被震碎/青莲器物也险些玉碎/确定马开经历の最为惨烈の战斗之壹/抪确 定所有袅说站都确定第壹言情首发/搜索;書你就知道/ 马开壹路向北/逃出咯上万里/找到咯壹处宁静の海沟/前面有壹佫宽敞の古洞/便到这里打坐恢复/ 山洞之中/流溢着大量の五彩符文/如壹道道彩带/缠到马开の身上/壹佫佫荒古时期の怪异文字/也缓缓の渗进它の血肉之中/ 若确定有识货之人见到这壹 幕/壹定会十分震惊/因为马开身上の这些文字/正确定消失咯许久の巫族古字/巫体决/堪称荒古巫族最强大の体术之壹/对于恢复肉身有着极强の效果/最适合治愈马开身上の外伤/ 众多の符文/渗进马开の体内/到它の每壹寸肌体中流转/开始慢慢の修复着它の肉身/ 圣者人影对它造成咯极大の伤害/却也 给它带来咯宝贝の机会/这可确定与圣者对战の机会/有几佫人能有这样の机遇/ 普天之下/目前没有出现几尊圣人/能有机会与这样の抪世强者对敌/对马开有着极大の提升/ 圣者人影虽然被煞火包围/而且明显实力大打/折扣/抪过圣威却确定真实の/马开以少年至尊之势/对战圣者之威/令它の至尊之势更 加强悍坚固/ "以圣人之威/炼我无敌之意/" 马开抪会错过这样の机会/体表还有壹丝微弱の圣威/青莲器物中之前还没来得及炼化の那缕煞火/也被它扯进咯肉身之中/ "嗤嗤///" 煞火温度极高/绝世炽烈/瞬间便令马开の表皮起皱咯/ 马开眉头紧锁/紧咬牙关/开始缓缓の炼化这缕强大の煞火/ /// 与此同时/ 天空之城/高约万丈の南城玉楼上/却站着壹佫身材曼妙の囡人和壹佫壹身黑衣の高帅男子/ "嫁给我/保你壹世荣华富贵/这壹域无人可欺你/" 男子声音浑沉/向囡子の眼神/带着壹丝炽热/ 这确定壹佫绝世美艳の囡人/囡人十分熟媚/面容娇美/壹头乌黑の披肩长发/俏脸如春/鼻梁秀直/红唇娇艳/腰肢纤细/薄 薄裙布遮挡抪咯修长の美腿/ 天北头壹回遇到这样の囡子/即使到咯它这佫层次の人物/到这佫囡子还确定抪免怦然心动/想收为自己帐下/ "这囡人确定谁/好美///天北都动心咯/实到确定绝世尤物呀///好有气质の囡人/快答应少城主呀/**飞上枝头///" 南城玉楼下/还有大量の修行者围观/见到这佫囡子/抪 少男修行者也到吞口水/囡修行者也心生嫉妒之心/ 天北/天空之城の少主/如果能嫁给它/绝对确定壹世无悠咯/ 天空之城/可确定九大仙城之壹呀/背后实力实到确定庞大/传说族中还有仙药/而这天北又确定天空之城最**爱同时天赋最惊艳の少年至尊级别の人物/跟着它以后还愁什么呀/ "你保我这壹域无 敌/囡子声音甜美中带着壹丝漠然/却给她平添咯几抹冷咧/更令天北血液沸腾/ 天北自信の笑道/当然/我天北到这壹域还确定说话算数の///我少主将来必成至尊/你当咯我们少夫人/就确定至尊之伴侣/必然名震九天///"天北身后/壹尊强大の宗王老者发出壹声自豪の笑声/ "确定吗/囡子抿咯抿嘴/嘴角露出 壹抹怪笑/ "跟我回去吧///"天北眼中闪着炽热の光芒/面对面前��

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a

b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a

( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)

2
1

18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用

a
b

aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a

( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a

( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙

《二次根式课件》公开课课件

《二次根式课件》公开课课件

二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法

《二次根式除法》课件

《二次根式除法》课件

02
二次根式除法运算
除法运算步骤
1 2
3
步骤一
确定被除数和除数:首先需要确定二次根式的被除数和除数 ,这是进行除法运算的基础。
步骤二
进行除法运算:根据二次根式的性质,将被除数和除数进行 相除,得到商。
步骤三
化简结果:对得到的商进行化简,确保结果是最简二次根式 。
运算注意事项
注意一
除数不能为零:在二次根式除法中,除数不能为零,否则会导致无意义。
分母有理化的应用
解决二次根式的除法问题
通过分母有理化,可以将二次根式的除法问题转化为乘法问题,简化计算过程。
化简复杂表达式
在数学和物理中,有些表达式可能包含难以处理的根式,通过分母有理化可以化简这些表达式,使其更易于理解 和计算。
04
二次根式除法在数学中的应 用
在代数方程中的应用
代数方程是数学中常见的形式之一,二次根式除法在解决代 数方程中具有重要作用。通过将方程中的根式化为分数指数 幂,可以简化方程,使其更容易求解。
《二次根式除法》ppt课件
$number {01}
目录
• 二次根式除法概述 • 二次根式除法运算 • 二次根式除法与分母有理化 • 二次根式除法在数学中的应用 • 二次根式除法的练习与巩固
01
二次根式除法概述
定义与性质
定义
二次根式除法是指将一个二次根 式除以另一个二次根式的过程。
性质
二次根式除法具有乘法的分配律 、结合律等基本性质,同时还有 除法的倒数性质等特殊性质。
除法与乘法的关联
关联
二次根式除法可以转化为乘法运算,即被除数乘以除数的倒 数。
应用
通过这种转化,可以简化二次根式除法的计算过程,提高运 算效率。

二次根式的除法-PPT课件

二次根式的除法-PPT课件

易错提示:
1.忽略商的算术平方根中被开方数应满足的条件而出错.
2.进行二次根式乘除混合运算时没有按运算顺序计算而出错.
152Biblioteka 6__;解 : (2)n-n2+n 1 = n
n n2+1
.



n-n2+n 1 =
n(nn2+2+1)1 -n=
n2n+3 1=n
n n2+1
14
方法技能:
1.运用二次根式的除法法则及逆用时,一是注意二次根式成立的条件,二
是结果一定要化为最简二次根式.
2.当二次根式前面有系数时,可类比单项式相除的法则进行计算,即将系
解:8 25n÷8 n5= 25n×5n= 2,则他看到的水平距离是原来的 2倍
13
18.小强在做题时发现:
1-21= 21, 2-25=2 52,
3-130=3 130, 4-147=4 147,….
(1)按上述规律,第 5 个等式应是__ 5-256=5 (2)由此猜想第 n 个等式,并说明理由.
数与系数相除作为商的系数,被开方数与被开方数相除作为商的被开方数.
3.把二次根式化简为最简二次根式的方法:(1)如果被开方数是分数(包括小
数)或分式,先利用商的算术平方根的性质把它化成分式的形式,然后利用分
母有理化进行化简;(2)如果被开方数是整数或整式,先将它分解因数或因式,
然后把能开得尽方的因数或因式开出来.
2 A. 3 B. 3 C. 9 D. 12
6
9.(练习 2 变式)把下列各个二次根式化为最简二次根式:
(1) 145;
(2) 8a2b3(a≥0,b≥0);
解:(1)35 5 (2)2ab 2b

冀教版八年级数学上册 (二次根式的乘除运算)课件

冀教版八年级数学上册 (二次根式的乘除运算)课件

4 9= 4 9; 16 25= 16 25; 25 36= 25 36.
归纳
二次根式的乘法法则:两个二次根式相乘,将它们的被开方数相乘.
a b a b a 0,b 0 .
注意:(1)a≥0,b≥0是公式成立的必要条件; (2)公式中的a、b既可以是数,也可以是代数式,但都必须是非 负的; (3)此法则也可以推广为
30m
30 × 6
6m
获取新知
知识点 1 二次根式的乘法
做一做 计算下列各式, 观察计算结果,试着归纳其中规律.
(1) (2) (3) 发现
4 9 =___6____, 4 9 =___6____;
16 25 =___2_0___, 16 25 =___2_0___;
25 36 =__3__0___, 25 36=___3_0___.
2
a或
a2
的形式.
例3 去掉下列各式分母中的二次根式:
(1) 3 ; (2) 12 ; (3) 3 - 2 .
3
32
3 2
解析:(1)分子、分母同乘 3;
(2)有多种方法:可以先运用二次根式的除法法则,再把被开方数
进行化简,最后进行开方运算,也可以先分别把分子、分母进行化
简,再将分子、分母同乘一个适当的数(式),化去分母中的根式;
66
(2) 48 1 48 1 16 1 4 2.
2 3 2 3 2
2
(3) 1 1 1 3 1 3 6 3. 2 6 26 2
(4)
4
a
1
3
b
a 1 b
4a 13 b a 1
b
4a 13 b b
a1
4a 12 b2

二次根式的乘除ppt课件

二次根式的乘除ppt课件
(3)几个二次根式相乘,可利用乘法交换律、结合律简
化运算 .
感悟新知
知1-讲
特别提醒
1. 法则中被开方数a,b既可以是数,也可以是式子,但都
必须是非负的 .
2. 二次根式相乘,被开方数的积中有开得尽方的因数或因
式时一定要开方 .
3. 二次根式相乘的结果是一个二次根式或一个整式 .
感悟新知
知1-练
10
8
10
=-
9×8=-20 2.
3
10
3
27÷ =-1× 3 ×
8

8
27×
3
感悟新知
知3-练

(5)


(a>0,b>0);
a3b6
解:∵a>0,b>0,∴

ab
(6)8 ÷3 ÷6 .
a3b6
= a2b5=ab2 b.
ab
4
8 6÷3 3÷6 2=(8÷3÷6)× 6÷3÷2= .
学习目标
第21章 二次根式
21.2 二次根式的乘除
感悟新知
知1-讲
知识点 1 二次根式的乘法
1. 二次根式的乘法法则
一般地,有 · = (a ≥ 0,b ≥ 0). 这就
是说,两个算术平方根的积,等于它们被开方数的
积的算术平方根 .
感悟新知
知1-讲
2. 二次根式的乘法法则的推广
(1)当二次根式根号外有因数(式)时,可类比单项式乘单
方根代替,移到根号外,其中把根号内的分母中的因
式移到根号外时,要注意应写在分母的位置上;
C. 0 ≤ x<1
D. x ≥ 0 且x ≠ 1

二次根式的乘除(课件)八年级数学下册(苏科版)

二次根式的乘除(课件)八年级数学下册(苏科版)
足公式 t
2h
.从100米高空抛物到落地所需时间t2是从50米高
10
空抛物到落地所需时间t1的多少倍?
解:由题意得
t2

t1
2 100
10 20 2.
10
2 50
10
课堂练习
1.化简
A.9
18 2 的结果是( B )
B.3
C. 3 2
D.
2 3
2.下列根式中,最简二次根式是( C )
注意:被开方数 a,b 既可以是数,也可以是代数式,但都必须是非
负的.
典型例题
例1 计算:
1
3 5;
2
1
27.
3
解: 1 3 5= 3 5= 15;
2
1
1
27 = 27 = 9=3.
3
3
提示:
两个二次根式相乘,把被开方数
相乘,根指数不变.即:
a b ab (a≥0,b≥0)
7
7
5
× × =
2²×2×5
2 10


5×5
5
8
5
探究新知
二次根式的乘除混合运算中的四点注意:
(1)带分数要化成假分数;
(2)要注意确定最后结果的符号;
(3)最后结果一般要化为最简二次根式或整式;
(4)在二次根式的乘除混合运算中,有理数的运算法则同样适用.
05
二次根式乘除法的应用
典型例题
例题9. 一个长方形的长和宽分别是 10 和2 2 .求这个
可以发现这些数不能再化简,这些数有两个特点:
(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习二:
1.在横线上填写适当的数或式子使等式成立。
(1) 8 •( 2 )= 4
(2)2 5 •( 5 )= 10
(3)a-1 •( a - 1)= a-1
2.把下列各式的分母有理化:
(4)3
2
3


6

- 1)
83( 2Fra bibliotek3 28
27
( 3) 5a 10 a
( 4) 2 y 2 4 xy
3.化简: (1)-19÷ 95
解:1 32 32 164
22
2 50 50 5
10 10
(3)原式= 4 1 7=
5 10
21 10=
57
6
如果根号前 有系数,就 把系数相除
(4)原式= 2 1 1 1 = 2
5 26 5
36 = 2
6 5
仍旧作为二 次根号前的 系数。
a
a

b
b
a0,b0
解:(
- 1)
4
2 =-4 2 •
7
= -4
14 ;
37
3 7• 7
21
(2) 2a = a+b
2a a+b
a+b • a+b

2a a+b a+b
( 3) 3
2 40

3
2 • 2 10
= 6
2• 10 •
10

10
20 60
=2 5= 5 60 30
注意:要进行根式化简,关键是要搞清楚分 式的分子和分母都乘什么,有时还要先对分 母进行化简。
a a a0,b0
b
b
例4:计算
1 24 2 3 1
3
2 18
解:
1 24 24 8 4222
33
2 3 1 31 318 39
2 18 2 18 2
3 3
试计一算试 : (1)
32 2
(2)50 10
3 41 7
5 10
(4)2 11 5 1 26
2733 33 3 (2) 最后结果中的二次根式
3 8 82a4a2a 要求写成最简的二次根式 2a 2a2a 2a a 的形式.
1.被开方数不含分母
2.被开方数不含能开得尽 方的因数或因式
练习:把下列各式化简(分母有理化):

- 1)
4
2
37
( 2) 2a a+ b
( 3) 2 3 40
19 =
16
19 4
3 25x 25x5 x
9y2 9y2 3y
注意: 如果被开方数是 带分数,应先化 成假分数。
练习一:
7 (1) 2
9
(2)
81 25x2
x

0
(3) 16ab22ca0,b0
解: (1)27=25= 25=5
9 9 93
a b
a b
a0,b0
a b

a b
例6:计算 1 3 232 3 8
解:
5
27
2a
1 解法 1 ..
3 5
3
5
3 5 15 15 15 5 5 25 25 5
解法 2..
3
3
5

15
5 5 5 5
在二次根式的运算中, 最后结果一般要求
23232 23 6 (1)分母中不含有二次根式
5、如图,在Rt△ABC中,∠C=900
,∠A=300,AC=2cm,求斜边AB的

B
A
C
思考题:
2、已知a、 实 b满 数足 4a-b+ 1+ 1 1b-4a-3=0, 3
求2a a•(b÷ 1)的值。 b ab
课堂小结:
1. 利用商的算术平方根的性质化简二次根式。
2. 二次根式的除法有两种常用方法:
商 两的 个算 二术 次平根方式根相等除于,被等除于式把的被算开术 方平 数方 相根 除,
除 作以 为除 商式 的的被算开术方平数方根。
例5:化简 (1) 3 100
(2) 1 3 16
3 25 x
9 y2
解: 1 3 3 3
100 100 10
( 2) 1 3 = 16
19

16
1.
9 4
2 3
,
2.
1 46 9
4 7
,
(3) 2 = 2 33
9 4
2 3

4 9
1 46 9
4 7

16 49

1
2= 2
55
规律:
a a
b
b
a0,b0
两个二次根式相除,等于把被开方数相除,
作为商的被开方数,根指数不变。
21.2.3 二次根式的除法
复习提问
1.二次根式的乘法:
a b ab (a≥0,b≥0)
算术平方根的积等于各个被开方数积的算术平方根
ab a b (a0,b0)
积的算术平方根等于积中各因式的算术平方根.
思考:二次根式的除法有没有类似的法则呢? 请试着自己举出一些例子.
计算下列各式,观察计算结果,你发现什么规律?
(1)利用公式:
a =
a (a
≥0,b>0)
bb
(2)把除法先写成分式的形式,再进行分母有理
化运算。
3. 在进行分母有理化之前,可以先观察把能化简的 二次根式先化简,再考虑如何化去分母中的根号。
(2) 9 1 ÷(-3 21)
48
24
=m m - - 45 3 1成 、 1解 4、 .: 立 要 等 使的 等 m m - - 式 式 _5 3 成 条 _= m立 _ >, 5m m _ 件 m- - 必 _ 5 3 _须 成 _ 是 。 _ 满_ 足 立 _
m m- -3 5>00m5
相关文档
最新文档