2015年第二十届华杯赛中年级组初赛A卷(详解)
第二十届华杯赛解答
(B) 12 分
(24 ´ 60) ´ 66 = 1452 720 分钟,所以比标准 11
时间 24 小时对应的 24 ´ 60 = 1440 分钟多了 1452-1440=12 分钟,即慢了 12 分钟
6. 在右图的 6× 6 方格内, 每个方格中只能填 A, B, C, D, E, F 中的某个字母,要求每行、每列、每个 3 长方形的六个字母均不能重复.那么, 标有粗线的 2× 第四行除了首尾两个方格外, 中间四个方格填入的字母
【答案】630 【题型】几何:一半模型 【解析】
A A ①② F ③ D⑫ ④ ⑪ P ⑤ ⑩ ⑨ ⑧⑦ ⑥ C B E C
D P B E
F
S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ; 过点 P 作 AB , AC , BC 的平行线, 则 S1 = S2 ,
第二十届华罗庚金杯少年数学邀请赛
初赛 A 卷解析(小学高年级组)
总分:150 分时间:60 分钟
一、选择题. (每小题 10 分,共 60 分.以下每题的四个选项中,仅 有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号 内. )
1.
现在从甲、 乙、 丙、 丁四个人中选出两个人参加一项活动. 规定: 如果甲去, 那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去 参加活动的两个人是() . (A)甲、乙 (B)乙、丙 (C)甲、丙 (D)乙、丁
1 1 2 所以 S阴影 =S白 = S△ABC = 2028 = 1014cm ,则 S△PCF = 1014 - 192 2 = 630cm2 2 2
9. 自然数 2015 最多可以表示成________个连续奇数的和.
2015年第二十届“华杯赛”决赛初一组试题.pdf
第二十届华罗庚金杯少年数学邀请赛决赛试题(初一组)(时间: 2015年4月11日10:00~11:30)一、选择题 (每小题10分, 共80分)1. 计算: ⎪⎪⎭⎫ ⎝⎛++++⨯10241108134122112048 = . 2. 一堆彩球只有红、黄两色. 先数出的50个球中有49个红球, 此后, 每数出8个球中都有7个红球, 恰好数完. 已数出的球中红球不少于90%. 这堆彩球最多有 个.3. 正整数a ,b ,c ,d 满足4332<<<d c b a , 当d c b a +++最小时, c = , d = .4. 圆形跑道上等距插着2015面旗子, 甲与乙同时同向从某面旗子的位置出发,当甲与乙再次同时回到出发点时, 甲跑了23圈, 乙跑了13圈. 不算起始点旗子位置, 则中间有 次甲正好在旗子位置追上乙.5. 现有2015张卡片, 每张上写有数字1+或1-. 如果每次指着其中的三张卡片问:“这三张卡片所写的数字的乘积是多少?”并得到正确回答. 那么, 至少问 次才能确定这2015张卡片所写的数字的乘积.6. 设a , b , c 为1到9中的三个不同整数, 则c b a abc ++的最大值是 , 最小值是 .(abc 是个三位数)7. 如右图, 正六边形中两个等边三角形的面积都为30平方厘米,那么正六边形的面积是 平方厘米.8. 从一副扑克牌中抽走一些牌, 在剩下的牌中至少要数出20张, 才能确保数出的牌中有两张同花色的牌的点数和为15. 那么最多抽走 张牌, 最少抽走 张牌. (J 、Q 、K 的点数分别为11, 12, 13, 大、小王的点数为0;一副扑克牌有54张牌, 其中52张是正牌, 另2张是副牌(大王和小王). 52张正牌又均分为13张一组, 并以黑桃、红桃、草花、方块四种花色表示各组, 每组花色的牌包括从1至10(1通常表示为A )以及J 、Q 、K 标示的13张牌).二、解答下列各题(每小题10分, 共40分, 要求写出简要过程)9. 算式20146422013531⨯⨯⨯⨯+⨯⨯⨯⨯ 的值被2015除的余数为多少?10. (1)右图共含有几个四边形? (2) 在右图的每个顶点处标上1或1-, 共有4个1和4个1-, 将每个四边形4个顶点处的数相乘, 再将所得的所有的积相加, 问:至多有多少个不同的和?11. 已知,2343111=++=-+ab c ac b bc a a c b ,,)(024222=---c b b c c b b 与c 同号, 且.c b 2≠ 求.444c b a ++12. 加工十个同样的木制玩具, 需用260毫米和370毫米长的标准木方分别为30根和40根. 仓库里有长度分别为900毫米、745毫米、1385毫米的三种标准木方, 用这三种标准木方锯出所需长度的木方, 每锯一次要损耗5毫米长木方. 问是否可以用三种木方, 每种木方选一些, 恰好锯出十个玩具所需的木方?如果可以, 要求锯的次数最少, 那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方, 即不能从一端锯. )三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 如图, △ABC 中, D 是BC 上一点且32::=DB CD , E 是AB 上一点且12::=EB AE , F 是CA 的延长线上一点且34::=AF CA . 若△DFE 的面积为1209, 求△ABC 的面积.14. 求使得n n 22+为完全平方数的自然数n .。
2015年第二十届华杯赛初赛小高组试题A详解
3.
桌上 上有编号 1 至 20 的 20 张卡片,小明每次取 取出 2 张卡 卡片,要求一 一张卡片的 的编号是 )张卡片. 另一 一张卡片的 的 2 倍多 2,则小明最多取出(
1
(A)12(B)Βιβλιοθήκη 4(C)16(D)18
【答案】A 【题型】倍数、枚举 【解析】由于有 2 倍多 2 的关系,所以 1、4、10 只能取其中两个,2、6、14 只能取其中两个,3、 8、18 只能取其中两个.即这里至少有 3 个数取不到,而 11、13、15、17、19 不满足 2 倍多 2 的关 系,也无法取到.合计至少有 8 个数取不到,取 12 个数为最多的情况.列举最多的一种情况:1、4; 2、6;3、8;5,12;7,16;9,20.取到了最多的 12 个数的情况.
10 6
8
5
可寻找到如图边长为 10 的正方形,共 4 个(可往右方和下方平移)构造弦图,大正方形的边长是 14,每一个边长为 14 的正方形内可以构成 2 个边长为 10 的正方形。 综上,可找到 385 + 4 × 2 = 393 个边长大于 5 的正方形.
6
(A) E , C , D, F (B) E , D, C , F (
标 四 到
C
)
2
D, F , C , E
(D) D, C , F , E
【答案】 】C 【考察知 知识点】数阵 阵图:数独 【分析】 】每行每列每 每个 3*2 的粗 粗线方格均必 必有 A、B、C、D、E、F 各一个,选 选择一个合适 适的位置, 尝试即可 可快速得出答 答案。以下提 提供一种解法 法:
A
A ①② F ③ D⑫ ④ ⑪ P ⑤ ⑩ ⑨ ⑧⑦ ⑥ C B E C
2015年第二十届华杯赛决赛C卷详解(高年级组)
1 =336(千米)。 4
3
成都市青羊区金河路 59 号尊城国际 13 楼 1305 10.
68890961
【答案】33 【解析】最简分数的分母只含有 2 或 5,化为小数才为有限小数 分母形式只能是: 2 5 ,且 2 5 2016 ,则 5 2016, b 4
a b a b
【答案】101 【解析】由于∠ADH+∠IDE=90°,则△AHD 与△DIE 完全相同, 则 S△AHD=S△DIE=11×9÷2,可得 AH=DI=9,HB=11-9=2, 得 S 阴影=SABEI-S△DIE-S△ADH-S△HBE= (11+9)×11-11×9÷2-11×9÷2-2×20÷2=101.
5
成都市青羊区金河路 59 号尊城国际 13 楼 1305 14.
68890961
【答案】3 【解析】① 若 48 名学生分到的数量互不相同,则 至少要: 0 1 2 3 47 1128 530 ,不满足条件 ② 若只有 2 名学生分到的书数量相同,则 至少要: (0 1 2 3 23) 2 552 530 ,不满足条件 ③ 若有 3 名学生分到的书的数量相同,则 至少要: (0 1 2 3 15) 3 360 530 ,满足条件 综上所述:至少有 3 名学生分到的书的数量相同。
成都市青羊区金河路 59 号尊城国际 13 楼 1305
68890961
第二十届华罗庚金杯少年数学邀请赛
决赛 C 试卷(小学高年级组) 一、选择题(每小题 10 分,共 80 分.)
1. 科雅数学 电话:68890961,86111521; 科雅小升初 QQ 交流群: 194587786; 科雅 5 年级 QQ 交流群:252737962; 科雅 3,4 年级交流群: 217107180;
2015年第二十届华杯赛小高组初赛详解
【题型】几何:一半模型 【解析】
帅
A F C作 AB , AC , BC 的平行线,则 S1 = S 2 , S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ;
1 1 2 所以 S阴影 =S白 = S△ABC = × 2028 = 1014cm ,则 S△PCF = 1014 − 192 × 2 = 630cm 2 2 2
余帅老师公众号:shuaiteacher
帅
第 3 页 兴趣是最好的老师
老
师
学习有意思
快乐思维
二、填空题 (每小题 10 分,共 40 分)
1 1 1 29 41 55 7. 计算: 481 + 265 + 904 − 184 − 160 − 703 =________. 6 12 20 30 42 56
余
如图所示 示,第一列和 和第二行已经 经有 A,所以 以左上角 3*2 粗线方格的 A 只能填在第二列;因为 为第一列 3*2 粗线方格 和第二列 列已经有 A, 所 所以左下角 格的 A 只能填 填在第三列; 因为第五列和第四行已经 经有 A, 3*2 2 A A 所以右中 中位置的 粗线方格的 的 只能填在 在第四列; 因为 为第五行和第 第五列已经有 有 , 右下角 3*2 所以右 粗线方格 格的 A 只能填 填在第六列;以此类推,可以填出所 所以的数.
学习有意思
快乐思维
2015年第二十届华杯赛小高组初赛详解
0分 总分:100 时间 间:60 分钟
0 分,共 60 分.以下每题的 一、选 选择题. (每小题 10 以 的四个选项 项中,仅有 有一个 是正确 确的,请将 将表示正确 确答案的英 英文字母写在每题 题的圆括号 号内. )
2015第二十届华杯初赛小学高年级组C卷(含解析)
2015第二十届华杯初赛小学高年级组C卷(含解析)第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)(时间:2014年3月14日10:00~11:00)一、选择题 (每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.91113151711120203042567234⎛⎫-+-+⨯-÷= ⎪⎝⎭( ). A .42 B .43 C .1153 D .21632.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米,那么从左向右数第4棵树的高度是( )米.A .2.6B .2.4C .2.2D .2.03.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、 丙、丁4位同学有如下的对话:甲:“丙、丁之中至少有1人捐了款”乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是( ).A.甲、乙B.丙、丁C.甲、丙D.乙、丁4.六位同学数学考试的平均成缋是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是( ).A.94B.95C.96D.975.如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点;如果DEH∆的面积依次为56、50、40,那∆、BEH∆、BCH么CEH∆的面积是( ).A.32B.34C.35D.366.—个由边长为1的小正方形n n⨯的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是( ).A.3B.4C.5D.6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1~6中的一个,使得每行、每列及每个23 长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是.8.整数n一共有10个约数,这些约数从小到大排列.笫8个n.那么整数的最大值是.是39.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是厘米.( 取3.14)EA10.A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;如乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)参考答案 12 3 4 5 AC D B B 67 8 9 10 B 412316215975;485 125;1880 参考解析 一、选择题 (每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.91113151711120203042567234⎛⎫-+-+⨯-÷= ⎪⎝⎭( ).A .42B .43C .1153 D .2163【考点】速算巧算【难度】☆☆【答案】A【解析】原式1111111111412612042455667788933⎛⎫=+--++--++⨯-== ⎪⎝⎭.2.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6 B.2.4 C.2.2D.2.0【考点】等差数列【难度】☆☆【答案】C【解析】如右图, 2.8 1.4 1.4AC=÷⨯= (米)因AB=-= (米), 1.4730.6此,第四高的小树为2.80.6 2.2-=(米).3.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下的对话:甲:“丙、丁之中至少有1人捐了款”乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是( ).A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成缋是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是( ).A.94B.95C.96D.97【考点】最值问题【难度】☆☆☆【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.56997698)3282394⨯---÷=÷= (分),故第三位同学的得分至少是941=95+.5.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线AC 上一点;如果DEH ∆、BEH ∆、BCH ∆的面积依次为56、50、40,那么CEH ∆的面积是( ).A .32B . 34C . 35D . 36【考点】几何【难度】☆☆☆【答案】B【解析】因为2DEH AEH ABCD ABC BCE AEB SS S S S S ∆∆∆∆∆+=÷==+W 所以56BCE DEH S S ∆∆==;所以,50405634CEH BEH BCH BCE S S S S ∆∆∆∆=+-=+-=.6.—个由边长为1的小正方形n n⨯的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是( ).A.3B.4C.5D.6【考点】最值问题【难度】☆☆☆☆【答案】B【解析】假设5n=,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的31⨯的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的31⨯的长方形中,每个至多1个黑格.假设这4个横着的31⨯的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而31⨯的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格.矛盾!所以5n=的一种构n<.而图6给出了4造.所以,正整数n的最大值是4.二、填空题(每小题10分,满分40分.)7.在每个格子中填入1~6中的一个,使得每行、每列及每个23⨯长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是.【考点】数阵图【难度】☆☆☆☆【答案】4123【解析】如下左图,因为3A+为质数且4A=;A≠,所以2因为“月”1+为质数且“月”2≠、4,所以“月”C=;6=;从而5因为“杯”4+为质数且“杯” 1≠,所以“杯”3=;从而5C =;因为3D +为合数且2D =或6,所以6D =;从而“华”2=;因为“相”3+为质数且“相” 2≠,所以“相”4=; 因为4B +为合数且1D =或5,所以5B =;从而“约”1=;所以,相约华杯4123=(如下中图).实际上其它格子中的数也能唯一确定(如下右图).8.整数n 一共有10个约数,这些约数从小到大排列.笫8个是3n.那么整数的最大值是 . 【考点】数论 【难度】☆☆☆ 【答案】162【解析】n有10个约数,由于第8个是3n ,而第10个必然是n ,所以第9个只能是2n .所以n 有质因子2和3.所以n可能是423⨯或者432⨯.而最大是432162⨯=.41236541236541236556321423614532145326514652314D杯华约相41月3DCBA9.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 平方厘米,两块阴影部分的周长差是 厘米.(π取3.14)【考点】几何基本概念 【难度】☆☆☆ 【答案】①15975;②485. 【解析】①ABECDE ABCD ABD ABC ABSS S S S S -=--阴影阴影正方形扇形扇形半圆 22230042300150233750-9000015975πππ=⨯÷⨯--⨯÷=≈②因为ABE ∆为等边三角形,所以60EAB EBA ∠=∠=︒,从而30DAE CBE ∠=∠=︒; 阴影=2300122300100300CDE CE DE CD ππ++=⨯÷⨯+=+的周长弧弧;阴影2300623002350ABE AE BE AB ππ=++=⨯÷⨯+÷=的周长弧弧弧; 所以,350(100300)250300485πππ=-+=-≈的周长差.EAE10.A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;如乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.【考点】行程问题【难度】☆☆☆☆【答案】①125;②1880.【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;所以丙速为60(125%)45⨯-=(米/分);甲减速一次后的速度为45(140%)75÷-=(米/分),甲出发时的速度为75(140%)125÷-=(米/分).②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:6025:12=,所以:25:12AB BC=;设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60:454:3=,所以BF CF=,:4:3从而CF为12(43)336÷-⨯=份,AF为25 3661+=份.因为甲减速一次后与丙的速度比为75:45 5:3=,而甲原速行AC这25份时,相当于以75米/分行⨯=份;2560%15所以15(53)322.5CE=÷-⨯=份,从而36-22.513.5EF==份;而EF是丙9分钟所行的路程,为459405⨯=(米),所以每份40513.530÷=(米),从而3061 1830AD=+-(米).AF=⨯=(米),所以1830501880ED。
第20届华杯赛小高组答案详解
3
二、填空题(每小题10分,共40分)
7.计算: 48116265121904201−1843029−1604241−7035655=________.
【答案】60083
【题型】凑整、分数裂项
【解析】
=481265904−184−160−70316121201−(1−301)−(1−421)−(1−561)
=(481265904−184−160−703−1−1−1)(16121201301421561)
=600(12−13)(13−14)(14−15)(15−16)(16−17)(17−18)
=60012−18
=60083
8.过正三角形ABC内一点P,向三边作垂线,垂足依次为D,E,F,连接AP,BP,CP.如果正三角形ABC的面积是2028平方厘米,三角形PAD和三角形PBE的面积都是192平方厘米,则三角形PCF的面积为________平方厘米.
5.一只旧钟的分针和时针每重合一次,需要经过标准时间66分.那么,这只旧钟的
24小时比标准时间的24小时(
).
(A)快12分
(B)快6分
(C)慢6分
(D)慢12分
【答案】D
【题型】时钟问题
【解析】时针速度为每分钟0.5度,分针速度为每分钟6度.分钟每比时针多跑一圈,即多跑360度,
360720
2015年 第20届 华杯赛中年级复赛试卷分析_22
第二十届华杯赛中年级决赛试题A 卷(时间:2015年 4月11日)一. 填空题(每小题 10 分, 共80 分)1. 计算: ()()375239*********÷⨯+÷⨯=________. 【答案】61【分析】原式375239*********=÷÷+÷÷187********23793961=÷+÷=÷=2. 下图中,A B C D F G ∠+∠+∠+∠+∠+∠等于________度.【答案】360【分析】连接DC ,F G FDC GCD ∠+∠=∠+∠,所以360A B C D F G O ∠+∠+∠+∠+∠+∠=.3. 商店以每张2 角1 分的价格进了一批贺年卡,共卖14.57 元.若每张的售价相同,且不超过买入价格的两倍,则商店赚了________元. 【答案】4.7【分析】14573147=⨯,所以卖出价为3角1分,卖出47件,商店赚了4.7元.4. 两个班植树,一班每人植3 棵,二班每人植5 棵,共植树115 棵.两班人数之和最多为________. 【答案】37【分析】设一班有x 人,二班有y 人,则35115x y +=,所以()max 35237x y +=+=人.5. 某商店第一天卖出一些笔,第二天每支笔降价1 元后多卖出100 支,第三天每支笔比前一天涨价3BB元后比前一天少卖出200 支.如果这三天每天卖得的钱相同,那么第一天每支笔售价是________元. 【答案】4【分析】设每只笔售价a 元,卖出x 件,则有()()()()11002100ax a x a x =-+=+-,由前一个等式能推导出()1001x a =-,经试验当4a =,300x =时上式成立,所以每只笔售价4元.6. 一条河上有A ,B 两个码头,A 在上游,B 在下游. 甲、乙两人分别从A ,B 同时出发,划船相向而行,4 小时后相遇. 如果甲、乙两人分别从A ,B 同时出发,划船同向而行,乙16 小时后追上甲. 已知甲在静水中划船的速度为每小时6 千米,则乙在静水中划船每小时行驶________千米. 【答案】10【分析】设乙在静水中的速度为x 千米每小时,则()()46166x x +=-,解得:10x =.7. 某个两位数是2的倍数, 加1是3的倍数, 加2是4的倍数, 加3是5的倍数, 那么这个两位数是_______. 【答案】62【分析】设这个两位数为a ,则a 是2的倍数,除以3、4、5都余2,所以[]3,4,5262a =+=.8. 在三个词语“尽心尽力”、“力可拔山”和“山穷水尽”中,每个汉字代表1至8之间的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字. 如果每个词语的汉字所代表的数字之和都是19,且“尽”>“山”>“力”,则“水”最大等于________. 【答案】7【分析】由题意知:32219357+++++++=⨯=尽山力心可拔穷水,所以2573621++=-=尽山力,再由“尽”>“山”>“力”得:尽最小为6,此时山为5、力为4,要使“水”大,则“穷”小,令1=穷,则7=水,这时3=心、“可”和“拔”为2和8,因此“水”最大为7.二. 简答题(每小题15分, 共60分, 要求写出简要过程)9. 有一批作业,王老师原计划每小时批改6本. 批改了2小时后,他决定每小时批改8本,结果提前3小时批改完. 那么这批作业有多少本? 【答案】84【分析】设王老师原计划批改x 小时,则()66285x x =⨯+-,解得:14x =,所以有84本作业本.10. 用五种不同的颜色涂正方体的六个面. 如果相邻的两个面不能涂同种颜色,则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法才被认为是不同的) 【答案】15【分析】先选一个颜色涂2次,有5种选择方式,而且必须涂对面,不妨涂上、下两面,剩下4种颜色涂前后左右,理解为一个环排列:44423A ÷÷=种(可以旋转,可以翻转),所以共有15种涂法.11. 如右图所示,有一个圆圈填了数字1. 请在空白圆圈内填上2,3,4,5,6中的一个数字,要求无重复数字,且相邻圆圈内的数字的差至少为2. 问共有几种不同的填法?【答案】3【分析】设剩下五个圈分别为a 、b 、c 、d 、e (如下图),则2只能放在d 、e 中一个位置,分类讨论:令2d =,则3b =,5c =,d 、e 随意选4、6,所以有2中填法;令2e =,则3在b 、c 中,若3b =,不管5放在a 、b 、c 中哪一个位置都会和4、6中一个数字相邻,不成立,若3c =,则4a =,6d =,5b =, 1种填法;所以一共有3种填法.12. 边长分别为8 cm 和6 cm 的两个正方形ABCD 与BEFG 如右图并排放在一起. 连接DE 交BG 于P ,则图中阴影部分APEG 的面积是多少?【答案】18【分析】连接DG 、DB ,=66218GPE GPD GDE GBE S S S S S ∆∆∆∆+===⨯÷=阴平方厘米.1ed cb a1。
第20届华赛杯小学高年级组数学邀请赛试题(含答案)
个同学成绩最小,则第 2 个同学成绩取最大值
为:98,进而求出另三位同学的总成绩,进而
根据“总成绩÷总人数=平均分”能求出另三名同
学的平均分,继而分析、推导得出所求问题的
答案.
解答:
解:92.5×6﹣99﹣76=380(分),
由于最高分是 99 分,所以第二个的最好成绩
第 5页(共 21页)
点评:
故选:B.
点评:
本题主要考查了学生根据排列的知识和抽届
原理来解决问题的能力.
二、填空题:(每小题 10 分,满分 40 分) 7.(10 分)在每个格子中填入 1﹣6 中的一个,使得每行、每列及每个 2×3 长方形内(粗线 框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和 是质数,那么四位数“相约华杯”是 4123 .
考点: 专题:
幻方. 菁优网版 权所有
传统应用题专题.
第 7页(共 21页)
分析: 解答: 点评:
通过分析: 如图:
因为第三行存在 1.、3、4,所以 A 为 2,5, 6 之一,而 3 与 A 的和是质数,所以 A 为 2.在 A 所在的长方形中,还剩下 1、4、5、6 没有 使用.而 3 与“相”的和是质数,所以“相”是 4.“相”与”“约”的和为质数,“约”为 1,“约” 与”“月”的和为质数,“月”为 6,剩下的 C 为 5. 第三行只剩下数字 5,所以 B 为 5;在 B 所在 的长方形中,还剩下 2、3、6 没有使用.而 4 与“杯”的和是质数,所以“杯”为 3,“杯” 与”“华”的和为质数,所以“华”为 2,剩下的 D 就是 6,;所以四位数“相约华杯”是 4123,据 此解答即可. 解:如图:
6.(10 分)一个由边长为 1 的小正方形组成的 n×n 的方格网,用白色或黑色对每个小正方
【小中组】第20届华杯赛决赛
第二十届华罗庚金杯少年数学邀请赛决赛(A )卷【小中组】1. 森林里举行比赛,要派出狮子、老虎、豹子和大象中的两个动物去参加,如果派狮子去,那么也要派老虎取;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去,那么,最后能去参加比赛的是( )A. 狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象2. 小明有多张面额为1元,2元和5元的人民币,他想用其中不多于10张的人民币购买一只价格为18元的风筝,要求至少用两种面额的人民币,那么不同的付款方式有( )种. A.3 B.9 C.11 D.83. 如右图,在有1×1的正方形组成的网格中,写有2015四个数字(阴影部分),其边线要么是水平,要么是竖直的直线段,要么是连接1×1正方形相邻两边中点的线段,或者是1×1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是( ) A.47 B.2147C.48D.21484. 新生入校后,合唱队,田径队,舞蹈队共招收学员100人,如果合唱队招收的人数比田径队多一倍,舞蹈队比合唱队多10人,那么舞蹈队招收( )人.(注:每人限加入一个队) A.30 B.42 C.46 D.525.一只旧钟的时针和分针每重合一次,需要经过标准时间66分钟,那么这只旧钟的24小时比标准时间的24小时()A.快12分B.快6分C.慢6分D.慢12分6.一次考试共有6道选择题,评分规则如下:每人先给6分,答对一题加4分,答错一题减一分,不答得0分,现有51名同学参加考试,那么,至少有()人得分相同.A.3B.4C.5D.67.计算:_____(=⨯+314-151000+++.⨯)-+-+)110(15(314360)360201201110)1000(8.角可以用它的两边上的两个大写字母和顶点的字母表示,(如右图的AOB∠表示,∠,也可以用0顶点处只有一个角时),下面的三角形ABC中,οBCO∠ACO=∠AOCABOBAO,则_____CAO∠CBO,,==110∠,∠∠∠=∠CBO.=9.张叔叔和李叔叔的年龄和是56岁,当张叔叔的年龄是李叔叔现在年龄的一半时,李叔叔当时的年龄是张叔叔现在的年龄,那么张叔叔现在有______岁.10.妈妈决定假期带小花驾车去10个城市旅游,小花查完地图后惊奇地发现:10个城市的任意三个城市之间或者都开通了高速公路,或者只有两个城市间没有开通高速路,那么这10个城市间至少开通了______条高速公路.(注:两个城市间最多只有一条高速公路)第二十届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小中组】1.解析:【知识点】逻辑推理假设派狮子去,那么老虎也去,那么豹子就不去,这样老虎也不能去,矛盾,A 排除; 假设派狮子去,那么老虎也去,C 排除; 不派豹子去,那么也不能派老虎去,D 排除; 故只能派老虎和豹子去,答案选B 2.解析:【知识点】计数,枚举 付款方式有以下几种:3×5+1×2+1×1=18,3×5+1×3=18,2×5+4×2=18,2×5+3×2+2×1=18,2×5+2×2+4×1=18, 2×5+1×2+6×1=18,2×5+8×1=18,1×5+6×2+1×1=18,1×5+5×2+3×1=18,1×5+4×2+5×1, 8×2+2×1=18;总共11种,答案选C 。
2015华杯赛小高组初试试题
第二十届华罗庚金杯少年数学邀请赛初赛A 试卷(小学高年级组)(时间:2015年3月14日 10:00—11:00)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去。
最后去参加活动的两个人是( )(A )甲、乙 (B )乙、丙 (C )甲、丙 (D )乙、丁2以上平面任意4个点为顶点的三角形中,钝角三角形最多有( )个.(A )5 (B )2 (C )4 (D )33.桌上有编号1至20的20张卡片,小明每次取出2张卡片,要求一张卡片的篇号是另一张卡片的2倍多2,则小明最多取出( )张卡片.(A )12 (B )14 (C )16 (D )184.足球友谊比赛的票价是50元,赛前一小时还有余票,于是决定降价,结果出售的票是另一张卡片的2倍多2,则小明最多取出( )张卡片.(A )10 (B )225 (C )350 (D )25 5.一只旧钟的分针和时针每重合一次,需要经过标准时间66分.那么,这只旧钟的24小时比标准时间的24小时( ).(A )快12分 (B )快6分 (C )慢6分 (D )慢12分6.在右图的6×6方格内,每个方格中只能填A ,B ,C ,D ,E ,F中的某个字母,要求每行、每列、每个标有粗线的2×3长方形的六个字母均不能重复.那么,每四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是( ).(A )E ,C ,D ,F (B )E ,D ,C ,F (C )D ,F ,C ,E(D )D,C,F,E二、填空题(每小题10分,共40分)7.计算:48161+265121+904201-1843029-1604241-7035655= .8.过正三角形ABC 内一点P ,向三边作垂线,垂足依次为D ,E ,F ,连接AP,BP,CP.如果正三角形ABC 的面积是2028平方厘米,三角形PAD 和三角形PBE 的面积都是192平方厘米,则三角形PCF 的面积为 平方厘米.9.自然数2015最多可以表示成 个连续奇数的和.10.由单位正方形拼成的 15×15网格,以网格的格点为顶点作边长为整数的正方形,则边长大于5的正方形有 个.。
2015年-中年级-华杯赛
华杯赛小中组初 ༽ 赛参考答案
题号 答案 题号 答案
1 B 9 24
第二十届华杯赛初赛试题 A(小中组)参考答案 2 3 4 5 6 7 8 C B C D A 1000000 10 40
题号 答案 题号 答案
1 61 9 84 本
第二十届华杯赛复赛试题 A(小中组)参考答案 2 3 4 5 360 4.7 37 4 10 11 12 15 种 3种 18 平方厘米
6. 一条河上有 A, B 两个码头, A 在上游, B 在下游. 甲、乙两人分别从 A, B 同时 出发, 划船相向而行, 4 小时后相遇. 如果甲、乙两人分别从 A, B 同时出发, 划船同向而行, 乙 16 小时后追上甲. 已知甲在静水中划船的速度为每小时 6 千米, 则乙在静水中划船每小时行驶________千米.
(A)快 12 分(B)快 6 分(C)慢 6 分(D)慢 12 分
6.
一次考试共有 6 道选择题,评分规则如下:每人先给 6 分,答对一题加 4 分,打错一题减 1 分,不答得 0 分.现有 51 名同学参加考试.那么,至少 有( )人得分相同.
(A)3(B)4(C)5(D)6
二、填空题(每小题 10 分,共 40 分)
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 有一批作业, 王老师原计划每小时批改 6 本. 批改了 2 小时后, 他决定每小时 批改 8 本, 结果提前 3 小时批改完. 那么这批作业有多少本?
10. 用五种不同的颜色涂正方体的六个面 . 如果相邻的两个面不能涂同种颜色 , 则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法 才被认为是不同的)
7. 某个两位数是 2 的倍数, 加 1 是 3 的倍数, 加 2 是 4 的倍数, 加 3 是 5 的倍数, 那么这个两位数是________.
“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!
“华杯赛”初赛试题(附详细答案),能做全对的直接上重点
中学!
一、什么是华杯赛?
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
华杯赛”是以教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学为宗旨的活动。
二、为什么报名参加各大数学杯赛的考试?
1、检验学习效果
通过奥数的学习,能培养良好的思维习惯,有利于智力的开发,且对以后数理化各科的学习也都非常有帮助。
杯赛考试是检测学习效果最好的方式。
2、锻炼思维能力
各大奥数杯赛不仅仅是一种考试,其举办宗旨更多的是致力于学生独立思考、科学探索、创造性地解决问题和创新思维能力的培养。
3、助升学一臂之力
通过杯赛证书增加升学砝码,突出简历亮点,进而拿到参加重点中学升学选拔的机会。
三、华杯赛作用
华杯赛作为目前全国最权威的初中数学比赛,备受北京市各重点中学的认可。
2007年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐。
甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。
今天的分享就到这儿了。
您有什么问题或建议可以在评论栏留言或给小编发私信,小编一定会在看到留言后第一时间给您回复。
2015年第二十届华罗庚金杯少年数学邀请赛初赛试卷
第二十届华罗庚金杯少年数学邀请赛初赛试卷一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是( ).(A )狮子、老虎 (B)老虎、豹子 (C )狮子、豹子 (D )老虎、大象2.小明有多张面额为1元、2元、5元的人民币,他想用其中不多于10张的人民币购买一只价格为18元的风筝,要求至少用两种面额的人民币,那么不同的付款方式有( )种(A)3 (B) 9 (C)11 (D)83.如下图,在由1x1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1x1的正方形相邻两边中点的线段,或者是1x1 的正方形的对角线,则图中2015四个数字(阴影部分)的面积是( )。
(A)47 (B)2147 (C) 48 (D)2148 4.新生入校后,合唱队、田径队和舞蹈队共招收学员100人,如果合唱队招收的人数比田径队多一倍,舞蹈队比合唱队多10人,那么舞蹈队招收( )人.(注:每人限加入一个队)(A)30 (B)42(C)46 (D)525、一直旧钟的分针和时针每重合一次,需要经过标准时间66分,那么,这只旧钟的24小时比标准时间的24小时( )。
(A)快12分 (B)快6分 (C)慢6分 (D)慢12分6.一次考试共有6道选择题,评分规则如下:每人先给6分,答对一题加4分。
答错一题减1分,不答得0分。
现有51名同学参加考试,那么,至少有( )人得分相同。
(A)3 (B)4 (C)5 (D)6二、填空题(每小题10分,共40分)7.计算:(1000+15+314)×(201+360+110)+(1000-201-360-110)×(15+314)= .8、角可以用它的两边上的两个大写字母和顶点的字母表示,如右图的∠AOB符号(“∠”表示角)也可以用∠O表示(顶点处只有一个角时).下图的三角形ABC中,∠BAO=∠CAO,∠CBO=∠ABO,∠ACO=∠BCO,∠AOC=110°,则∠CBO= .9.张叔叔和李叔叔两人年龄和是56岁,当张叔叔是李叔叔现在年龄的一半时,李叔叔当时的年龄是张叔叔现在的年龄,那么张叔叔现在有岁。
2015华杯赛初赛小中年级备赛经典
一、计算【例题】1975、1985、1995、2005、2015这5个数的总和是多少?【例题】假如“华罗庚金杯”少年数学邀请赛每隔一年举行一次。
1999年是第二届。
问2015年是第几届?【例题】光的速度是每秒30万千米,太阳离地球1亿5千万千米。
问:光从太阳到地球要用几分钟(得数保留一位小数)?【例题】有3个箱子,如果两箱两箱地称它们的重量,分别是83公斤、85公斤和86公斤。
问:其中最轻的箱子重多少公斤?【例题】小华参加了四次语文测验,平均成绩是68分。
他想在下一次语文测验后,将五次的平均成绩提高到最少70分。
那么,在下次测验中,他至少要得多少分?【例题】某年的10月里有5个星期六,4个星期日。
问:这年的10月1日是星期几?【例题】1+2+3+…+298+299+300=【练习】2+12+22+32+…+152+162+172=【例题】伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到2015时,你数在那个手指上?【例题】2×3×5×7×11×13×17这个算式中有七个数连乘。
请问:最后得到的乘积中,所有数位上的数字和是多少?【例题】2015年的儿童节是星期几?【例题】甲、乙两个天平上放着一定重量的物体,问:哪一个是平衡的?【例题】澳门人口43万,其中40万人居住在半岛上,半岛面积7平方千米,求半岛上平均每平方千米有多少万人?(取两位小数)【例题】火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯? 【例题】任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?【例题】2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家哥伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?【例题】在大于2015的自然数中,被57除后,商与余数相等的数共有()个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】设张叔叔现在 x 岁,张叔叔减少 y 岁后是李叔叔年龄的一半,则李叔叔现在年龄为 2 x y 岁,
张叔叔是李叔叔现在年龄的一半时李叔叔为 2 x y y 岁,则
x 2 x y 56
y 8
x
2
x
y
y
,解得
x
24
,即张叔叔现在
24
岁.
此题亦可运用线段图的解法,同学们可以自己思考!
(A)30
(B)42
【答案】C
【考点】应用题:和倍问题
(C)46
(D)52
【分析】设田径队员为 a 人,则合唱队员 2a 人,舞蹈队员 2a 10 人, 2a a 2a 10 100 ,则
a 18 ,所以舞蹈队员18 2 10 46 人.
5. 一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分.那么,这只旧钟的 24 小时比标准 时间的 24 小时( ).
二. 填空题 (每小题 10 分, 共 40 分) 7. 计算: (1000 15 314) (201 360 110) (1000 201 360 110) (15 314) ________. 【答案】1000000 【考点】计算:换元法 【分析】令 a 15 314, b 201 360 110 ;则
(A)快 12 分
(B)快 6 分
(C)慢 6 分 (D)慢 12 分
【答案】D
【考点】时钟问题
【分析】时针速度为每分钟 0.5 度,分针速度为每分钟 6 度.分钟每比时针多跑一圈,即多跑 360 度,
时针分针重合一次.经过
6
360 0.5
720 11
分钟,旧钟时针分针重合一次,需要经过标准时间
66
方法 2:在逻辑推理中,原命题成立,则逆否命题也成立.从题意出发: (1)狮子去则老虎去,逆否命题:老虎不去则狮子也不去 (2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子 (3)派豹子则大象不愿意去,逆否命题:大象去则不能派豹子 从(2)出发可以看出答案为 B.
2. 小明有多张面额为 1 元、2 元和 5 元的人民币,他想用其中不多于 10 张的人民币购买一只价格为 18 元的风筝, 要求至少用两种面额的人民币,那么不同的付款方式有( )种.
8. 角可以用它的两边上的两个大写字母和顶点的字母表示,如下图的 AOB 符号(“∠”表示角),也 可以用 O 表示(顶点处只有一个角时).下图的三角形 ABC 中, BAO CAO , CBO ABO , ACO BCO , AOC 110 ,则 CBO ________.
【答案】 20 【考点】几何:角度
(A)3
(B)9
(C)11
(D)8
【答案】C
【考点】奇数:列表枚举
【分析】列表枚举,共有 11 种付款方式
5元
2元
1元
总张数
3
0
3
6
3
1
1
5
2
4
0
6
2
3
2
7
2
2
4
8
2
1
6
9
2
0
8
10
1
6
1
8
1
5
3
9
1
4
5
10
Байду номын сангаас
0
8
2
10
3. 如右图,在由11的正方形组成的网格中,写有 2015 四个数字(阴影部分).其边线要么是水平 或竖直的直线段、要么是连接 1 1 的正方形相邻两边中点的线段,或者是 1 1 的正方形的对角线.则
A1 , A2 , Aj 三个点中只有一条线段.即只能在 A3 , A4 , , A10 这 8 个点的连线中去掉一条,记为 A3 A4 ;
同理可再去掉 A5 A6 , A7 A8 , A9 A10 ,故最多可去掉 5 条线段,则至少连接 40 条线段,即至少开通了 40 条高速公路.
(A)3
(B)4
(C)5
(D)6
【答案】A 【考点】组合:抽屉原理 【分析】设答对 x 题,答错 y 题, x y 6 ;
当 x 6 时,得分 30 分; 当 x 5 时, y 0,1 ,对应得分 26, 25 ; 当 x 4 时, y 0,1, 2 ,对应得分 22, 21, 20 ; 当 x 3 时, y 0,1, 2,3 ,对应得分18,17,16,15 ; 当 x 2 时, y 0,1, 2,3, 4 ,对应得分14,13,12,11,10 ; 当 x 1 时, y 0,1, 2,3, 4,5 ,对应得分10,9,8, 7, 6,5 ; 当 x 0 时, y 0,1, 2,3, 4,5, 6 ,对应得分 6,5, 4,3, 2,1, 0 ; 共计 25 种得分, 51 25 2 1 ,则至少 2 1 3 人得分相同.
2015 年第二十届华杯赛中年级组初赛试卷 A 卷
一. 选择题.(每小题 10 分,共 60 分.) 1. 森林里举行比赛,要派出狮子、老虎、豹子和大象中的两个动物去参加.如果派狮子去,那么也
要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那 么,最后能去参加比赛的是( ). (A)狮子、老虎 (B)老虎、豹子 (C)狮子、豹子 (D)老虎、大象 【答案】B 【考点】逻辑推理、假设法 【分析】方法 1:题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也 去.三个动物去,矛盾,所以狮子不去.若豹子不去则老虎不去,那么只有大象去,矛盾,所以 豹子去.豹子去则大象不去,由两种动物去得到结论,老虎要去.所以答案是 B,豹子和老虎 去.
图中 2015 四个数字(阴影部分)的面积是( ).
(A)47
(B) 47 1 2
(C)48
(D) 48 1 2
【答案】B 【考点】几何:割补 【分析】将小三角形移到空白处补成完整正方形再数正方形个数即可,共 47.5 个.
4. 新生入校后,合唱队、田径队和舞蹈队共招收学员 100 人.如果合唱队招收的人数比田径队多一 倍,舞蹈队比合唱队多 10 人,那么舞蹈队招收( )人.(注:每人限加入一个队)
10. 妈妈决定假期带小花驾车去 10 个城市旅游,小花查完地图后惊奇地发现:这 10 个城市的任意三 个城市之间或者都开通了高速公路,或者只有两个城市间没有开通高速路.那么这 10 个城市间至 少开通了________条高速公路.(注:两个城市间最多只有一条高速公路)
【答案】40 【考点】组合:最值构造 【分析】将 10 个城市设为 A1 , A2 , , A10 这 10 个点,两个城市间的高速路视为连接两个点的线段,则任
2 CAO ACO CBO 180
【分析】由题意得, CAO ACO AOC 180 ,解得 CBO 20 . AOC 110
9. 张叔叔和李叔叔两人年龄和是 56 岁,当张叔叔是李叔叔现在年龄的一半时,李叔叔当时的年龄是 张叔叔现在的年龄.那么张叔叔现在有________岁.
【答案】24 【考点】应用题:年龄问题
分钟;
则旧钟的
24
小时,相当于标准时间的
24 60
720
66
1452
分钟,所以比标准时间
24
小时对应的
11
24 60 1440 分钟多了 12 分钟,即慢了 12 分钟
6. 一次考试共有 6 道选择题,评分规则如下:每人先给 6 分,答对一题加 4 分,答错一题减 1 分, 不答得 0 分.现有 51 名同学参加考试,那么,至少有( )人得分相同.
1000 15 314 201 360 110 1000 201 360 110 15 314 = 1000 a b 1000 b a
1000a ab 1000b ab
1000 a b 1000 15 314 201 360 110
1000000